mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1323 lines
44 KiB
1323 lines
44 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <limits> |
|
#include "opencl_kernels_features2d.hpp" |
|
|
|
#if defined(HAVE_EIGEN) && EIGEN_WORLD_VERSION == 2 |
|
#include <Eigen/Array> |
|
#endif |
|
|
|
namespace cv |
|
{ |
|
|
|
/////////////////////// ocl functions for BFMatcher /////////////////////////// |
|
|
|
static void ensureSizeIsEnough(int rows, int cols, int type, UMat &m) |
|
{ |
|
if (m.type() == type && m.rows >= rows && m.cols >= cols) |
|
m = m(Rect(0, 0, cols, rows)); |
|
else |
|
m.create(rows, cols, type); |
|
} |
|
|
|
static bool ocl_matchSingle(InputArray query, InputArray train, |
|
UMat &trainIdx, UMat &distance, int distType) |
|
{ |
|
if (query.empty() || train.empty()) |
|
return false; |
|
|
|
const int query_rows = query.rows(); |
|
const int query_cols = query.cols(); |
|
|
|
ensureSizeIsEnough(1, query_rows, CV_32S, trainIdx); |
|
ensureSizeIsEnough(1, query_rows, CV_32F, distance); |
|
|
|
ocl::Device devDef = ocl::Device::getDefault(); |
|
|
|
UMat uquery = query.getUMat(), utrain = train.getUMat(); |
|
int kercn = 1; |
|
if (devDef.isIntel() && |
|
(0 == (uquery.step % 4)) && (0 == (uquery.cols % 4)) && (0 == (uquery.offset % 4)) && |
|
(0 == (utrain.step % 4)) && (0 == (utrain.cols % 4)) && (0 == (utrain.offset % 4))) |
|
kercn = 4; |
|
|
|
int block_size = 16; |
|
int max_desc_len = 0; |
|
bool is_cpu = devDef.type() == ocl::Device::TYPE_CPU; |
|
if (query_cols <= 64) |
|
max_desc_len = 64 / kercn; |
|
else if (query_cols <= 128 && !is_cpu) |
|
max_desc_len = 128 / kercn; |
|
|
|
int depth = query.depth(); |
|
cv::String opts; |
|
opts = cv::format("-D T=%s -D TN=%s -D kercn=%d %s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d", |
|
ocl::typeToStr(depth), ocl::typeToStr(CV_MAKETYPE(depth, kercn)), kercn, depth == CV_32F ? "-D T_FLOAT" : "", distType, block_size, max_desc_len); |
|
ocl::Kernel k("BruteForceMatch_Match", ocl::features2d::brute_force_match_oclsrc, opts); |
|
if(k.empty()) |
|
return false; |
|
|
|
size_t globalSize[] = {(query.size().height + block_size - 1) / block_size * block_size, block_size}; |
|
size_t localSize[] = {block_size, block_size}; |
|
|
|
int idx = 0; |
|
idx = k.set(idx, ocl::KernelArg::PtrReadOnly(uquery)); |
|
idx = k.set(idx, ocl::KernelArg::PtrReadOnly(utrain)); |
|
idx = k.set(idx, ocl::KernelArg::PtrWriteOnly(trainIdx)); |
|
idx = k.set(idx, ocl::KernelArg::PtrWriteOnly(distance)); |
|
idx = k.set(idx, uquery.rows); |
|
idx = k.set(idx, uquery.cols); |
|
idx = k.set(idx, utrain.rows); |
|
idx = k.set(idx, utrain.cols); |
|
idx = k.set(idx, (int)(uquery.step / sizeof(float))); |
|
|
|
return k.run(2, globalSize, localSize, false); |
|
} |
|
|
|
static bool ocl_matchConvert(const Mat &trainIdx, const Mat &distance, std::vector< std::vector<DMatch> > &matches) |
|
{ |
|
if (trainIdx.empty() || distance.empty()) |
|
return false; |
|
|
|
if( (trainIdx.type() != CV_32SC1) || (distance.type() != CV_32FC1 || distance.cols != trainIdx.cols) ) |
|
return false; |
|
|
|
const int nQuery = trainIdx.cols; |
|
|
|
matches.clear(); |
|
matches.reserve(nQuery); |
|
|
|
const int *trainIdx_ptr = trainIdx.ptr<int>(); |
|
const float *distance_ptr = distance.ptr<float>(); |
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++distance_ptr) |
|
{ |
|
int trainIndex = *trainIdx_ptr; |
|
|
|
if (trainIndex == -1) |
|
continue; |
|
|
|
float dst = *distance_ptr; |
|
|
|
DMatch m(queryIdx, trainIndex, 0, dst); |
|
|
|
std::vector<DMatch> temp; |
|
temp.push_back(m); |
|
matches.push_back(temp); |
|
} |
|
return true; |
|
} |
|
|
|
static bool ocl_matchDownload(const UMat &trainIdx, const UMat &distance, std::vector< std::vector<DMatch> > &matches) |
|
{ |
|
if (trainIdx.empty() || distance.empty()) |
|
return false; |
|
|
|
Mat trainIdxCPU = trainIdx.getMat(ACCESS_READ); |
|
Mat distanceCPU = distance.getMat(ACCESS_READ); |
|
|
|
return ocl_matchConvert(trainIdxCPU, distanceCPU, matches); |
|
} |
|
|
|
static bool ocl_knnMatchSingle(InputArray query, InputArray train, UMat &trainIdx, |
|
UMat &distance, int distType) |
|
{ |
|
if (query.empty() || train.empty()) |
|
return false; |
|
|
|
const int query_rows = query.rows(); |
|
const int query_cols = query.cols(); |
|
|
|
ensureSizeIsEnough(1, query_rows, CV_32SC2, trainIdx); |
|
ensureSizeIsEnough(1, query_rows, CV_32FC2, distance); |
|
|
|
trainIdx.setTo(Scalar::all(-1)); |
|
|
|
ocl::Device devDef = ocl::Device::getDefault(); |
|
|
|
UMat uquery = query.getUMat(), utrain = train.getUMat(); |
|
int kercn = 1; |
|
if (devDef.isIntel() && |
|
(0 == (uquery.step % 4)) && (0 == (uquery.cols % 4)) && (0 == (uquery.offset % 4)) && |
|
(0 == (utrain.step % 4)) && (0 == (utrain.cols % 4)) && (0 == (utrain.offset % 4))) |
|
kercn = 4; |
|
|
|
int block_size = 16; |
|
int max_desc_len = 0; |
|
bool is_cpu = devDef.type() == ocl::Device::TYPE_CPU; |
|
if (query_cols <= 64) |
|
max_desc_len = 64 / kercn; |
|
else if (query_cols <= 128 && !is_cpu) |
|
max_desc_len = 128 / kercn; |
|
|
|
int depth = query.depth(); |
|
cv::String opts; |
|
opts = cv::format("-D T=%s -D TN=%s -D kercn=%d %s -D DIST_TYPE=%d -D BLOCK_SIZE=%d -D MAX_DESC_LEN=%d", |
|
ocl::typeToStr(depth), ocl::typeToStr(CV_MAKETYPE(depth, kercn)), kercn, depth == CV_32F ? "-D T_FLOAT" : "", distType, block_size, max_desc_len); |
|
ocl::Kernel k("BruteForceMatch_knnMatch", ocl::features2d::brute_force_match_oclsrc, opts); |
|
if(k.empty()) |
|
return false; |
|
|
|
size_t globalSize[] = {(query_rows + block_size - 1) / block_size * block_size, block_size}; |
|
size_t localSize[] = {block_size, block_size}; |
|
|
|
int idx = 0; |
|
idx = k.set(idx, ocl::KernelArg::PtrReadOnly(uquery)); |
|
idx = k.set(idx, ocl::KernelArg::PtrReadOnly(utrain)); |
|
idx = k.set(idx, ocl::KernelArg::PtrWriteOnly(trainIdx)); |
|
idx = k.set(idx, ocl::KernelArg::PtrWriteOnly(distance)); |
|
idx = k.set(idx, uquery.rows); |
|
idx = k.set(idx, uquery.cols); |
|
idx = k.set(idx, utrain.rows); |
|
idx = k.set(idx, utrain.cols); |
|
idx = k.set(idx, (int)(uquery.step / sizeof(float))); |
|
|
|
return k.run(2, globalSize, localSize, false); |
|
} |
|
|
|
static bool ocl_knnMatchConvert(const Mat &trainIdx, const Mat &distance, std::vector< std::vector<DMatch> > &matches, bool compactResult) |
|
{ |
|
if (trainIdx.empty() || distance.empty()) |
|
return false; |
|
|
|
if(trainIdx.type() != CV_32SC2 && trainIdx.type() != CV_32SC1) return false; |
|
if(distance.type() != CV_32FC2 && distance.type() != CV_32FC1)return false; |
|
if(distance.size() != trainIdx.size()) return false; |
|
if(!trainIdx.isContinuous() || !distance.isContinuous()) return false; |
|
|
|
const int nQuery = trainIdx.type() == CV_32SC2 ? trainIdx.cols : trainIdx.rows; |
|
const int k = trainIdx.type() == CV_32SC2 ? 2 : trainIdx.cols; |
|
|
|
matches.clear(); |
|
matches.reserve(nQuery); |
|
|
|
const int *trainIdx_ptr = trainIdx.ptr<int>(); |
|
const float *distance_ptr = distance.ptr<float>(); |
|
|
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) |
|
{ |
|
matches.push_back(std::vector<DMatch>()); |
|
std::vector<DMatch> &curMatches = matches.back(); |
|
curMatches.reserve(k); |
|
|
|
for (int i = 0; i < k; ++i, ++trainIdx_ptr, ++distance_ptr) |
|
{ |
|
int trainIndex = *trainIdx_ptr; |
|
|
|
if (trainIndex != -1) |
|
{ |
|
float dst = *distance_ptr; |
|
|
|
DMatch m(queryIdx, trainIndex, 0, dst); |
|
|
|
curMatches.push_back(m); |
|
} |
|
} |
|
|
|
if (compactResult && curMatches.empty()) |
|
matches.pop_back(); |
|
} |
|
return true; |
|
} |
|
|
|
static bool ocl_knnMatchDownload(const UMat &trainIdx, const UMat &distance, std::vector< std::vector<DMatch> > &matches, bool compactResult) |
|
{ |
|
if (trainIdx.empty() || distance.empty()) |
|
return false; |
|
|
|
Mat trainIdxCPU = trainIdx.getMat(ACCESS_READ); |
|
Mat distanceCPU = distance.getMat(ACCESS_READ); |
|
|
|
return ocl_knnMatchConvert(trainIdxCPU, distanceCPU, matches, compactResult); |
|
} |
|
|
|
static bool ocl_radiusMatchSingle(InputArray query, InputArray train, |
|
UMat &trainIdx, UMat &distance, UMat &nMatches, float maxDistance, int distType) |
|
{ |
|
if (query.empty() || train.empty()) |
|
return false; |
|
|
|
const int query_rows = query.rows(); |
|
const int train_rows = train.rows(); |
|
|
|
ensureSizeIsEnough(1, query_rows, CV_32SC1, nMatches); |
|
|
|
if (trainIdx.empty()) |
|
{ |
|
ensureSizeIsEnough(query_rows, std::max((train_rows / 100), 10), CV_32SC1, trainIdx); |
|
ensureSizeIsEnough(query_rows, std::max((train_rows / 100), 10), CV_32FC1, distance); |
|
} |
|
|
|
nMatches.setTo(Scalar::all(0)); |
|
|
|
ocl::Device devDef = ocl::Device::getDefault(); |
|
UMat uquery = query.getUMat(), utrain = train.getUMat(); |
|
int kercn = 1; |
|
if (devDef.isIntel() && |
|
(0 == (uquery.step % 4)) && (0 == (uquery.cols % 4)) && (0 == (uquery.offset % 4)) && |
|
(0 == (utrain.step % 4)) && (0 == (utrain.cols % 4)) && (0 == (utrain.offset % 4))) |
|
kercn = 4; |
|
|
|
int block_size = 16; |
|
int depth = query.depth(); |
|
cv::String opts; |
|
opts = cv::format("-D T=%s -D TN=%s -D kercn=%d %s -D DIST_TYPE=%d -D BLOCK_SIZE=%d", |
|
ocl::typeToStr(depth), ocl::typeToStr(CV_MAKETYPE(depth, kercn)), kercn, depth == CV_32F ? "-D T_FLOAT" : "", distType, block_size); |
|
ocl::Kernel k("BruteForceMatch_RadiusMatch", ocl::features2d::brute_force_match_oclsrc, opts); |
|
if (k.empty()) |
|
return false; |
|
|
|
size_t globalSize[] = {(train_rows + block_size - 1) / block_size * block_size, (query_rows + block_size - 1) / block_size * block_size}; |
|
size_t localSize[] = {block_size, block_size}; |
|
|
|
int idx = 0; |
|
idx = k.set(idx, ocl::KernelArg::PtrReadOnly(uquery)); |
|
idx = k.set(idx, ocl::KernelArg::PtrReadOnly(utrain)); |
|
idx = k.set(idx, maxDistance); |
|
idx = k.set(idx, ocl::KernelArg::PtrWriteOnly(trainIdx)); |
|
idx = k.set(idx, ocl::KernelArg::PtrWriteOnly(distance)); |
|
idx = k.set(idx, ocl::KernelArg::PtrWriteOnly(nMatches)); |
|
idx = k.set(idx, uquery.rows); |
|
idx = k.set(idx, uquery.cols); |
|
idx = k.set(idx, utrain.rows); |
|
idx = k.set(idx, utrain.cols); |
|
idx = k.set(idx, trainIdx.cols); |
|
idx = k.set(idx, (int)(uquery.step / sizeof(float))); |
|
idx = k.set(idx, (int)(trainIdx.step / sizeof(int))); |
|
|
|
return k.run(2, globalSize, localSize, false); |
|
} |
|
|
|
static bool ocl_radiusMatchConvert(const Mat &trainIdx, const Mat &distance, const Mat &_nMatches, |
|
std::vector< std::vector<DMatch> > &matches, bool compactResult) |
|
{ |
|
if (trainIdx.empty() || distance.empty() || _nMatches.empty()) |
|
return false; |
|
|
|
if( (trainIdx.type() != CV_32SC1) || |
|
(distance.type() != CV_32FC1 || distance.size() != trainIdx.size()) || |
|
(_nMatches.type() != CV_32SC1 || _nMatches.cols != trainIdx.rows) ) |
|
return false; |
|
|
|
const int nQuery = trainIdx.rows; |
|
|
|
matches.clear(); |
|
matches.reserve(nQuery); |
|
|
|
const int *nMatches_ptr = _nMatches.ptr<int>(); |
|
|
|
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) |
|
{ |
|
const int *trainIdx_ptr = trainIdx.ptr<int>(queryIdx); |
|
const float *distance_ptr = distance.ptr<float>(queryIdx); |
|
|
|
const int nMatches = std::min(nMatches_ptr[queryIdx], trainIdx.cols); |
|
|
|
if (nMatches == 0) |
|
{ |
|
if (!compactResult) |
|
matches.push_back(std::vector<DMatch>()); |
|
continue; |
|
} |
|
|
|
matches.push_back(std::vector<DMatch>(nMatches)); |
|
std::vector<DMatch> &curMatches = matches.back(); |
|
|
|
for (int i = 0; i < nMatches; ++i, ++trainIdx_ptr, ++distance_ptr) |
|
{ |
|
int trainIndex = *trainIdx_ptr; |
|
|
|
float dst = *distance_ptr; |
|
|
|
DMatch m(queryIdx, trainIndex, 0, dst); |
|
|
|
curMatches[i] = m; |
|
} |
|
|
|
std::sort(curMatches.begin(), curMatches.end()); |
|
} |
|
return true; |
|
} |
|
|
|
static bool ocl_radiusMatchDownload(const UMat &trainIdx, const UMat &distance, const UMat &nMatches, |
|
std::vector< std::vector<DMatch> > &matches, bool compactResult) |
|
{ |
|
if (trainIdx.empty() || distance.empty() || nMatches.empty()) |
|
return false; |
|
|
|
Mat trainIdxCPU = trainIdx.getMat(ACCESS_READ); |
|
Mat distanceCPU = distance.getMat(ACCESS_READ); |
|
Mat nMatchesCPU = nMatches.getMat(ACCESS_READ); |
|
|
|
return ocl_radiusMatchConvert(trainIdxCPU, distanceCPU, nMatchesCPU, matches, compactResult); |
|
} |
|
|
|
/****************************************************************************************\ |
|
* DescriptorMatcher * |
|
\****************************************************************************************/ |
|
DescriptorMatcher::DescriptorCollection::DescriptorCollection() |
|
{} |
|
|
|
DescriptorMatcher::DescriptorCollection::DescriptorCollection( const DescriptorCollection& collection ) |
|
{ |
|
mergedDescriptors = collection.mergedDescriptors.clone(); |
|
std::copy( collection.startIdxs.begin(), collection.startIdxs.begin(), startIdxs.begin() ); |
|
} |
|
|
|
DescriptorMatcher::DescriptorCollection::~DescriptorCollection() |
|
{} |
|
|
|
void DescriptorMatcher::DescriptorCollection::set( const std::vector<Mat>& descriptors ) |
|
{ |
|
clear(); |
|
|
|
size_t imageCount = descriptors.size(); |
|
CV_Assert( imageCount > 0 ); |
|
|
|
startIdxs.resize( imageCount ); |
|
|
|
int dim = -1; |
|
int type = -1; |
|
startIdxs[0] = 0; |
|
for( size_t i = 1; i < imageCount; i++ ) |
|
{ |
|
int s = 0; |
|
if( !descriptors[i-1].empty() ) |
|
{ |
|
dim = descriptors[i-1].cols; |
|
type = descriptors[i-1].type(); |
|
s = descriptors[i-1].rows; |
|
} |
|
startIdxs[i] = startIdxs[i-1] + s; |
|
} |
|
if( imageCount == 1 ) |
|
{ |
|
if( descriptors[0].empty() ) return; |
|
|
|
dim = descriptors[0].cols; |
|
type = descriptors[0].type(); |
|
} |
|
CV_Assert( dim > 0 ); |
|
|
|
int count = startIdxs[imageCount-1] + descriptors[imageCount-1].rows; |
|
|
|
if( count > 0 ) |
|
{ |
|
mergedDescriptors.create( count, dim, type ); |
|
for( size_t i = 0; i < imageCount; i++ ) |
|
{ |
|
if( !descriptors[i].empty() ) |
|
{ |
|
CV_Assert( descriptors[i].cols == dim && descriptors[i].type() == type ); |
|
Mat m = mergedDescriptors.rowRange( startIdxs[i], startIdxs[i] + descriptors[i].rows ); |
|
descriptors[i].copyTo(m); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void DescriptorMatcher::DescriptorCollection::clear() |
|
{ |
|
startIdxs.clear(); |
|
mergedDescriptors.release(); |
|
} |
|
|
|
const Mat DescriptorMatcher::DescriptorCollection::getDescriptor( int imgIdx, int localDescIdx ) const |
|
{ |
|
CV_Assert( imgIdx < (int)startIdxs.size() ); |
|
int globalIdx = startIdxs[imgIdx] + localDescIdx; |
|
CV_Assert( globalIdx < (int)size() ); |
|
|
|
return getDescriptor( globalIdx ); |
|
} |
|
|
|
const Mat& DescriptorMatcher::DescriptorCollection::getDescriptors() const |
|
{ |
|
return mergedDescriptors; |
|
} |
|
|
|
const Mat DescriptorMatcher::DescriptorCollection::getDescriptor( int globalDescIdx ) const |
|
{ |
|
CV_Assert( globalDescIdx < size() ); |
|
return mergedDescriptors.row( globalDescIdx ); |
|
} |
|
|
|
void DescriptorMatcher::DescriptorCollection::getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const |
|
{ |
|
CV_Assert( (globalDescIdx>=0) && (globalDescIdx < size()) ); |
|
std::vector<int>::const_iterator img_it = std::upper_bound(startIdxs.begin(), startIdxs.end(), globalDescIdx); |
|
--img_it; |
|
imgIdx = (int)(img_it - startIdxs.begin()); |
|
localDescIdx = globalDescIdx - (*img_it); |
|
} |
|
|
|
int DescriptorMatcher::DescriptorCollection::size() const |
|
{ |
|
return mergedDescriptors.rows; |
|
} |
|
|
|
/* |
|
* DescriptorMatcher |
|
*/ |
|
static void convertMatches( const std::vector<std::vector<DMatch> >& knnMatches, std::vector<DMatch>& matches ) |
|
{ |
|
matches.clear(); |
|
matches.reserve( knnMatches.size() ); |
|
for( size_t i = 0; i < knnMatches.size(); i++ ) |
|
{ |
|
CV_Assert( knnMatches[i].size() <= 1 ); |
|
if( !knnMatches[i].empty() ) |
|
matches.push_back( knnMatches[i][0] ); |
|
} |
|
} |
|
|
|
DescriptorMatcher::~DescriptorMatcher() |
|
{} |
|
|
|
void DescriptorMatcher::add( InputArrayOfArrays _descriptors ) |
|
{ |
|
if(_descriptors.isUMatVector()) |
|
{ |
|
std::vector<UMat> descriptors; |
|
_descriptors.getUMatVector(descriptors); |
|
utrainDescCollection.insert( utrainDescCollection.end(), descriptors.begin(), descriptors.end() ); |
|
} |
|
else if(_descriptors.isUMat()) |
|
{ |
|
std::vector<UMat> descriptors = std::vector<UMat>(1, _descriptors.getUMat()); |
|
utrainDescCollection.insert( utrainDescCollection.end(), descriptors.begin(), descriptors.end() ); |
|
} |
|
else if(_descriptors.isMatVector()) |
|
{ |
|
std::vector<Mat> descriptors; |
|
_descriptors.getMatVector(descriptors); |
|
trainDescCollection.insert( trainDescCollection.end(), descriptors.begin(), descriptors.end() ); |
|
} |
|
else if(_descriptors.isMat()) |
|
{ |
|
std::vector<Mat> descriptors = std::vector<Mat>(1, _descriptors.getMat()); |
|
trainDescCollection.insert( trainDescCollection.end(), descriptors.begin(), descriptors.end() ); |
|
} |
|
else |
|
CV_Assert( _descriptors.isUMat() || _descriptors.isUMatVector() || _descriptors.isMat() || _descriptors.isMatVector() ); |
|
} |
|
|
|
const std::vector<Mat>& DescriptorMatcher::getTrainDescriptors() const |
|
{ |
|
return trainDescCollection; |
|
} |
|
|
|
void DescriptorMatcher::clear() |
|
{ |
|
utrainDescCollection.clear(); |
|
trainDescCollection.clear(); |
|
} |
|
|
|
bool DescriptorMatcher::empty() const |
|
{ |
|
return trainDescCollection.empty() && utrainDescCollection.empty(); |
|
} |
|
|
|
void DescriptorMatcher::train() |
|
{} |
|
|
|
void DescriptorMatcher::match( InputArray queryDescriptors, InputArray trainDescriptors, |
|
std::vector<DMatch>& matches, InputArray mask ) const |
|
{ |
|
Ptr<DescriptorMatcher> tempMatcher = clone(true); |
|
tempMatcher->add(trainDescriptors); |
|
tempMatcher->match( queryDescriptors, matches, std::vector<Mat>(1, mask.getMat()) ); |
|
} |
|
|
|
void DescriptorMatcher::knnMatch( InputArray queryDescriptors, InputArray trainDescriptors, |
|
std::vector<std::vector<DMatch> >& matches, int knn, |
|
InputArray mask, bool compactResult ) const |
|
{ |
|
Ptr<DescriptorMatcher> tempMatcher = clone(true); |
|
tempMatcher->add(trainDescriptors); |
|
tempMatcher->knnMatch( queryDescriptors, matches, knn, std::vector<Mat>(1, mask.getMat()), compactResult ); |
|
} |
|
|
|
void DescriptorMatcher::radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors, |
|
std::vector<std::vector<DMatch> >& matches, float maxDistance, InputArray mask, |
|
bool compactResult ) const |
|
{ |
|
Ptr<DescriptorMatcher> tempMatcher = clone(true); |
|
tempMatcher->add(trainDescriptors); |
|
tempMatcher->radiusMatch( queryDescriptors, matches, maxDistance, std::vector<Mat>(1, mask.getMat()), compactResult ); |
|
} |
|
|
|
void DescriptorMatcher::match( InputArray queryDescriptors, std::vector<DMatch>& matches, InputArrayOfArrays masks ) |
|
{ |
|
std::vector<std::vector<DMatch> > knnMatches; |
|
knnMatch( queryDescriptors, knnMatches, 1, masks, true /*compactResult*/ ); |
|
convertMatches( knnMatches, matches ); |
|
} |
|
|
|
void DescriptorMatcher::checkMasks( InputArrayOfArrays _masks, int queryDescriptorsCount ) const |
|
{ |
|
std::vector<Mat> masks; |
|
_masks.getMatVector(masks); |
|
|
|
if( isMaskSupported() && !masks.empty() ) |
|
{ |
|
// Check masks |
|
size_t imageCount = std::max(trainDescCollection.size(), utrainDescCollection.size() ); |
|
CV_Assert( masks.size() == imageCount ); |
|
for( size_t i = 0; i < imageCount; i++ ) |
|
{ |
|
if( !masks[i].empty() && (!trainDescCollection[i].empty() || !utrainDescCollection[i].empty() ) ) |
|
{ |
|
int rows = trainDescCollection[i].empty() ? utrainDescCollection[i].rows : trainDescCollection[i].rows; |
|
CV_Assert( masks[i].rows == queryDescriptorsCount && |
|
(masks[i].cols == rows || masks[i].cols == rows) && |
|
masks[i].type() == CV_8UC1 ); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void DescriptorMatcher::knnMatch( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int knn, |
|
InputArrayOfArrays masks, bool compactResult ) |
|
{ |
|
if( empty() || queryDescriptors.empty() ) |
|
return; |
|
|
|
CV_Assert( knn > 0 ); |
|
|
|
checkMasks( masks, queryDescriptors.size().height ); |
|
|
|
train(); |
|
knnMatchImpl( queryDescriptors, matches, knn, masks, compactResult ); |
|
} |
|
|
|
void DescriptorMatcher::radiusMatch( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance, |
|
InputArrayOfArrays masks, bool compactResult ) |
|
{ |
|
matches.clear(); |
|
if( empty() || queryDescriptors.empty() ) |
|
return; |
|
|
|
CV_Assert( maxDistance > std::numeric_limits<float>::epsilon() ); |
|
|
|
checkMasks( masks, queryDescriptors.size().height ); |
|
|
|
train(); |
|
radiusMatchImpl( queryDescriptors, matches, maxDistance, masks, compactResult ); |
|
} |
|
|
|
void DescriptorMatcher::read( const FileNode& ) |
|
{} |
|
|
|
void DescriptorMatcher::write( FileStorage& ) const |
|
{} |
|
|
|
bool DescriptorMatcher::isPossibleMatch( InputArray _mask, int queryIdx, int trainIdx ) |
|
{ |
|
Mat mask = _mask.getMat(); |
|
return mask.empty() || mask.at<uchar>(queryIdx, trainIdx); |
|
} |
|
|
|
bool DescriptorMatcher::isMaskedOut( InputArrayOfArrays _masks, int queryIdx ) |
|
{ |
|
std::vector<Mat> masks; |
|
_masks.getMatVector(masks); |
|
|
|
size_t outCount = 0; |
|
for( size_t i = 0; i < masks.size(); i++ ) |
|
{ |
|
if( !masks[i].empty() && (countNonZero(masks[i].row(queryIdx)) == 0) ) |
|
outCount++; |
|
} |
|
|
|
return !masks.empty() && outCount == masks.size() ; |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////// BruteForceMatcher ///////////////////////////////////////////////// |
|
|
|
BFMatcher::BFMatcher( int _normType, bool _crossCheck ) |
|
{ |
|
normType = _normType; |
|
crossCheck = _crossCheck; |
|
} |
|
|
|
Ptr<DescriptorMatcher> BFMatcher::clone( bool emptyTrainData ) const |
|
{ |
|
Ptr<BFMatcher> matcher = makePtr<BFMatcher>(normType, crossCheck); |
|
if( !emptyTrainData ) |
|
{ |
|
matcher->trainDescCollection.resize(trainDescCollection.size()); |
|
std::transform( trainDescCollection.begin(), trainDescCollection.end(), |
|
matcher->trainDescCollection.begin(), clone_op ); |
|
} |
|
return matcher; |
|
} |
|
|
|
static bool ocl_match(InputArray query, InputArray _train, std::vector< std::vector<DMatch> > &matches, int dstType) |
|
{ |
|
UMat trainIdx, distance; |
|
if (!ocl_matchSingle(query, _train, trainIdx, distance, dstType)) |
|
return false; |
|
if (!ocl_matchDownload(trainIdx, distance, matches)) |
|
return false; |
|
return true; |
|
} |
|
|
|
static bool ocl_knnMatch(InputArray query, InputArray _train, std::vector< std::vector<DMatch> > &matches, int k, int dstType, bool compactResult) |
|
{ |
|
UMat trainIdx, distance; |
|
if (k != 2) |
|
return false; |
|
if (!ocl_knnMatchSingle(query, _train, trainIdx, distance, dstType)) |
|
return false; |
|
if (!ocl_knnMatchDownload(trainIdx, distance, matches, compactResult) ) |
|
return false; |
|
return true; |
|
} |
|
|
|
void BFMatcher::knnMatchImpl( InputArray _queryDescriptors, std::vector<std::vector<DMatch> >& matches, int knn, |
|
InputArrayOfArrays _masks, bool compactResult ) |
|
{ |
|
int trainDescType = trainDescCollection.empty() ? utrainDescCollection[0].type() : trainDescCollection[0].type(); |
|
CV_Assert( _queryDescriptors.type() == trainDescType ); |
|
|
|
const int IMGIDX_SHIFT = 18; |
|
const int IMGIDX_ONE = (1 << IMGIDX_SHIFT); |
|
|
|
if( _queryDescriptors.empty() || (trainDescCollection.empty() && utrainDescCollection.empty())) |
|
{ |
|
matches.clear(); |
|
return; |
|
} |
|
|
|
std::vector<Mat> masks; |
|
_masks.getMatVector(masks); |
|
|
|
if(!trainDescCollection.empty() && !utrainDescCollection.empty()) |
|
{ |
|
for(int i = 0; i < (int)utrainDescCollection.size(); i++) |
|
{ |
|
Mat tempMat; |
|
utrainDescCollection[i].copyTo(tempMat); |
|
trainDescCollection.push_back(tempMat); |
|
} |
|
utrainDescCollection.clear(); |
|
} |
|
|
|
int trainDescVectorSize = trainDescCollection.empty() ? (int)utrainDescCollection.size() : (int)trainDescCollection.size(); |
|
Size trainDescSize = trainDescCollection.empty() ? utrainDescCollection[0].size() : trainDescCollection[0].size(); |
|
int trainDescOffset = trainDescCollection.empty() ? (int)utrainDescCollection[0].offset : 0; |
|
|
|
if ( ocl::useOpenCL() && _queryDescriptors.isUMat() && _queryDescriptors.dims()<=2 && trainDescVectorSize == 1 && |
|
_queryDescriptors.type() == CV_32FC1 && _queryDescriptors.offset() == 0 && trainDescOffset == 0 && |
|
trainDescSize.width == _queryDescriptors.size().width && masks.size() == 1 && masks[0].total() == 0 ) |
|
{ |
|
if(knn == 1) |
|
{ |
|
if(trainDescCollection.empty()) |
|
{ |
|
if(ocl_match(_queryDescriptors, utrainDescCollection[0], matches, normType)) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_OCL); |
|
return; |
|
} |
|
} |
|
else |
|
{ |
|
if(ocl_match(_queryDescriptors, trainDescCollection[0], matches, normType)) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_OCL); |
|
return; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
if(trainDescCollection.empty()) |
|
{ |
|
if(ocl_knnMatch(_queryDescriptors, utrainDescCollection[0], matches, knn, normType, compactResult) ) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_OCL); |
|
return; |
|
} |
|
} |
|
else |
|
{ |
|
if(ocl_knnMatch(_queryDescriptors, trainDescCollection[0], matches, knn, normType, compactResult) ) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_OCL); |
|
return; |
|
} |
|
} |
|
} |
|
} |
|
|
|
Mat queryDescriptors = _queryDescriptors.getMat(); |
|
if(trainDescCollection.empty() && !utrainDescCollection.empty()) |
|
{ |
|
for(int i = 0; i < (int)utrainDescCollection.size(); i++) |
|
{ |
|
Mat tempMat; |
|
utrainDescCollection[i].copyTo(tempMat); |
|
trainDescCollection.push_back(tempMat); |
|
} |
|
utrainDescCollection.clear(); |
|
} |
|
|
|
matches.reserve(queryDescriptors.rows); |
|
|
|
Mat dist, nidx; |
|
|
|
int iIdx, imgCount = (int)trainDescCollection.size(), update = 0; |
|
int dtype = normType == NORM_HAMMING || normType == NORM_HAMMING2 || |
|
(normType == NORM_L1 && queryDescriptors.type() == CV_8U) ? CV_32S : CV_32F; |
|
|
|
CV_Assert( (int64)imgCount*IMGIDX_ONE < INT_MAX ); |
|
|
|
for( iIdx = 0; iIdx < imgCount; iIdx++ ) |
|
{ |
|
CV_Assert( trainDescCollection[iIdx].rows < IMGIDX_ONE ); |
|
batchDistance(queryDescriptors, trainDescCollection[iIdx], dist, dtype, nidx, |
|
normType, knn, masks.empty() ? Mat() : masks[iIdx], update, crossCheck); |
|
update += IMGIDX_ONE; |
|
} |
|
|
|
if( dtype == CV_32S ) |
|
{ |
|
Mat temp; |
|
dist.convertTo(temp, CV_32F); |
|
dist = temp; |
|
} |
|
|
|
for( int qIdx = 0; qIdx < queryDescriptors.rows; qIdx++ ) |
|
{ |
|
const float* distptr = dist.ptr<float>(qIdx); |
|
const int* nidxptr = nidx.ptr<int>(qIdx); |
|
|
|
matches.push_back( std::vector<DMatch>() ); |
|
std::vector<DMatch>& mq = matches.back(); |
|
mq.reserve(knn); |
|
|
|
for( int k = 0; k < nidx.cols; k++ ) |
|
{ |
|
if( nidxptr[k] < 0 ) |
|
break; |
|
mq.push_back( DMatch(qIdx, nidxptr[k] & (IMGIDX_ONE - 1), |
|
nidxptr[k] >> IMGIDX_SHIFT, distptr[k]) ); |
|
} |
|
|
|
if( mq.empty() && compactResult ) |
|
matches.pop_back(); |
|
} |
|
} |
|
|
|
static bool ocl_radiusMatch(InputArray query, InputArray _train, std::vector< std::vector<DMatch> > &matches, |
|
float maxDistance, int dstType, bool compactResult) |
|
{ |
|
UMat trainIdx, distance, nMatches; |
|
if (!ocl_radiusMatchSingle(query, _train, trainIdx, distance, nMatches, maxDistance, dstType)) |
|
return false; |
|
if (!ocl_radiusMatchDownload(trainIdx, distance, nMatches, matches, compactResult)) |
|
return false; |
|
return true; |
|
} |
|
|
|
void BFMatcher::radiusMatchImpl( InputArray _queryDescriptors, std::vector<std::vector<DMatch> >& matches, |
|
float maxDistance, InputArrayOfArrays _masks, bool compactResult ) |
|
{ |
|
int trainDescType = trainDescCollection.empty() ? utrainDescCollection[0].type() : trainDescCollection[0].type(); |
|
CV_Assert( _queryDescriptors.type() == trainDescType ); |
|
|
|
if( _queryDescriptors.empty() || (trainDescCollection.empty() && utrainDescCollection.empty())) |
|
{ |
|
matches.clear(); |
|
return; |
|
} |
|
|
|
std::vector<Mat> masks; |
|
_masks.getMatVector(masks); |
|
|
|
if(!trainDescCollection.empty() && !utrainDescCollection.empty()) |
|
{ |
|
for(int i = 0; i < (int)utrainDescCollection.size(); i++) |
|
{ |
|
Mat tempMat; |
|
utrainDescCollection[i].copyTo(tempMat); |
|
trainDescCollection.push_back(tempMat); |
|
} |
|
utrainDescCollection.clear(); |
|
} |
|
|
|
int trainDescVectorSize = trainDescCollection.empty() ? (int)utrainDescCollection.size() : (int)trainDescCollection.size(); |
|
Size trainDescSize = trainDescCollection.empty() ? utrainDescCollection[0].size() : trainDescCollection[0].size(); |
|
int trainDescOffset = trainDescCollection.empty() ? (int)utrainDescCollection[0].offset : 0; |
|
|
|
if ( ocl::useOpenCL() && _queryDescriptors.isUMat() && _queryDescriptors.dims()<=2 && trainDescVectorSize == 1 && |
|
_queryDescriptors.type() == CV_32FC1 && _queryDescriptors.offset() == 0 && trainDescOffset == 0 && |
|
trainDescSize.width == _queryDescriptors.size().width && masks.size() == 1 && masks[0].total() == 0 ) |
|
{ |
|
if (trainDescCollection.empty()) |
|
{ |
|
if(ocl_radiusMatch(_queryDescriptors, utrainDescCollection[0], matches, maxDistance, normType, compactResult) ) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_OCL); |
|
return; |
|
} |
|
} |
|
else |
|
{ |
|
if (ocl_radiusMatch(_queryDescriptors, trainDescCollection[0], matches, maxDistance, normType, compactResult) ) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_OCL); |
|
return; |
|
} |
|
} |
|
} |
|
|
|
Mat queryDescriptors = _queryDescriptors.getMat(); |
|
if(trainDescCollection.empty() && !utrainDescCollection.empty()) |
|
{ |
|
for(int i = 0; i < (int)utrainDescCollection.size(); i++) |
|
{ |
|
Mat tempMat; |
|
utrainDescCollection[i].copyTo(tempMat); |
|
trainDescCollection.push_back(tempMat); |
|
} |
|
utrainDescCollection.clear(); |
|
} |
|
|
|
matches.resize(queryDescriptors.rows); |
|
Mat dist, distf; |
|
|
|
int iIdx, imgCount = (int)trainDescCollection.size(); |
|
int dtype = normType == NORM_HAMMING || |
|
(normType == NORM_L1 && queryDescriptors.type() == CV_8U) ? CV_32S : CV_32F; |
|
|
|
for( iIdx = 0; iIdx < imgCount; iIdx++ ) |
|
{ |
|
batchDistance(queryDescriptors, trainDescCollection[iIdx], dist, dtype, noArray(), |
|
normType, 0, masks.empty() ? Mat() : masks[iIdx], 0, false); |
|
if( dtype == CV_32S ) |
|
dist.convertTo(distf, CV_32F); |
|
else |
|
distf = dist; |
|
|
|
for( int qIdx = 0; qIdx < queryDescriptors.rows; qIdx++ ) |
|
{ |
|
const float* distptr = distf.ptr<float>(qIdx); |
|
|
|
std::vector<DMatch>& mq = matches[qIdx]; |
|
for( int k = 0; k < distf.cols; k++ ) |
|
{ |
|
if( distptr[k] <= maxDistance ) |
|
mq.push_back( DMatch(qIdx, k, iIdx, distptr[k]) ); |
|
} |
|
} |
|
} |
|
|
|
int qIdx0 = 0; |
|
for( int qIdx = 0; qIdx < queryDescriptors.rows; qIdx++ ) |
|
{ |
|
if( matches[qIdx].empty() && compactResult ) |
|
continue; |
|
|
|
if( qIdx0 < qIdx ) |
|
std::swap(matches[qIdx], matches[qIdx0]); |
|
|
|
std::sort( matches[qIdx0].begin(), matches[qIdx0].end() ); |
|
qIdx0++; |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
/* |
|
* Factory function for DescriptorMatcher creating |
|
*/ |
|
Ptr<DescriptorMatcher> DescriptorMatcher::create( const String& descriptorMatcherType ) |
|
{ |
|
Ptr<DescriptorMatcher> dm; |
|
if( !descriptorMatcherType.compare( "FlannBased" ) ) |
|
{ |
|
dm = makePtr<FlannBasedMatcher>(); |
|
} |
|
else if( !descriptorMatcherType.compare( "BruteForce" ) ) // L2 |
|
{ |
|
dm = makePtr<BFMatcher>(int(NORM_L2)); // anonymous enums can't be template parameters |
|
} |
|
else if( !descriptorMatcherType.compare( "BruteForce-SL2" ) ) // Squared L2 |
|
{ |
|
dm = makePtr<BFMatcher>(int(NORM_L2SQR)); |
|
} |
|
else if( !descriptorMatcherType.compare( "BruteForce-L1" ) ) |
|
{ |
|
dm = makePtr<BFMatcher>(int(NORM_L1)); |
|
} |
|
else if( !descriptorMatcherType.compare("BruteForce-Hamming") || |
|
!descriptorMatcherType.compare("BruteForce-HammingLUT") ) |
|
{ |
|
dm = makePtr<BFMatcher>(int(NORM_HAMMING)); |
|
} |
|
else if( !descriptorMatcherType.compare("BruteForce-Hamming(2)") ) |
|
{ |
|
dm = makePtr<BFMatcher>(int(NORM_HAMMING2)); |
|
} |
|
else |
|
CV_Error( Error::StsBadArg, "Unknown matcher name" ); |
|
|
|
return dm; |
|
} |
|
|
|
|
|
/* |
|
* Flann based matcher |
|
*/ |
|
FlannBasedMatcher::FlannBasedMatcher( const Ptr<flann::IndexParams>& _indexParams, const Ptr<flann::SearchParams>& _searchParams ) |
|
: indexParams(_indexParams), searchParams(_searchParams), addedDescCount(0) |
|
{ |
|
CV_Assert( _indexParams ); |
|
CV_Assert( _searchParams ); |
|
} |
|
|
|
void FlannBasedMatcher::add( InputArrayOfArrays _descriptors ) |
|
{ |
|
DescriptorMatcher::add( _descriptors ); |
|
std::vector<UMat> descriptors; |
|
_descriptors.getUMatVector(descriptors); |
|
|
|
for( size_t i = 0; i < descriptors.size(); i++ ) |
|
{ |
|
addedDescCount += descriptors[i].rows; |
|
} |
|
} |
|
|
|
void FlannBasedMatcher::clear() |
|
{ |
|
DescriptorMatcher::clear(); |
|
|
|
mergedDescriptors.clear(); |
|
flannIndex.release(); |
|
|
|
addedDescCount = 0; |
|
} |
|
|
|
void FlannBasedMatcher::train() |
|
{ |
|
if( !flannIndex || mergedDescriptors.size() < addedDescCount ) |
|
{ |
|
// FIXIT: Workaround for 'utrainDescCollection' issue (PR #2142) |
|
if (!utrainDescCollection.empty()) |
|
{ |
|
CV_Assert(trainDescCollection.size() == 0); |
|
for (size_t i = 0; i < utrainDescCollection.size(); ++i) |
|
trainDescCollection.push_back(utrainDescCollection[i].getMat(ACCESS_READ)); |
|
} |
|
mergedDescriptors.set( trainDescCollection ); |
|
flannIndex = makePtr<flann::Index>( mergedDescriptors.getDescriptors(), *indexParams ); |
|
} |
|
} |
|
|
|
void FlannBasedMatcher::read( const FileNode& fn) |
|
{ |
|
if (!indexParams) |
|
indexParams = makePtr<flann::IndexParams>(); |
|
|
|
FileNode ip = fn["indexParams"]; |
|
CV_Assert(ip.type() == FileNode::SEQ); |
|
|
|
for(int i = 0; i < (int)ip.size(); ++i) |
|
{ |
|
CV_Assert(ip[i].type() == FileNode::MAP); |
|
String _name = (String)ip[i]["name"]; |
|
int type = (int)ip[i]["type"]; |
|
|
|
switch(type) |
|
{ |
|
case CV_8U: |
|
case CV_8S: |
|
case CV_16U: |
|
case CV_16S: |
|
case CV_32S: |
|
indexParams->setInt(_name, (int) ip[i]["value"]); |
|
break; |
|
case CV_32F: |
|
indexParams->setFloat(_name, (float) ip[i]["value"]); |
|
break; |
|
case CV_64F: |
|
indexParams->setDouble(_name, (double) ip[i]["value"]); |
|
break; |
|
case CV_USRTYPE1: |
|
indexParams->setString(_name, (String) ip[i]["value"]); |
|
break; |
|
case CV_MAKETYPE(CV_USRTYPE1,2): |
|
indexParams->setBool(_name, (int) ip[i]["value"] != 0); |
|
break; |
|
case CV_MAKETYPE(CV_USRTYPE1,3): |
|
indexParams->setAlgorithm((int) ip[i]["value"]); |
|
break; |
|
}; |
|
} |
|
|
|
if (!searchParams) |
|
searchParams = makePtr<flann::SearchParams>(); |
|
|
|
FileNode sp = fn["searchParams"]; |
|
CV_Assert(sp.type() == FileNode::SEQ); |
|
|
|
for(int i = 0; i < (int)sp.size(); ++i) |
|
{ |
|
CV_Assert(sp[i].type() == FileNode::MAP); |
|
String _name = (String)sp[i]["name"]; |
|
int type = (int)sp[i]["type"]; |
|
|
|
switch(type) |
|
{ |
|
case CV_8U: |
|
case CV_8S: |
|
case CV_16U: |
|
case CV_16S: |
|
case CV_32S: |
|
searchParams->setInt(_name, (int) sp[i]["value"]); |
|
break; |
|
case CV_32F: |
|
searchParams->setFloat(_name, (float) ip[i]["value"]); |
|
break; |
|
case CV_64F: |
|
searchParams->setDouble(_name, (double) ip[i]["value"]); |
|
break; |
|
case CV_USRTYPE1: |
|
searchParams->setString(_name, (String) ip[i]["value"]); |
|
break; |
|
case CV_MAKETYPE(CV_USRTYPE1,2): |
|
searchParams->setBool(_name, (int) ip[i]["value"] != 0); |
|
break; |
|
case CV_MAKETYPE(CV_USRTYPE1,3): |
|
searchParams->setAlgorithm((int) ip[i]["value"]); |
|
break; |
|
}; |
|
} |
|
|
|
flannIndex.release(); |
|
} |
|
|
|
void FlannBasedMatcher::write( FileStorage& fs) const |
|
{ |
|
fs << "indexParams" << "["; |
|
|
|
if (indexParams) |
|
{ |
|
std::vector<String> names; |
|
std::vector<int> types; |
|
std::vector<String> strValues; |
|
std::vector<double> numValues; |
|
|
|
indexParams->getAll(names, types, strValues, numValues); |
|
|
|
for(size_t i = 0; i < names.size(); ++i) |
|
{ |
|
fs << "{" << "name" << names[i] << "type" << types[i] << "value"; |
|
switch(types[i]) |
|
{ |
|
case CV_8U: |
|
fs << (uchar)numValues[i]; |
|
break; |
|
case CV_8S: |
|
fs << (char)numValues[i]; |
|
break; |
|
case CV_16U: |
|
fs << (ushort)numValues[i]; |
|
break; |
|
case CV_16S: |
|
fs << (short)numValues[i]; |
|
break; |
|
case CV_32S: |
|
case CV_MAKETYPE(CV_USRTYPE1,2): |
|
case CV_MAKETYPE(CV_USRTYPE1,3): |
|
fs << (int)numValues[i]; |
|
break; |
|
case CV_32F: |
|
fs << (float)numValues[i]; |
|
break; |
|
case CV_64F: |
|
fs << (double)numValues[i]; |
|
break; |
|
case CV_USRTYPE1: |
|
fs << strValues[i]; |
|
break; |
|
default: |
|
fs << (double)numValues[i]; |
|
fs << "typename" << strValues[i]; |
|
break; |
|
} |
|
fs << "}"; |
|
} |
|
} |
|
|
|
fs << "]" << "searchParams" << "["; |
|
|
|
if (searchParams) |
|
{ |
|
std::vector<String> names; |
|
std::vector<int> types; |
|
std::vector<String> strValues; |
|
std::vector<double> numValues; |
|
|
|
searchParams->getAll(names, types, strValues, numValues); |
|
|
|
for(size_t i = 0; i < names.size(); ++i) |
|
{ |
|
fs << "{" << "name" << names[i] << "type" << types[i] << "value"; |
|
switch(types[i]) |
|
{ |
|
case CV_8U: |
|
fs << (uchar)numValues[i]; |
|
break; |
|
case CV_8S: |
|
fs << (char)numValues[i]; |
|
break; |
|
case CV_16U: |
|
fs << (ushort)numValues[i]; |
|
break; |
|
case CV_16S: |
|
fs << (short)numValues[i]; |
|
break; |
|
case CV_32S: |
|
case CV_MAKETYPE(CV_USRTYPE1,2): |
|
case CV_MAKETYPE(CV_USRTYPE1,3): |
|
fs << (int)numValues[i]; |
|
break; |
|
case CV_32F: |
|
fs << (float)numValues[i]; |
|
break; |
|
case CV_64F: |
|
fs << (double)numValues[i]; |
|
break; |
|
case CV_USRTYPE1: |
|
fs << strValues[i]; |
|
break; |
|
default: |
|
fs << (double)numValues[i]; |
|
fs << "typename" << strValues[i]; |
|
break; |
|
} |
|
fs << "}"; |
|
} |
|
} |
|
fs << "]"; |
|
} |
|
|
|
bool FlannBasedMatcher::isMaskSupported() const |
|
{ |
|
return false; |
|
} |
|
|
|
Ptr<DescriptorMatcher> FlannBasedMatcher::clone( bool emptyTrainData ) const |
|
{ |
|
Ptr<FlannBasedMatcher> matcher = makePtr<FlannBasedMatcher>(indexParams, searchParams); |
|
if( !emptyTrainData ) |
|
{ |
|
CV_Error( Error::StsNotImplemented, "deep clone functionality is not implemented, because " |
|
"Flann::Index has not copy constructor or clone method "); |
|
//matcher->flannIndex; |
|
matcher->addedDescCount = addedDescCount; |
|
matcher->mergedDescriptors = DescriptorCollection( mergedDescriptors ); |
|
std::transform( trainDescCollection.begin(), trainDescCollection.end(), |
|
matcher->trainDescCollection.begin(), clone_op ); |
|
} |
|
return matcher; |
|
} |
|
|
|
void FlannBasedMatcher::convertToDMatches( const DescriptorCollection& collection, const Mat& indices, const Mat& dists, |
|
std::vector<std::vector<DMatch> >& matches ) |
|
{ |
|
matches.resize( indices.rows ); |
|
for( int i = 0; i < indices.rows; i++ ) |
|
{ |
|
for( int j = 0; j < indices.cols; j++ ) |
|
{ |
|
int idx = indices.at<int>(i, j); |
|
if( idx >= 0 ) |
|
{ |
|
int imgIdx, trainIdx; |
|
collection.getLocalIdx( idx, imgIdx, trainIdx ); |
|
float dist = 0; |
|
if (dists.type() == CV_32S) |
|
dist = static_cast<float>( dists.at<int>(i,j) ); |
|
else |
|
dist = std::sqrt(dists.at<float>(i,j)); |
|
matches[i].push_back( DMatch( i, trainIdx, imgIdx, dist ) ); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void FlannBasedMatcher::knnMatchImpl( InputArray _queryDescriptors, std::vector<std::vector<DMatch> >& matches, int knn, |
|
InputArrayOfArrays /*masks*/, bool /*compactResult*/ ) |
|
{ |
|
Mat queryDescriptors = _queryDescriptors.getMat(); |
|
Mat indices( queryDescriptors.rows, knn, CV_32SC1 ); |
|
Mat dists( queryDescriptors.rows, knn, CV_32FC1); |
|
flannIndex->knnSearch( queryDescriptors, indices, dists, knn, *searchParams ); |
|
|
|
convertToDMatches( mergedDescriptors, indices, dists, matches ); |
|
} |
|
|
|
void FlannBasedMatcher::radiusMatchImpl( InputArray _queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance, |
|
InputArrayOfArrays /*masks*/, bool /*compactResult*/ ) |
|
{ |
|
Mat queryDescriptors = _queryDescriptors.getMat(); |
|
const int count = mergedDescriptors.size(); // TODO do count as param? |
|
Mat indices( queryDescriptors.rows, count, CV_32SC1, Scalar::all(-1) ); |
|
Mat dists( queryDescriptors.rows, count, CV_32FC1, Scalar::all(-1) ); |
|
for( int qIdx = 0; qIdx < queryDescriptors.rows; qIdx++ ) |
|
{ |
|
Mat queryDescriptorsRow = queryDescriptors.row(qIdx); |
|
Mat indicesRow = indices.row(qIdx); |
|
Mat distsRow = dists.row(qIdx); |
|
flannIndex->radiusSearch( queryDescriptorsRow, indicesRow, distsRow, maxDistance*maxDistance, count, *searchParams ); |
|
} |
|
|
|
convertToDMatches( mergedDescriptors, indices, dists, matches ); |
|
} |
|
|
|
}
|
|
|