Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

524 lines
19 KiB

#include "test_precomp.hpp"
using namespace cv;
using namespace std;
static SparseMat cvTsGetRandomSparseMat(int dims, const int* sz, int type,
int nzcount, double a, double b, RNG& rng)
{
SparseMat m(dims, sz, type);
int i, j;
CV_Assert(CV_MAT_CN(type) == 1);
for( i = 0; i < nzcount; i++ )
{
int idx[CV_MAX_DIM];
for( j = 0; j < dims; j++ )
idx[j] = cvtest::randInt(rng) % sz[j];
double val = cvtest::randReal(rng)*(b - a) + a;
uchar* ptr = m.ptr(idx, true, 0);
if( type == CV_8U )
*(uchar*)ptr = saturate_cast<uchar>(val);
else if( type == CV_8S )
*(schar*)ptr = saturate_cast<schar>(val);
else if( type == CV_16U )
*(ushort*)ptr = saturate_cast<ushort>(val);
else if( type == CV_16S )
*(short*)ptr = saturate_cast<short>(val);
else if( type == CV_32S )
*(int*)ptr = saturate_cast<int>(val);
else if( type == CV_32F )
*(float*)ptr = saturate_cast<float>(val);
else
*(double*)ptr = saturate_cast<double>(val);
}
return m;
}
static bool cvTsCheckSparse(const CvSparseMat* m1, const CvSparseMat* m2, double eps)
{
CvSparseMatIterator it1;
CvSparseNode* node1;
int depth = CV_MAT_DEPTH(m1->type);
if( m1->heap->active_count != m2->heap->active_count ||
m1->dims != m2->dims || CV_MAT_TYPE(m1->type) != CV_MAT_TYPE(m2->type) )
return false;
for( node1 = cvInitSparseMatIterator( m1, &it1 );
node1 != 0; node1 = cvGetNextSparseNode( &it1 ))
{
uchar* v1 = (uchar*)CV_NODE_VAL(m1,node1);
uchar* v2 = cvPtrND( m2, CV_NODE_IDX(m1,node1), 0, 0, &node1->hashval );
if( !v2 )
return false;
if( depth == CV_8U || depth == CV_8S )
{
if( *v1 != *v2 )
return false;
}
else if( depth == CV_16U || depth == CV_16S )
{
if( *(ushort*)v1 != *(ushort*)v2 )
return false;
}
else if( depth == CV_32S )
{
if( *(int*)v1 != *(int*)v2 )
return false;
}
else if( depth == CV_32F )
{
if( fabs(*(float*)v1 - *(float*)v2) > eps*(fabs(*(float*)v2) + 1) )
return false;
}
else if( fabs(*(double*)v1 - *(double*)v2) > eps*(fabs(*(double*)v2) + 1) )
return false;
}
return true;
}
class Core_IOTest : public cvtest::BaseTest
{
public:
Core_IOTest() {};
protected:
void run(int)
{
double ranges[][2] = {{0, 256}, {-128, 128}, {0, 65536}, {-32768, 32768},
{-1000000, 1000000}, {-10, 10}, {-10, 10}};
RNG& rng = ts->get_rng();
RNG rng0;
test_case_count = 4;
int progress = 0;
MemStorage storage(cvCreateMemStorage(0));
for( int idx = 0; idx < test_case_count; idx++ )
{
ts->update_context( this, idx, false );
progress = update_progress( progress, idx, test_case_count, 0 );
cvClearMemStorage(storage);
bool mem = (idx % 4) >= 2;
string filename = tempfile(idx % 2 ? ".yml" : ".xml");
FileStorage fs(filename, FileStorage::WRITE + (mem ? FileStorage::MEMORY : 0));
int test_int = (int)cvtest::randInt(rng);
double test_real = (cvtest::randInt(rng)%2?1:-1)*exp(cvtest::randReal(rng)*18-9);
string test_string = "vw wv23424rt\"&amp;&lt;&gt;&amp;&apos;@#$@$%$%&%IJUKYILFD@#$@%$&*&() ";
int depth = cvtest::randInt(rng) % (CV_64F+1);
int cn = cvtest::randInt(rng) % 4 + 1;
Mat test_mat(cvtest::randInt(rng)%30+1, cvtest::randInt(rng)%30+1, CV_MAKETYPE(depth, cn));
rng0.fill(test_mat, CV_RAND_UNI, Scalar::all(ranges[depth][0]), Scalar::all(ranges[depth][1]));
if( depth >= CV_32F )
{
exp(test_mat, test_mat);
Mat test_mat_scale(test_mat.size(), test_mat.type());
rng0.fill(test_mat_scale, CV_RAND_UNI, Scalar::all(-1), Scalar::all(1));
multiply(test_mat, test_mat_scale, test_mat);
}
CvSeq* seq = cvCreateSeq(test_mat.type(), (int)sizeof(CvSeq),
(int)test_mat.elemSize(), storage);
cvSeqPushMulti(seq, test_mat.data, test_mat.cols*test_mat.rows);
CvGraph* graph = cvCreateGraph( CV_ORIENTED_GRAPH,
sizeof(CvGraph), sizeof(CvGraphVtx),
sizeof(CvGraphEdge), storage );
int edges[][2] = {{0,1},{1,2},{2,0},{0,3},{3,4},{4,1}};
int i, vcount = 5, ecount = 6;
for( i = 0; i < vcount; i++ )
cvGraphAddVtx(graph);
for( i = 0; i < ecount; i++ )
{
CvGraphEdge* edge;
cvGraphAddEdge(graph, edges[i][0], edges[i][1], 0, &edge);
edge->weight = (float)(i+1);
}
depth = cvtest::randInt(rng) % (CV_64F+1);
cn = cvtest::randInt(rng) % 4 + 1;
int sz[] = {
static_cast<int>(cvtest::randInt(rng)%10+1),
static_cast<int>(cvtest::randInt(rng)%10+1),
static_cast<int>(cvtest::randInt(rng)%10+1),
};
MatND test_mat_nd(3, sz, CV_MAKETYPE(depth, cn));
rng0.fill(test_mat_nd, CV_RAND_UNI, Scalar::all(ranges[depth][0]), Scalar::all(ranges[depth][1]));
if( depth >= CV_32F )
{
exp(test_mat_nd, test_mat_nd);
MatND test_mat_scale(test_mat_nd.dims, test_mat_nd.size, test_mat_nd.type());
rng0.fill(test_mat_scale, CV_RAND_UNI, Scalar::all(-1), Scalar::all(1));
multiply(test_mat_nd, test_mat_scale, test_mat_nd);
}
int ssz[] = {
static_cast<int>(cvtest::randInt(rng)%10+1),
static_cast<int>(cvtest::randInt(rng)%10+1),
static_cast<int>(cvtest::randInt(rng)%10+1),
static_cast<int>(cvtest::randInt(rng)%10+1),
};
SparseMat test_sparse_mat = cvTsGetRandomSparseMat(4, ssz, cvtest::randInt(rng)%(CV_64F+1),
cvtest::randInt(rng) % 10000, 0, 100, rng);
fs << "test_int" << test_int << "test_real" << test_real << "test_string" << test_string;
fs << "test_mat" << test_mat;
fs << "test_mat_nd" << test_mat_nd;
fs << "test_sparse_mat" << test_sparse_mat;
fs << "test_list" << "[" << 0.0000000000001 << 2 << CV_PI << -3435345 << "2-502 2-029 3egegeg" <<
"{:" << "month" << 12 << "day" << 31 << "year" << 1969 << "}" << "]";
fs << "test_map" << "{" << "x" << 1 << "y" << 2 << "width" << 100 << "height" << 200 << "lbp" << "[:";
const uchar arr[] = {0, 1, 1, 0, 1, 1, 0, 1};
fs.writeRaw("u", arr, (int)(sizeof(arr)/sizeof(arr[0])));
fs << "]" << "}";
cvWriteComment(*fs, "test comment", 0);
fs.writeObj("test_seq", seq);
fs.writeObj("test_graph",graph);
CvGraph* graph2 = (CvGraph*)cvClone(graph);
string content = fs.releaseAndGetString();
if(!fs.open(mem ? content : filename, FileStorage::READ + (mem ? FileStorage::MEMORY : 0)))
{
ts->printf( cvtest::TS::LOG, "filename %s can not be read\n", !mem ? filename.c_str() : content.c_str());
ts->set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA );
return;
}
int real_int = (int)fs["test_int"];
double real_real = (double)fs["test_real"];
string real_string = (string)fs["test_string"];
if( real_int != test_int ||
fabs(real_real - test_real) > DBL_EPSILON*(fabs(test_real)+1) ||
real_string != test_string )
{
ts->printf( cvtest::TS::LOG, "the read scalars are not correct\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
CvMat* m = (CvMat*)fs["test_mat"].readObj();
CvMat _test_mat = test_mat;
double max_diff = 0;
CvMat stub1, _test_stub1;
cvReshape(m, &stub1, 1, 0);
cvReshape(&_test_mat, &_test_stub1, 1, 0);
vector<int> pt;
if( !m || !CV_IS_MAT(m) || m->rows != test_mat.rows || m->cols != test_mat.cols ||
cvtest::cmpEps( Mat(&stub1), Mat(&_test_stub1), &max_diff, 0, &pt, true) < 0 )
{
ts->printf( cvtest::TS::LOG, "the read matrix is not correct: (%.20g vs %.20g) at (%d,%d)\n",
cvGetReal2D(&stub1, pt[0], pt[1]), cvGetReal2D(&_test_stub1, pt[0], pt[1]),
pt[0], pt[1] );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
if( m && CV_IS_MAT(m))
cvReleaseMat(&m);
CvMatND* m_nd = (CvMatND*)fs["test_mat_nd"].readObj();
CvMatND _test_mat_nd = test_mat_nd;
if( !m_nd || !CV_IS_MATND(m_nd) )
{
ts->printf( cvtest::TS::LOG, "the read nd-matrix is not correct\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
CvMat stub, _test_stub;
cvGetMat(m_nd, &stub, 0, 1);
cvGetMat(&_test_mat_nd, &_test_stub, 0, 1);
cvReshape(&stub, &stub1, 1, 0);
cvReshape(&_test_stub, &_test_stub1, 1, 0);
if( !CV_ARE_TYPES_EQ(&stub, &_test_stub) ||
!CV_ARE_SIZES_EQ(&stub, &_test_stub) ||
//cvNorm(&stub, &_test_stub, CV_L2) != 0 )
cvtest::cmpEps( Mat(&stub1), Mat(&_test_stub1), &max_diff, 0, &pt, true) < 0 )
{
ts->printf( cvtest::TS::LOG, "readObj method: the read nd matrix is not correct: (%.20g vs %.20g) vs at (%d,%d)\n",
cvGetReal2D(&stub1, pt[0], pt[1]), cvGetReal2D(&_test_stub1, pt[0], pt[1]),
pt[0], pt[1] );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
MatND mat_nd2;
fs["test_mat_nd"] >> mat_nd2;
CvMatND m_nd2 = mat_nd2;
cvGetMat(&m_nd2, &stub, 0, 1);
cvReshape(&stub, &stub1, 1, 0);
if( !CV_ARE_TYPES_EQ(&stub, &_test_stub) ||
!CV_ARE_SIZES_EQ(&stub, &_test_stub) ||
//cvNorm(&stub, &_test_stub, CV_L2) != 0 )
cvtest::cmpEps( Mat(&stub1), Mat(&_test_stub1), &max_diff, 0, &pt, true) < 0 )
{
ts->printf( cvtest::TS::LOG, "C++ method: the read nd matrix is not correct: (%.20g vs %.20g) vs at (%d,%d)\n",
cvGetReal2D(&stub1, pt[0], pt[1]), cvGetReal2D(&_test_stub1, pt[1], pt[0]),
pt[0], pt[1] );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
cvRelease((void**)&m_nd);
Ptr<CvSparseMat> m_s = (CvSparseMat*)fs["test_sparse_mat"].readObj();
Ptr<CvSparseMat> _test_sparse_ = (CvSparseMat*)test_sparse_mat;
Ptr<CvSparseMat> _test_sparse = (CvSparseMat*)cvClone(_test_sparse_);
SparseMat m_s2;
fs["test_sparse_mat"] >> m_s2;
Ptr<CvSparseMat> _m_s2 = (CvSparseMat*)m_s2;
if( !m_s || !CV_IS_SPARSE_MAT(m_s) ||
!cvTsCheckSparse(m_s, _test_sparse,0) ||
!cvTsCheckSparse(_m_s2, _test_sparse,0))
{
ts->printf( cvtest::TS::LOG, "the read sparse matrix is not correct\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
FileNode tl = fs["test_list"];
if( tl.type() != FileNode::SEQ || tl.size() != 6 ||
fabs((double)tl[0] - 0.0000000000001) >= DBL_EPSILON ||
(int)tl[1] != 2 ||
fabs((double)tl[2] - CV_PI) >= DBL_EPSILON ||
(int)tl[3] != -3435345 ||
(string)tl[4] != "2-502 2-029 3egegeg" ||
tl[5].type() != FileNode::MAP || tl[5].size() != 3 ||
(int)tl[5]["month"] != 12 ||
(int)tl[5]["day"] != 31 ||
(int)tl[5]["year"] != 1969 )
{
ts->printf( cvtest::TS::LOG, "the test list is incorrect\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
FileNode tm = fs["test_map"];
FileNode tm_lbp = tm["lbp"];
int real_x = (int)tm["x"];
int real_y = (int)tm["y"];
int real_width = (int)tm["width"];
int real_height = (int)tm["height"];
int real_lbp_val = 0;
FileNodeIterator it;
it = tm_lbp.begin();
real_lbp_val |= (int)*it << 0;
++it;
real_lbp_val |= (int)*it << 1;
it++;
real_lbp_val |= (int)*it << 2;
it += 1;
real_lbp_val |= (int)*it << 3;
FileNodeIterator it2(it);
it2 += 4;
real_lbp_val |= (int)*it2 << 7;
--it2;
real_lbp_val |= (int)*it2 << 6;
it2--;
real_lbp_val |= (int)*it2 << 5;
it2 -= 1;
real_lbp_val |= (int)*it2 << 4;
it2 += -1;
CV_Assert( it == it2 );
if( tm.type() != FileNode::MAP || tm.size() != 5 ||
real_x != 1 ||
real_y != 2 ||
real_width != 100 ||
real_height != 200 ||
tm_lbp.type() != FileNode::SEQ ||
tm_lbp.size() != 8 ||
real_lbp_val != 0xb6 )
{
ts->printf( cvtest::TS::LOG, "the test map is incorrect\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
CvGraph* graph3 = (CvGraph*)fs["test_graph"].readObj();
if(graph2->active_count != vcount || graph3->active_count != vcount ||
graph2->edges->active_count != ecount || graph3->edges->active_count != ecount)
{
ts->printf( cvtest::TS::LOG, "the cloned or read graph have wrong number of vertices or edges\n" );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
for( i = 0; i < ecount; i++ )
{
CvGraphEdge* edge2 = cvFindGraphEdge(graph2, edges[i][0], edges[i][1]);
CvGraphEdge* edge3 = cvFindGraphEdge(graph3, edges[i][0], edges[i][1]);
if( !edge2 || edge2->weight != (float)(i+1) ||
!edge3 || edge3->weight != (float)(i+1) )
{
ts->printf( cvtest::TS::LOG, "the cloned or read graph do not have the edge (%d, %d)\n", edges[i][0], edges[i][1] );
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
return;
}
}
fs.release();
if( !mem )
remove(filename.c_str());
}
}
};
TEST(Core_InputOutput, write_read_consistency) { Core_IOTest test; test.safe_run(); }
class CV_MiscIOTest : public cvtest::BaseTest
{
public:
CV_MiscIOTest() {}
~CV_MiscIOTest() {}
protected:
void run(int)
{
try
{
string fname = cv::tempfile(".xml");
vector<int> mi, mi2, mi3, mi4;
vector<Mat> mv, mv2, mv3, mv4;
Mat m(10, 9, CV_32F);
Mat empty;
randu(m, 0, 1);
mi3.push_back(5);
mv3.push_back(m);
Point_<float> p1(1.1f, 2.2f), op1;
Point3i p2(3, 4, 5), op2;
Size s1(6, 7), os1;
Complex<int> c1(9, 10), oc1;
Rect r1(11, 12, 13, 14), or1;
Vec<int, 5> v1(15, 16, 17, 18, 19), ov1;
Scalar sc1(20.0, 21.1, 22.2, 23.3), osc1;
Range g1(7, 8), og1;
FileStorage fs(fname, FileStorage::WRITE);
fs << "mi" << mi;
fs << "mv" << mv;
fs << "mi3" << mi3;
fs << "mv3" << mv3;
fs << "empty" << empty;
fs << "p1" << p1;
fs << "p2" << p2;
fs << "s1" << s1;
fs << "c1" << c1;
fs << "r1" << r1;
fs << "v1" << v1;
fs << "sc1" << sc1;
fs << "g1" << g1;
fs.release();
fs.open(fname, FileStorage::READ);
fs["mi"] >> mi2;
fs["mv"] >> mv2;
fs["mi3"] >> mi4;
fs["mv3"] >> mv4;
fs["empty"] >> empty;
fs["p1"] >> op1;
fs["p2"] >> op2;
fs["s1"] >> os1;
fs["c1"] >> oc1;
fs["r1"] >> or1;
fs["v1"] >> ov1;
fs["sc1"] >> osc1;
fs["g1"] >> og1;
CV_Assert( mi2.empty() );
CV_Assert( mv2.empty() );
CV_Assert( norm(mi3, mi4, CV_C) == 0 );
CV_Assert( mv4.size() == 1 );
double n = norm(mv3[0], mv4[0], CV_C);
CV_Assert( n == 0 );
CV_Assert( op1 == p1 );
CV_Assert( op2 == p2 );
CV_Assert( os1 == s1 );
CV_Assert( oc1 == c1 );
CV_Assert( or1 == r1 );
CV_Assert( ov1 == v1 );
CV_Assert( osc1 == sc1 );
CV_Assert( og1 == g1 );
}
catch(...)
{
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
}
}
};
TEST(Core_InputOutput, misc) { CV_MiscIOTest test; test.safe_run(); }
/*class CV_BigMatrixIOTest : public cvtest::BaseTest
{
public:
CV_BigMatrixIOTest() {}
~CV_BigMatrixIOTest() {}
protected:
void run(int)
{
try
{
RNG& rng = theRNG();
int N = 1000, M = 1200000;
Mat mat(M, N, CV_32F);
rng.fill(mat, RNG::UNIFORM, 0, 1);
FileStorage fs(cv::tempfile(".xml"), FileStorage::WRITE);
fs << "mat" << mat;
fs.release();
}
catch(...)
{
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
}
}
};
TEST(Core_InputOutput, huge) { CV_BigMatrixIOTest test; test.safe_run(); }
*/
TEST(Core_globbing, accuracy)
{
std::string patternLena = cvtest::TS::ptr()->get_data_path() + "lena*.*";
std::string patternLenaPng = cvtest::TS::ptr()->get_data_path() + "lena.png";
std::vector<String> lenas, pngLenas;
cv::glob(patternLena, lenas, true);
cv::glob(patternLenaPng, pngLenas, true);
ASSERT_GT(lenas.size(), pngLenas.size());
for (size_t i = 0; i < pngLenas.size(); ++i)
{
ASSERT_NE(std::find(lenas.begin(), lenas.end(), pngLenas[i]), lenas.end());
}
}
TEST(Core_InputOutput, FileStorage)
{
std::string file = cv::tempfile(".xml");
cv::FileStorage f(file, cv::FileStorage::WRITE);
char arr[66];
sprintf(arr, "sprintf is hell %d", 666);
EXPECT_NO_THROW(f << arr);
}