mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
488 lines
15 KiB
488 lines
15 KiB
#include <cstdio> |
|
#define HAVE_CUDA 1 |
|
#include <opencv2/core/core.hpp> |
|
#include <opencv2/gpu/gpu.hpp> |
|
#include <opencv2/highgui/highgui.hpp> |
|
#include <opencv2/video/video.hpp> |
|
#include <opencv2/legacy/legacy.hpp> |
|
#include <opencv2/ts/ts.hpp> |
|
#include <opencv2/ts/ts_perf.hpp> |
|
|
|
static void printOsInfo() |
|
{ |
|
#if defined _WIN32 |
|
# if defined _WIN64 |
|
printf("[----------]\n[ GPU INFO ] \tRun on OS Windows x64.\n[----------]\n"); fflush(stdout); |
|
# else |
|
printf("[----------]\n[ GPU INFO ] \tRun on OS Windows x32.\n[----------]\n"); fflush(stdout); |
|
# endif |
|
#elif defined linux |
|
# if defined _LP64 |
|
printf("[----------]\n[ GPU INFO ] \tRun on OS Linux x64.\n[----------]\n"); fflush(stdout); |
|
# else |
|
printf("[----------]\n[ GPU INFO ] \tRun on OS Linux x32.\n[----------]\n"); fflush(stdout); |
|
# endif |
|
#elif defined __APPLE__ |
|
# if defined _LP64 |
|
printf("[----------]\n[ GPU INFO ] \tRun on OS Apple x64.\n[----------]\n"); fflush(stdout); |
|
# else |
|
printf("[----------]\n[ GPU INFO ] \tRun on OS Apple x32.\n[----------]\n"); fflush(stdout); |
|
# endif |
|
#endif |
|
} |
|
|
|
static void printCudaInfo() |
|
{ |
|
const int deviceCount = cv::gpu::getCudaEnabledDeviceCount(); |
|
|
|
printf("[----------]\n"); fflush(stdout); |
|
printf("[ GPU INFO ] \tCUDA device count:: %d.\n", deviceCount); fflush(stdout); |
|
printf("[----------]\n"); fflush(stdout); |
|
|
|
for (int i = 0; i < deviceCount; ++i) |
|
{ |
|
cv::gpu::DeviceInfo info(i); |
|
|
|
printf("[----------]\n"); fflush(stdout); |
|
printf("[ DEVICE ] \t# %d %s.\n", i, info.name().c_str()); fflush(stdout); |
|
printf("[ ] \tCompute capability: %d.%d\n", info.majorVersion(), info.minorVersion()); fflush(stdout); |
|
printf("[ ] \tMulti Processor Count: %d\n", info.multiProcessorCount()); fflush(stdout); |
|
printf("[ ] \tTotal memory: %d Mb\n", static_cast<int>(static_cast<int>(info.totalMemory() / 1024.0) / 1024.0)); fflush(stdout); |
|
printf("[ ] \tFree memory: %d Mb\n", static_cast<int>(static_cast<int>(info.freeMemory() / 1024.0) / 1024.0)); fflush(stdout); |
|
if (!info.isCompatible()) |
|
printf("[ GPU INFO ] \tThis device is NOT compatible with current GPU module build\n"); |
|
printf("[----------]\n"); fflush(stdout); |
|
} |
|
} |
|
|
|
int main(int argc, char* argv[]) |
|
{ |
|
printOsInfo(); |
|
printCudaInfo(); |
|
|
|
perf::Regression::Init("nv_perf_test"); |
|
perf::TestBase::Init(argc, argv); |
|
testing::InitGoogleTest(&argc, argv); |
|
|
|
return RUN_ALL_TESTS(); |
|
} |
|
|
|
#define DEF_PARAM_TEST(name, ...) typedef ::perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > name |
|
#define DEF_PARAM_TEST_1(name, param_type) typedef ::perf::TestBaseWithParam< param_type > name |
|
|
|
////////////////////////////////////////////////////////// |
|
// HoughLinesP |
|
|
|
DEF_PARAM_TEST_1(Image, std::string); |
|
|
|
GPU_PERF_TEST_P(Image, HoughLinesP, testing::Values(std::string("im1_1280x800.jpg"))) |
|
{ |
|
declare.time(30.0); |
|
|
|
std::string fileName = GetParam(); |
|
|
|
const float rho = 1.f; |
|
const float theta = 1.f; |
|
const int threshold = 40; |
|
const int minLineLenght = 20; |
|
const int maxLineGap = 5; |
|
|
|
cv::Mat image = cv::imread(fileName, cv::IMREAD_GRAYSCALE); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GpuMat d_image(image); |
|
cv::gpu::GpuMat d_lines; |
|
cv::gpu::HoughLinesBuf d_buf; |
|
|
|
cv::gpu::HoughLinesP(d_image, d_lines, d_buf, rho, theta, minLineLenght, maxLineGap); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::gpu::HoughLinesP(d_image, d_lines, d_buf, rho, theta, minLineLenght, maxLineGap); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat mask; |
|
cv::Canny(image, mask, 50, 100); |
|
|
|
std::vector<cv::Vec4i> lines; |
|
cv::HoughLinesP(mask, lines, rho, theta, threshold, minLineLenght, maxLineGap); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::HoughLinesP(mask, lines, rho, theta, threshold, minLineLenght, maxLineGap); |
|
} |
|
} |
|
|
|
SANITY_CHECK(0); |
|
} |
|
|
|
////////////////////////////////////////////////////////// |
|
// GoodFeaturesToTrack |
|
|
|
DEF_PARAM_TEST(Image_Depth, std::string, perf::MatDepth); |
|
|
|
GPU_PERF_TEST_P(Image_Depth, GoodFeaturesToTrack, |
|
testing::Combine( |
|
testing::Values(std::string("im1_1280x800.jpg")), |
|
testing::Values(CV_8U, CV_16U) |
|
)) |
|
{ |
|
declare.time(60); |
|
|
|
const std::string fileName = std::tr1::get<0>(GetParam()); |
|
const int depth = std::tr1::get<1>(GetParam()); |
|
|
|
const int maxCorners = 5000; |
|
const double qualityLevel = 0.05; |
|
const int minDistance = 5; |
|
const int blockSize = 3; |
|
const bool useHarrisDetector = true; |
|
const double k = 0.05; |
|
|
|
cv::Mat src = cv::imread(fileName, cv::IMREAD_GRAYSCALE); |
|
if (src.empty()) |
|
FAIL() << "Unable to load source image [" << fileName << "]"; |
|
|
|
if (depth != CV_8U) |
|
src.convertTo(src, depth); |
|
|
|
cv::Mat mask(src.size(), CV_8UC1, cv::Scalar::all(1)); |
|
mask(cv::Rect(0, 0, 100, 100)).setTo(cv::Scalar::all(0)); |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GoodFeaturesToTrackDetector_GPU d_detector(maxCorners, qualityLevel, minDistance, blockSize, useHarrisDetector, k); |
|
|
|
cv::gpu::GpuMat d_src(src); |
|
cv::gpu::GpuMat d_mask(mask); |
|
cv::gpu::GpuMat d_pts; |
|
|
|
d_detector(d_src, d_pts, d_mask); |
|
|
|
TEST_CYCLE() |
|
{ |
|
d_detector(d_src, d_pts, d_mask); |
|
} |
|
} |
|
else |
|
{ |
|
if (depth != CV_8U) |
|
FAIL() << "Unsupported depth"; |
|
|
|
cv::Mat pts; |
|
|
|
cv::goodFeaturesToTrack(src, pts, maxCorners, qualityLevel, minDistance, mask, blockSize, useHarrisDetector, k); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::goodFeaturesToTrack(src, pts, maxCorners, qualityLevel, minDistance, mask, blockSize, useHarrisDetector, k); |
|
} |
|
} |
|
|
|
SANITY_CHECK(0); |
|
} |
|
|
|
////////////////////////////////////////////////////////// |
|
// OpticalFlowPyrLKSparse |
|
|
|
typedef std::pair<std::string, std::string> string_pair; |
|
|
|
DEF_PARAM_TEST(ImagePair_Depth_GraySource, string_pair, perf::MatDepth, bool); |
|
|
|
GPU_PERF_TEST_P(ImagePair_Depth_GraySource, OpticalFlowPyrLKSparse, |
|
testing::Combine( |
|
testing::Values(string_pair("im1_1280x800.jpg", "im2_1280x800.jpg")), |
|
testing::Values(CV_8U, CV_16U), |
|
testing::Bool() |
|
)) |
|
{ |
|
declare.time(60); |
|
|
|
const string_pair fileNames = std::tr1::get<0>(GetParam()); |
|
const int depth = std::tr1::get<1>(GetParam()); |
|
const bool graySource = std::tr1::get<2>(GetParam()); |
|
|
|
// PyrLK params |
|
const cv::Size winSize(15, 15); |
|
const int maxLevel = 5; |
|
const cv::TermCriteria criteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 30, 0.01); |
|
|
|
// GoodFeaturesToTrack params |
|
const int maxCorners = 5000; |
|
const double qualityLevel = 0.05; |
|
const int minDistance = 5; |
|
const int blockSize = 3; |
|
const bool useHarrisDetector = true; |
|
const double k = 0.05; |
|
|
|
cv::Mat src1 = cv::imread(fileNames.first, graySource ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); |
|
if (src1.empty()) |
|
FAIL() << "Unable to load source image [" << fileNames.first << "]"; |
|
|
|
cv::Mat src2 = cv::imread(fileNames.second, graySource ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); |
|
if (src2.empty()) |
|
FAIL() << "Unable to load source image [" << fileNames.second << "]"; |
|
|
|
cv::Mat gray_src; |
|
if (graySource) |
|
gray_src = src1; |
|
else |
|
cv::cvtColor(src1, gray_src, cv::COLOR_BGR2GRAY); |
|
|
|
cv::Mat pts; |
|
cv::goodFeaturesToTrack(gray_src, pts, maxCorners, qualityLevel, minDistance, cv::noArray(), blockSize, useHarrisDetector, k); |
|
|
|
if (depth != CV_8U) |
|
{ |
|
src1.convertTo(src1, depth); |
|
src2.convertTo(src2, depth); |
|
} |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GpuMat d_src1(src1); |
|
cv::gpu::GpuMat d_src2(src2); |
|
cv::gpu::GpuMat d_pts(pts.reshape(2, 1)); |
|
cv::gpu::GpuMat d_nextPts; |
|
cv::gpu::GpuMat d_status; |
|
|
|
cv::gpu::PyrLKOpticalFlow d_pyrLK; |
|
d_pyrLK.winSize = winSize; |
|
d_pyrLK.maxLevel = maxLevel; |
|
d_pyrLK.iters = criteria.maxCount; |
|
d_pyrLK.useInitialFlow = false; |
|
|
|
d_pyrLK.sparse(d_src1, d_src2, d_pts, d_nextPts, d_status); |
|
|
|
TEST_CYCLE() |
|
{ |
|
d_pyrLK.sparse(d_src1, d_src2, d_pts, d_nextPts, d_status); |
|
} |
|
} |
|
else |
|
{ |
|
if (depth != CV_8U) |
|
FAIL() << "Unsupported depth"; |
|
|
|
cv::Mat nextPts; |
|
cv::Mat status; |
|
|
|
cv::calcOpticalFlowPyrLK(src1, src2, pts, nextPts, status, cv::noArray(), winSize, maxLevel, criteria); |
|
|
|
TEST_CYCLE() |
|
{ |
|
cv::calcOpticalFlowPyrLK(src1, src2, pts, nextPts, status, cv::noArray(), winSize, maxLevel, criteria); |
|
} |
|
} |
|
|
|
SANITY_CHECK(0); |
|
} |
|
|
|
////////////////////////////////////////////////////////// |
|
// OpticalFlowFarneback |
|
|
|
DEF_PARAM_TEST(ImagePair_Depth, string_pair, perf::MatDepth); |
|
|
|
GPU_PERF_TEST_P(ImagePair_Depth, OpticalFlowFarneback, |
|
testing::Combine( |
|
testing::Values(string_pair("im1_1280x800.jpg", "im2_1280x800.jpg")), |
|
testing::Values(CV_8U, CV_16U) |
|
)) |
|
{ |
|
declare.time(500); |
|
|
|
const string_pair fileNames = std::tr1::get<0>(GetParam()); |
|
const int depth = std::tr1::get<1>(GetParam()); |
|
|
|
const double pyrScale = 0.5; |
|
const int numLevels = 6; |
|
const int winSize = 7; |
|
const int numIters = 15; |
|
const int polyN = 7; |
|
const double polySigma = 1.5; |
|
const int flags = cv::OPTFLOW_USE_INITIAL_FLOW; |
|
|
|
cv::Mat src1 = cv::imread(fileNames.first, cv::IMREAD_GRAYSCALE); |
|
if (src1.empty()) |
|
FAIL() << "Unable to load source image [" << fileNames.first << "]"; |
|
|
|
cv::Mat src2 = cv::imread(fileNames.second, cv::IMREAD_GRAYSCALE); |
|
if (src2.empty()) |
|
FAIL() << "Unable to load source image [" << fileNames.second << "]"; |
|
|
|
if (depth != CV_8U) |
|
{ |
|
src1.convertTo(src1, depth); |
|
src2.convertTo(src2, depth); |
|
} |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GpuMat d_src1(src1); |
|
cv::gpu::GpuMat d_src2(src2); |
|
cv::gpu::GpuMat d_u(src1.size(), CV_32FC1, cv::Scalar::all(0)); |
|
cv::gpu::GpuMat d_v(src1.size(), CV_32FC1, cv::Scalar::all(0)); |
|
|
|
cv::gpu::FarnebackOpticalFlow d_farneback; |
|
d_farneback.pyrScale = pyrScale; |
|
d_farneback.numLevels = numLevels; |
|
d_farneback.winSize = winSize; |
|
d_farneback.numIters = numIters; |
|
d_farneback.polyN = polyN; |
|
d_farneback.polySigma = polySigma; |
|
d_farneback.flags = flags; |
|
|
|
d_farneback(d_src1, d_src2, d_u, d_v); |
|
|
|
TEST_CYCLE_N(10) |
|
{ |
|
d_farneback(d_src1, d_src2, d_u, d_v); |
|
} |
|
} |
|
else |
|
{ |
|
if (depth != CV_8U) |
|
FAIL() << "Unsupported depth"; |
|
|
|
cv::Mat flow(src1.size(), CV_32FC2, cv::Scalar::all(0)); |
|
|
|
cv::calcOpticalFlowFarneback(src1, src2, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags); |
|
|
|
TEST_CYCLE_N(10) |
|
{ |
|
cv::calcOpticalFlowFarneback(src1, src2, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags); |
|
} |
|
} |
|
|
|
SANITY_CHECK(0); |
|
} |
|
|
|
////////////////////////////////////////////////////////// |
|
// OpticalFlowBM |
|
|
|
void calcOpticalFlowBM(const cv::Mat& prev, const cv::Mat& curr, |
|
cv::Size bSize, cv::Size shiftSize, cv::Size maxRange, int usePrevious, |
|
cv::Mat& velx, cv::Mat& vely) |
|
{ |
|
cv::Size sz((curr.cols - bSize.width + shiftSize.width)/shiftSize.width, (curr.rows - bSize.height + shiftSize.height)/shiftSize.height); |
|
|
|
velx.create(sz, CV_32FC1); |
|
vely.create(sz, CV_32FC1); |
|
|
|
CvMat cvprev = prev; |
|
CvMat cvcurr = curr; |
|
|
|
CvMat cvvelx = velx; |
|
CvMat cvvely = vely; |
|
|
|
cvCalcOpticalFlowBM(&cvprev, &cvcurr, bSize, shiftSize, maxRange, usePrevious, &cvvelx, &cvvely); |
|
} |
|
|
|
DEF_PARAM_TEST(ImagePair_BlockSize_ShiftSize_MaxRange, string_pair, cv::Size, cv::Size, cv::Size); |
|
|
|
GPU_PERF_TEST_P(ImagePair_BlockSize_ShiftSize_MaxRange, OpticalFlowBM, |
|
testing::Combine( |
|
testing::Values(string_pair("im1_1280x800.jpg", "im2_1280x800.jpg")), |
|
testing::Values(cv::Size(16, 16)), |
|
testing::Values(cv::Size(2, 2)), |
|
testing::Values(cv::Size(16, 16)) |
|
)) |
|
{ |
|
declare.time(3000); |
|
|
|
const string_pair fileNames = std::tr1::get<0>(GetParam()); |
|
const cv::Size block_size = std::tr1::get<1>(GetParam()); |
|
const cv::Size shift_size = std::tr1::get<2>(GetParam()); |
|
const cv::Size max_range = std::tr1::get<3>(GetParam()); |
|
|
|
cv::Mat src1 = cv::imread(fileNames.first, cv::IMREAD_GRAYSCALE); |
|
if (src1.empty()) |
|
FAIL() << "Unable to load source image [" << fileNames.first << "]"; |
|
|
|
cv::Mat src2 = cv::imread(fileNames.second, cv::IMREAD_GRAYSCALE); |
|
if (src2.empty()) |
|
FAIL() << "Unable to load source image [" << fileNames.second << "]"; |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GpuMat d_src1(src1); |
|
cv::gpu::GpuMat d_src2(src2); |
|
cv::gpu::GpuMat d_velx, d_vely, buf; |
|
|
|
cv::gpu::calcOpticalFlowBM(d_src1, d_src2, block_size, shift_size, max_range, false, d_velx, d_vely, buf); |
|
|
|
TEST_CYCLE_N(10) |
|
{ |
|
cv::gpu::calcOpticalFlowBM(d_src1, d_src2, block_size, shift_size, max_range, false, d_velx, d_vely, buf); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat velx, vely; |
|
|
|
calcOpticalFlowBM(src1, src2, block_size, shift_size, max_range, false, velx, vely); |
|
|
|
TEST_CYCLE_N(10) |
|
{ |
|
calcOpticalFlowBM(src1, src2, block_size, shift_size, max_range, false, velx, vely); |
|
} |
|
} |
|
|
|
SANITY_CHECK(0); |
|
} |
|
|
|
GPU_PERF_TEST_P(ImagePair_BlockSize_ShiftSize_MaxRange, FastOpticalFlowBM, |
|
testing::Combine( |
|
testing::Values(string_pair("im1_1280x800.jpg", "im2_1280x800.jpg")), |
|
testing::Values(cv::Size(16, 16)), |
|
testing::Values(cv::Size(1, 1)), |
|
testing::Values(cv::Size(16, 16)) |
|
)) |
|
{ |
|
declare.time(3000); |
|
|
|
const string_pair fileNames = std::tr1::get<0>(GetParam()); |
|
const cv::Size block_size = std::tr1::get<1>(GetParam()); |
|
const cv::Size shift_size = std::tr1::get<2>(GetParam()); |
|
const cv::Size max_range = std::tr1::get<3>(GetParam()); |
|
|
|
cv::Mat src1 = cv::imread(fileNames.first, cv::IMREAD_GRAYSCALE); |
|
if (src1.empty()) |
|
FAIL() << "Unable to load source image [" << fileNames.first << "]"; |
|
|
|
cv::Mat src2 = cv::imread(fileNames.second, cv::IMREAD_GRAYSCALE); |
|
if (src2.empty()) |
|
FAIL() << "Unable to load source image [" << fileNames.second << "]"; |
|
|
|
if (PERF_RUN_GPU()) |
|
{ |
|
cv::gpu::GpuMat d_src1(src1); |
|
cv::gpu::GpuMat d_src2(src2); |
|
cv::gpu::GpuMat d_velx, d_vely; |
|
|
|
cv::gpu::FastOpticalFlowBM fastBM; |
|
|
|
fastBM(d_src1, d_src2, d_velx, d_vely, max_range.width, block_size.width); |
|
|
|
TEST_CYCLE_N(10) |
|
{ |
|
fastBM(d_src1, d_src2, d_velx, d_vely, max_range.width, block_size.width); |
|
} |
|
} |
|
else |
|
{ |
|
cv::Mat velx, vely; |
|
|
|
calcOpticalFlowBM(src1, src2, block_size, shift_size, max_range, false, velx, vely); |
|
|
|
TEST_CYCLE_N(10) |
|
{ |
|
calcOpticalFlowBM(src1, src2, block_size, shift_size, max_range, false, velx, vely); |
|
} |
|
} |
|
|
|
SANITY_CHECK(0); |
|
}
|
|
|