mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
569 lines
19 KiB
569 lines
19 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
/****************************************************************************************\ |
|
* Watershed * |
|
\****************************************************************************************/ |
|
|
|
namespace cv |
|
{ |
|
// A node represents a pixel to label |
|
struct WSNode |
|
{ |
|
int next; |
|
int mask_ofs; |
|
int img_ofs; |
|
}; |
|
|
|
// Queue for WSNodes |
|
struct WSQueue |
|
{ |
|
WSQueue() { first = last = 0; } |
|
int first, last; |
|
}; |
|
|
|
|
|
static int |
|
allocWSNodes( std::vector<WSNode>& storage ) |
|
{ |
|
int sz = (int)storage.size(); |
|
int newsz = MAX(128, sz*3/2); |
|
|
|
storage.resize(newsz); |
|
if( sz == 0 ) |
|
{ |
|
storage[0].next = 0; |
|
sz = 1; |
|
} |
|
for( int i = sz; i < newsz-1; i++ ) |
|
storage[i].next = i+1; |
|
storage[newsz-1].next = 0; |
|
return sz; |
|
} |
|
|
|
} |
|
|
|
|
|
void cv::watershed( InputArray _src, InputOutputArray _markers ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
// Labels for pixels |
|
const int IN_QUEUE = -2; // Pixel visited |
|
const int WSHED = -1; // Pixel belongs to watershed |
|
|
|
// possible bit values = 2^8 |
|
const int NQ = 256; |
|
|
|
Mat src = _src.getMat(), dst = _markers.getMat(); |
|
Size size = src.size(); |
|
|
|
// Vector of every created node |
|
std::vector<WSNode> storage; |
|
int free_node = 0, node; |
|
// Priority queue of queues of nodes |
|
// from high priority (0) to low priority (255) |
|
WSQueue q[NQ]; |
|
// Non-empty queue with highest priority |
|
int active_queue; |
|
int i, j; |
|
// Color differences |
|
int db, dg, dr; |
|
int subs_tab[513]; |
|
|
|
// MAX(a,b) = b + MAX(a-b,0) |
|
#define ws_max(a,b) ((b) + subs_tab[(a)-(b)+NQ]) |
|
// MIN(a,b) = a - MAX(a-b,0) |
|
#define ws_min(a,b) ((a) - subs_tab[(a)-(b)+NQ]) |
|
|
|
// Create a new node with offsets mofs and iofs in queue idx |
|
#define ws_push(idx,mofs,iofs) \ |
|
{ \ |
|
if( !free_node ) \ |
|
free_node = allocWSNodes( storage );\ |
|
node = free_node; \ |
|
free_node = storage[free_node].next;\ |
|
storage[node].next = 0; \ |
|
storage[node].mask_ofs = mofs; \ |
|
storage[node].img_ofs = iofs; \ |
|
if( q[idx].last ) \ |
|
storage[q[idx].last].next=node; \ |
|
else \ |
|
q[idx].first = node; \ |
|
q[idx].last = node; \ |
|
} |
|
|
|
// Get next node from queue idx |
|
#define ws_pop(idx,mofs,iofs) \ |
|
{ \ |
|
node = q[idx].first; \ |
|
q[idx].first = storage[node].next; \ |
|
if( !storage[node].next ) \ |
|
q[idx].last = 0; \ |
|
storage[node].next = free_node; \ |
|
free_node = node; \ |
|
mofs = storage[node].mask_ofs; \ |
|
iofs = storage[node].img_ofs; \ |
|
} |
|
|
|
// Get highest absolute channel difference in diff |
|
#define c_diff(ptr1,ptr2,diff) \ |
|
{ \ |
|
db = std::abs((ptr1)[0] - (ptr2)[0]);\ |
|
dg = std::abs((ptr1)[1] - (ptr2)[1]);\ |
|
dr = std::abs((ptr1)[2] - (ptr2)[2]);\ |
|
diff = ws_max(db,dg); \ |
|
diff = ws_max(diff,dr); \ |
|
assert( 0 <= diff && diff <= 255 ); \ |
|
} |
|
|
|
CV_Assert( src.type() == CV_8UC3 && dst.type() == CV_32SC1 ); |
|
CV_Assert( src.size() == dst.size() ); |
|
|
|
// Current pixel in input image |
|
const uchar* img = src.ptr(); |
|
// Step size to next row in input image |
|
int istep = int(src.step/sizeof(img[0])); |
|
|
|
// Current pixel in mask image |
|
int* mask = dst.ptr<int>(); |
|
// Step size to next row in mask image |
|
int mstep = int(dst.step / sizeof(mask[0])); |
|
|
|
for( i = 0; i < 256; i++ ) |
|
subs_tab[i] = 0; |
|
for( i = 256; i <= 512; i++ ) |
|
subs_tab[i] = i - 256; |
|
|
|
// draw a pixel-wide border of dummy "watershed" (i.e. boundary) pixels |
|
for( j = 0; j < size.width; j++ ) |
|
mask[j] = mask[j + mstep*(size.height-1)] = WSHED; |
|
|
|
// initial phase: put all the neighbor pixels of each marker to the ordered queue - |
|
// determine the initial boundaries of the basins |
|
for( i = 1; i < size.height-1; i++ ) |
|
{ |
|
img += istep; mask += mstep; |
|
mask[0] = mask[size.width-1] = WSHED; // boundary pixels |
|
|
|
for( j = 1; j < size.width-1; j++ ) |
|
{ |
|
int* m = mask + j; |
|
if( m[0] < 0 ) m[0] = 0; |
|
if( m[0] == 0 && (m[-1] > 0 || m[1] > 0 || m[-mstep] > 0 || m[mstep] > 0) ) |
|
{ |
|
// Find smallest difference to adjacent markers |
|
const uchar* ptr = img + j*3; |
|
int idx = 256, t; |
|
if( m[-1] > 0 ) |
|
c_diff( ptr, ptr - 3, idx ); |
|
if( m[1] > 0 ) |
|
{ |
|
c_diff( ptr, ptr + 3, t ); |
|
idx = ws_min( idx, t ); |
|
} |
|
if( m[-mstep] > 0 ) |
|
{ |
|
c_diff( ptr, ptr - istep, t ); |
|
idx = ws_min( idx, t ); |
|
} |
|
if( m[mstep] > 0 ) |
|
{ |
|
c_diff( ptr, ptr + istep, t ); |
|
idx = ws_min( idx, t ); |
|
} |
|
|
|
// Add to according queue |
|
assert( 0 <= idx && idx <= 255 ); |
|
ws_push( idx, i*mstep + j, i*istep + j*3 ); |
|
m[0] = IN_QUEUE; |
|
} |
|
} |
|
} |
|
|
|
// find the first non-empty queue |
|
for( i = 0; i < NQ; i++ ) |
|
if( q[i].first ) |
|
break; |
|
|
|
// if there is no markers, exit immediately |
|
if( i == NQ ) |
|
return; |
|
|
|
active_queue = i; |
|
img = src.ptr(); |
|
mask = dst.ptr<int>(); |
|
|
|
// recursively fill the basins |
|
for(;;) |
|
{ |
|
int mofs, iofs; |
|
int lab = 0, t; |
|
int* m; |
|
const uchar* ptr; |
|
|
|
// Get non-empty queue with highest priority |
|
// Exit condition: empty priority queue |
|
if( q[active_queue].first == 0 ) |
|
{ |
|
for( i = active_queue+1; i < NQ; i++ ) |
|
if( q[i].first ) |
|
break; |
|
if( i == NQ ) |
|
break; |
|
active_queue = i; |
|
} |
|
|
|
// Get next node |
|
ws_pop( active_queue, mofs, iofs ); |
|
|
|
// Calculate pointer to current pixel in input and marker image |
|
m = mask + mofs; |
|
ptr = img + iofs; |
|
|
|
// Check surrounding pixels for labels |
|
// to determine label for current pixel |
|
t = m[-1]; // Left |
|
if( t > 0 ) lab = t; |
|
t = m[1]; // Right |
|
if( t > 0 ) |
|
{ |
|
if( lab == 0 ) lab = t; |
|
else if( t != lab ) lab = WSHED; |
|
} |
|
t = m[-mstep]; // Top |
|
if( t > 0 ) |
|
{ |
|
if( lab == 0 ) lab = t; |
|
else if( t != lab ) lab = WSHED; |
|
} |
|
t = m[mstep]; // Bottom |
|
if( t > 0 ) |
|
{ |
|
if( lab == 0 ) lab = t; |
|
else if( t != lab ) lab = WSHED; |
|
} |
|
|
|
// Set label to current pixel in marker image |
|
assert( lab != 0 ); |
|
m[0] = lab; |
|
|
|
if( lab == WSHED ) |
|
continue; |
|
|
|
// Add adjacent, unlabeled pixels to corresponding queue |
|
if( m[-1] == 0 ) |
|
{ |
|
c_diff( ptr, ptr - 3, t ); |
|
ws_push( t, mofs - 1, iofs - 3 ); |
|
active_queue = ws_min( active_queue, t ); |
|
m[-1] = IN_QUEUE; |
|
} |
|
if( m[1] == 0 ) |
|
{ |
|
c_diff( ptr, ptr + 3, t ); |
|
ws_push( t, mofs + 1, iofs + 3 ); |
|
active_queue = ws_min( active_queue, t ); |
|
m[1] = IN_QUEUE; |
|
} |
|
if( m[-mstep] == 0 ) |
|
{ |
|
c_diff( ptr, ptr - istep, t ); |
|
ws_push( t, mofs - mstep, iofs - istep ); |
|
active_queue = ws_min( active_queue, t ); |
|
m[-mstep] = IN_QUEUE; |
|
} |
|
if( m[mstep] == 0 ) |
|
{ |
|
c_diff( ptr, ptr + istep, t ); |
|
ws_push( t, mofs + mstep, iofs + istep ); |
|
active_queue = ws_min( active_queue, t ); |
|
m[mstep] = IN_QUEUE; |
|
} |
|
} |
|
} |
|
|
|
|
|
/****************************************************************************************\ |
|
* Meanshift * |
|
\****************************************************************************************/ |
|
|
|
|
|
void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst, |
|
double sp0, double sr, int max_level, |
|
TermCriteria termcrit ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat src0 = _src.getMat(); |
|
|
|
if( src0.empty() ) |
|
return; |
|
|
|
_dst.create( src0.size(), src0.type() ); |
|
Mat dst0 = _dst.getMat(); |
|
|
|
const int cn = 3; |
|
const int MAX_LEVELS = 8; |
|
|
|
if( (unsigned)max_level > (unsigned)MAX_LEVELS ) |
|
CV_Error( CV_StsOutOfRange, "The number of pyramid levels is too large or negative" ); |
|
|
|
std::vector<cv::Mat> src_pyramid(max_level+1); |
|
std::vector<cv::Mat> dst_pyramid(max_level+1); |
|
cv::Mat mask0; |
|
int i, j, level; |
|
//uchar* submask = 0; |
|
|
|
#define cdiff(ofs0) (tab[c0-dptr[ofs0]+255] + \ |
|
tab[c1-dptr[(ofs0)+1]+255] + tab[c2-dptr[(ofs0)+2]+255] >= isr22) |
|
|
|
double sr2 = sr * sr; |
|
int isr2 = cvRound(sr2), isr22 = MAX(isr2,16); |
|
int tab[768]; |
|
|
|
|
|
if( src0.type() != CV_8UC3 ) |
|
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel images are supported" ); |
|
|
|
if( src0.type() != dst0.type() ) |
|
CV_Error( CV_StsUnmatchedFormats, "The input and output images must have the same type" ); |
|
|
|
if( src0.size() != dst0.size() ) |
|
CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" ); |
|
|
|
if( !(termcrit.type & CV_TERMCRIT_ITER) ) |
|
termcrit.maxCount = 5; |
|
termcrit.maxCount = MAX(termcrit.maxCount,1); |
|
termcrit.maxCount = MIN(termcrit.maxCount,100); |
|
if( !(termcrit.type & CV_TERMCRIT_EPS) ) |
|
termcrit.epsilon = 1.f; |
|
termcrit.epsilon = MAX(termcrit.epsilon, 0.f); |
|
|
|
for( i = 0; i < 768; i++ ) |
|
tab[i] = (i - 255)*(i - 255); |
|
|
|
// 1. construct pyramid |
|
src_pyramid[0] = src0; |
|
dst_pyramid[0] = dst0; |
|
for( level = 1; level <= max_level; level++ ) |
|
{ |
|
src_pyramid[level].create( (src_pyramid[level-1].rows+1)/2, |
|
(src_pyramid[level-1].cols+1)/2, src_pyramid[level-1].type() ); |
|
dst_pyramid[level].create( src_pyramid[level].rows, |
|
src_pyramid[level].cols, src_pyramid[level].type() ); |
|
cv::pyrDown( src_pyramid[level-1], src_pyramid[level], src_pyramid[level].size() ); |
|
//CV_CALL( cvResize( src_pyramid[level-1], src_pyramid[level], CV_INTER_AREA )); |
|
} |
|
|
|
mask0.create(src0.rows, src0.cols, CV_8UC1); |
|
//CV_CALL( submask = (uchar*)cvAlloc( (sp+2)*(sp+2) )); |
|
|
|
// 2. apply meanshift, starting from the pyramid top (i.e. the smallest layer) |
|
for( level = max_level; level >= 0; level-- ) |
|
{ |
|
cv::Mat src = src_pyramid[level]; |
|
cv::Size size = src.size(); |
|
const uchar* sptr = src.ptr(); |
|
int sstep = (int)src.step; |
|
uchar* dptr; |
|
int dstep; |
|
float sp = (float)(sp0 / (1 << level)); |
|
sp = MAX( sp, 1 ); |
|
|
|
cv::Mat m; |
|
if( level < max_level ) |
|
{ |
|
cv::Size size1 = dst_pyramid[level+1].size(); |
|
m = cv::Mat(size.height, size.width, CV_8UC1, mask0.ptr()); |
|
dstep = (int)dst_pyramid[level+1].step; |
|
dptr = dst_pyramid[level+1].ptr() + dstep + cn; |
|
//cvResize( dst_pyramid[level+1], dst_pyramid[level], CV_INTER_CUBIC ); |
|
cv::pyrUp( dst_pyramid[level+1], dst_pyramid[level], dst_pyramid[level].size() ); |
|
m.setTo(cv::Scalar::all(0)); |
|
|
|
for( i = 1; i < size1.height-1; i++, dptr += dstep - (size1.width-2)*3) |
|
{ |
|
uchar* mask = m.ptr(1 + i * 2); |
|
for( j = 1; j < size1.width-1; j++, dptr += cn ) |
|
{ |
|
int c0 = dptr[0], c1 = dptr[1], c2 = dptr[2]; |
|
mask[j*2 - 1] = cdiff(-3) || cdiff(3) || cdiff(-dstep-3) || cdiff(-dstep) || |
|
cdiff(-dstep+3) || cdiff(dstep-3) || cdiff(dstep) || cdiff(dstep+3); |
|
} |
|
} |
|
|
|
cv::dilate( m, m, cv::Mat() ); |
|
} |
|
|
|
dptr = dst_pyramid[level].ptr(); |
|
dstep = (int)dst_pyramid[level].step; |
|
|
|
for( i = 0; i < size.height; i++, sptr += sstep - size.width*3, |
|
dptr += dstep - size.width*3 |
|
) |
|
{ |
|
uchar* mask = m.empty() ? NULL : m.ptr(i); |
|
for( j = 0; j < size.width; j++, sptr += 3, dptr += 3 ) |
|
{ |
|
int x0 = j, y0 = i, x1, y1, iter; |
|
int c0, c1, c2; |
|
|
|
if( mask && !mask[j] ) |
|
continue; |
|
|
|
c0 = sptr[0], c1 = sptr[1], c2 = sptr[2]; |
|
|
|
// iterate meanshift procedure |
|
for( iter = 0; iter < termcrit.maxCount; iter++ ) |
|
{ |
|
const uchar* ptr; |
|
int x, y, count = 0; |
|
int minx, miny, maxx, maxy; |
|
int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0; |
|
double icount; |
|
int stop_flag; |
|
|
|
//mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp) |
|
minx = cvRound(x0 - sp); minx = MAX(minx, 0); |
|
miny = cvRound(y0 - sp); miny = MAX(miny, 0); |
|
maxx = cvRound(x0 + sp); maxx = MIN(maxx, size.width-1); |
|
maxy = cvRound(y0 + sp); maxy = MIN(maxy, size.height-1); |
|
ptr = sptr + (miny - i)*sstep + (minx - j)*3; |
|
|
|
for( y = miny; y <= maxy; y++, ptr += sstep - (maxx-minx+1)*3 ) |
|
{ |
|
int row_count = 0; |
|
x = minx; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; x + 3 <= maxx; x += 4, ptr += 12 ) |
|
{ |
|
int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2]; |
|
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 ) |
|
{ |
|
s0 += t0; s1 += t1; s2 += t2; |
|
sx += x; row_count++; |
|
} |
|
t0 = ptr[3], t1 = ptr[4], t2 = ptr[5]; |
|
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 ) |
|
{ |
|
s0 += t0; s1 += t1; s2 += t2; |
|
sx += x+1; row_count++; |
|
} |
|
t0 = ptr[6], t1 = ptr[7], t2 = ptr[8]; |
|
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 ) |
|
{ |
|
s0 += t0; s1 += t1; s2 += t2; |
|
sx += x+2; row_count++; |
|
} |
|
t0 = ptr[9], t1 = ptr[10], t2 = ptr[11]; |
|
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 ) |
|
{ |
|
s0 += t0; s1 += t1; s2 += t2; |
|
sx += x+3; row_count++; |
|
} |
|
} |
|
#endif |
|
for( ; x <= maxx; x++, ptr += 3 ) |
|
{ |
|
int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2]; |
|
if( tab[t0-c0+255] + tab[t1-c1+255] + tab[t2-c2+255] <= isr2 ) |
|
{ |
|
s0 += t0; s1 += t1; s2 += t2; |
|
sx += x; row_count++; |
|
} |
|
} |
|
count += row_count; |
|
sy += y*row_count; |
|
} |
|
|
|
if( count == 0 ) |
|
break; |
|
|
|
icount = 1./count; |
|
x1 = cvRound(sx*icount); |
|
y1 = cvRound(sy*icount); |
|
s0 = cvRound(s0*icount); |
|
s1 = cvRound(s1*icount); |
|
s2 = cvRound(s2*icount); |
|
|
|
stop_flag = (x0 == x1 && y0 == y1) || std::abs(x1-x0) + std::abs(y1-y0) + |
|
tab[s0 - c0 + 255] + tab[s1 - c1 + 255] + |
|
tab[s2 - c2 + 255] <= termcrit.epsilon; |
|
|
|
x0 = x1; y0 = y1; |
|
c0 = s0; c1 = s1; c2 = s2; |
|
|
|
if( stop_flag ) |
|
break; |
|
} |
|
|
|
dptr[0] = (uchar)c0; |
|
dptr[1] = (uchar)c1; |
|
dptr[2] = (uchar)c2; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
CV_IMPL void cvWatershed( const CvArr* _src, CvArr* _markers ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(_src), markers = cv::cvarrToMat(_markers); |
|
cv::watershed(src, markers); |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvPyrMeanShiftFiltering( const CvArr* srcarr, CvArr* dstarr, |
|
double sp0, double sr, int max_level, |
|
CvTermCriteria termcrit ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr); |
|
const cv::Mat dst = cv::cvarrToMat(dstarr); |
|
|
|
cv::pyrMeanShiftFiltering(src, dst, sp0, sr, max_level, termcrit); |
|
}
|
|
|