mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
216 lines
6.5 KiB
216 lines
6.5 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
BOWTrainer::BOWTrainer() : size(0) |
|
{} |
|
|
|
BOWTrainer::~BOWTrainer() |
|
{} |
|
|
|
void BOWTrainer::add( const Mat& _descriptors ) |
|
{ |
|
CV_Assert( !_descriptors.empty() ); |
|
if( !descriptors.empty() ) |
|
{ |
|
CV_Assert( descriptors[0].cols == _descriptors.cols ); |
|
CV_Assert( descriptors[0].type() == _descriptors.type() ); |
|
size += _descriptors.rows; |
|
} |
|
else |
|
{ |
|
size = _descriptors.rows; |
|
} |
|
|
|
descriptors.push_back(_descriptors); |
|
} |
|
|
|
const std::vector<Mat>& BOWTrainer::getDescriptors() const |
|
{ |
|
return descriptors; |
|
} |
|
|
|
int BOWTrainer::descriptorsCount() const |
|
{ |
|
return descriptors.empty() ? 0 : size; |
|
} |
|
|
|
void BOWTrainer::clear() |
|
{ |
|
descriptors.clear(); |
|
} |
|
|
|
BOWKMeansTrainer::BOWKMeansTrainer( int _clusterCount, const TermCriteria& _termcrit, |
|
int _attempts, int _flags ) : |
|
clusterCount(_clusterCount), termcrit(_termcrit), attempts(_attempts), flags(_flags) |
|
{} |
|
|
|
Mat BOWKMeansTrainer::cluster() const |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
CV_Assert( !descriptors.empty() ); |
|
|
|
Mat mergedDescriptors( descriptorsCount(), descriptors[0].cols, descriptors[0].type() ); |
|
for( size_t i = 0, start = 0; i < descriptors.size(); i++ ) |
|
{ |
|
Mat submut = mergedDescriptors.rowRange((int)start, (int)(start + descriptors[i].rows)); |
|
descriptors[i].copyTo(submut); |
|
start += descriptors[i].rows; |
|
} |
|
return cluster( mergedDescriptors ); |
|
} |
|
|
|
BOWKMeansTrainer::~BOWKMeansTrainer() |
|
{} |
|
|
|
Mat BOWKMeansTrainer::cluster( const Mat& _descriptors ) const |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
Mat labels, vocabulary; |
|
kmeans( _descriptors, clusterCount, labels, termcrit, attempts, flags, vocabulary ); |
|
return vocabulary; |
|
} |
|
|
|
|
|
BOWImgDescriptorExtractor::BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& _dextractor, |
|
const Ptr<DescriptorMatcher>& _dmatcher ) : |
|
dextractor(_dextractor), dmatcher(_dmatcher) |
|
{} |
|
|
|
BOWImgDescriptorExtractor::BOWImgDescriptorExtractor( const Ptr<DescriptorMatcher>& _dmatcher ) : |
|
dmatcher(_dmatcher) |
|
{} |
|
|
|
BOWImgDescriptorExtractor::~BOWImgDescriptorExtractor() |
|
{} |
|
|
|
void BOWImgDescriptorExtractor::setVocabulary( const Mat& _vocabulary ) |
|
{ |
|
dmatcher->clear(); |
|
vocabulary = _vocabulary; |
|
dmatcher->add( std::vector<Mat>(1, vocabulary) ); |
|
} |
|
|
|
const Mat& BOWImgDescriptorExtractor::getVocabulary() const |
|
{ |
|
return vocabulary; |
|
} |
|
|
|
void BOWImgDescriptorExtractor::compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray imgDescriptor, |
|
std::vector<std::vector<int> >* pointIdxsOfClusters, Mat* descriptors ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
imgDescriptor.release(); |
|
|
|
if( keypoints.empty() ) |
|
return; |
|
|
|
// Compute descriptors for the image. |
|
Mat _descriptors; |
|
dextractor->compute( image, keypoints, _descriptors ); |
|
|
|
compute( _descriptors, imgDescriptor, pointIdxsOfClusters ); |
|
|
|
// Add the descriptors of image keypoints |
|
if (descriptors) { |
|
*descriptors = _descriptors.clone(); |
|
} |
|
} |
|
|
|
int BOWImgDescriptorExtractor::descriptorSize() const |
|
{ |
|
return vocabulary.empty() ? 0 : vocabulary.rows; |
|
} |
|
|
|
int BOWImgDescriptorExtractor::descriptorType() const |
|
{ |
|
return CV_32FC1; |
|
} |
|
|
|
void BOWImgDescriptorExtractor::compute( InputArray keypointDescriptors, OutputArray _imgDescriptor, std::vector<std::vector<int> >* pointIdxsOfClusters ) |
|
{ |
|
CV_INSTRUMENT_REGION(); |
|
|
|
CV_Assert( !vocabulary.empty() ); |
|
CV_Assert(!keypointDescriptors.empty()); |
|
|
|
int clusterCount = descriptorSize(); // = vocabulary.rows |
|
|
|
// Match keypoint descriptors to cluster center (to vocabulary) |
|
std::vector<DMatch> matches; |
|
dmatcher->match( keypointDescriptors, matches ); |
|
|
|
// Compute image descriptor |
|
if( pointIdxsOfClusters ) |
|
{ |
|
pointIdxsOfClusters->clear(); |
|
pointIdxsOfClusters->resize(clusterCount); |
|
} |
|
|
|
_imgDescriptor.create(1, clusterCount, descriptorType()); |
|
_imgDescriptor.setTo(Scalar::all(0)); |
|
|
|
Mat imgDescriptor = _imgDescriptor.getMat(); |
|
|
|
float *dptr = imgDescriptor.ptr<float>(); |
|
for( size_t i = 0; i < matches.size(); i++ ) |
|
{ |
|
int queryIdx = matches[i].queryIdx; |
|
int trainIdx = matches[i].trainIdx; // cluster index |
|
CV_Assert( queryIdx == (int)i ); |
|
|
|
dptr[trainIdx] = dptr[trainIdx] + 1.f; |
|
if( pointIdxsOfClusters ) |
|
(*pointIdxsOfClusters)[trainIdx].push_back( queryIdx ); |
|
} |
|
|
|
// Normalize image descriptor. |
|
imgDescriptor /= keypointDescriptors.size().height; |
|
} |
|
|
|
}
|
|
|