mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
182 lines
7.3 KiB
182 lines
7.3 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include "perf_precomp.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
namespace opencv_test { |
|
|
|
struct Conv3DParam_t { |
|
int kernel[3]; |
|
struct BlobShape { int dims[5]; } shapeIn; |
|
int outCN; |
|
int groups; |
|
int stride[3]; |
|
int dilation[3]; |
|
int pad[6]; |
|
const char* padMode; |
|
bool hasBias; |
|
double declared_flops; |
|
}; |
|
// Details: #12142 |
|
static const Conv3DParam_t testConvolution3DConfigs[] = { |
|
{{3, 3, 3}, {{1, 6, 10, 38, 50}}, 6, 1, {1, 1, 1}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "VALID", true, 26956800.}, |
|
{{3, 3, 3}, {{1, 2, 19, 19, 19}}, 2, 2, {2, 2, 2}, {1, 1, 1}, {1, 1, 1, 1, 1, 1}, "", true, 218000.}, |
|
{{3, 3, 3}, {{1, 2, 25, 19, 19}}, 2, 2, {1, 2, 2}, {1, 1, 1}, {2, 2, 2, 2, 2, 2}, "SAME", false, 545000.}, |
|
{{3, 3, 3}, {{1, 11, 9, 150, 200}}, 11, 1, {1, 1, 1}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "VALID", true, 1342562760.}, |
|
{{3, 3, 3}, {{1, 10, 98, 10, 10}}, 10, 1, {1, 1, 1}, {1, 1, 1}, {1, 0, 1, 1, 0,1}, "SAME", false, 53018000.}, |
|
{{5, 5, 5}, {{1, 6, 19, 19, 19}}, 6, 2, {1, 1, 1}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "", false, 30395250.}, |
|
{{5, 5, 5}, {{1, 4, 50, 19, 19}}, 4, 1, {2, 2, 2}, {1, 1, 1}, {1, 1, 1, 1, 1, 1}, "VALID", false, 5893888.}, |
|
{{5, 5, 5}, {{1, 3, 75, 75, 100}}, 3, 1, {1, 1, 1}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "SAME", true, 1267312500.}, |
|
{{5, 5, 5}, {{1, 2, 21, 75, 100}}, 2, 1, {1, 1, 1}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "", true, 116103744.}, |
|
{{5, 5, 5}, {{1, 4, 40, 75, 75}}, 4, 1, {2, 2, 2}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "", false, 93405312.}, |
|
{{7, 7, 7}, {{1, 6, 15, 19, 19}}, 6, 1, {2, 1, 1}, {1, 1, 1}, {3, 3, 3, 3, 3, 3}, "SAME", true, 71339376.}, |
|
{{7, 7, 7}, {{1, 2, 38, 38, 38}}, 2, 1, {1, 2, 1}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "", false, 44990464.}, |
|
{{1, 1, 1}, {{1, 4, 9, 10, 10}}, 4, 1, {1, 1, 2}, {1, 1, 1}, {1, 1, 1, 1, 1, 1}, "VALID", false, 16200.}, |
|
{{3, 1, 4}, {{1, 14, 5, 10, 10}}, 14, 1, {1, 1, 1}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "SAME", false, 2359000.}, |
|
{{1, 1, 1}, {{1, 8, 1, 10, 10}}, 8, 8, {1, 1, 1}, {1, 1, 1}, {1, 1, 1, 1, 1, 1}, "", true, 58752.}, |
|
{{3, 4, 2}, {{1, 4, 8, 10, 10}}, 4, 4, {1, 2, 1}, {1, 1, 1}, {0, 0, 0, 0, 0, 0}, "", true, 166752.} |
|
}; |
|
|
|
struct Conv3DParamID |
|
{ |
|
enum { |
|
CONV_0 = 0, |
|
CONV_100 = 16, |
|
CONV_LAST = sizeof(testConvolution3DConfigs) / sizeof(testConvolution3DConfigs[0]) |
|
}; |
|
int val_; |
|
Conv3DParamID(int val = 0) : val_(val) {} |
|
operator int() const { return val_; } |
|
static ::testing::internal::ParamGenerator<Conv3DParamID> all() |
|
{ |
|
#if 0 |
|
enum { NUM = (int)CONV_LAST }; |
|
#else |
|
enum { NUM = (int)CONV_100 }; |
|
#endif |
|
Conv3DParamID v_[NUM]; for (int i = 0; i < NUM; ++i) { v_[i] = Conv3DParamID(i); } // reduce generated code size |
|
return ::testing::ValuesIn(v_, v_ + NUM); |
|
} |
|
}; |
|
static inline void PrintTo(const Conv3DParamID& v, std::ostream* os) |
|
{ |
|
CV_Assert((int)v >= 0); CV_Assert((int)v < Conv3DParamID::CONV_LAST); |
|
const Conv3DParam_t& p = testConvolution3DConfigs[(int)v]; |
|
|
|
*os << "GFLOPS=" << cv::format("%.3f", p.declared_flops * 1e-9) |
|
<< ", K=[" << p.kernel[0] << " x " << p.kernel[1] << " x " << p.kernel[2] << "]" |
|
<< ", IN={" << p.shapeIn.dims[0] << ", " << p.shapeIn.dims[1] << ", " << p.shapeIn.dims[2] << ", " << p.shapeIn.dims[3] << ", " << p.shapeIn.dims[4] << "}" |
|
<< ", OCN=" << p.outCN; |
|
if (p.groups > 1) |
|
*os << ", G=" << p.groups; |
|
if (p.stride[0] * p.stride[1] * p.stride[2] != 1) |
|
*os << ", S=[" << p.stride[0] << " x " << p.stride[1] << " x " << p.stride[2] << "]"; |
|
if (p.dilation[0] * p.dilation[1] * p.dilation[2] != 1) |
|
*os << ", D=[" << p.dilation[0] << " x " << p.dilation[1] << " x " << p.dilation[2] << "]"; |
|
if (p.pad[0] != 0 && p.pad[1] != 0 && p.pad[2] != 0 && |
|
p.pad[3] != 0 && p.pad[4] != 0 && p.pad[5] != 0) |
|
*os << ", P=(" << p.pad[0] << ", " << p.pad[3] << ") x (" |
|
<< p.pad[1] << ", " << p.pad[4] << ") x (" |
|
<< p.pad[2] << ", " << p.pad[5] << ")"; |
|
if (!((std::string)p.padMode).empty()) |
|
*os << ", PM=" << ((std::string)p.padMode); |
|
if (p.hasBias) |
|
*os << ", BIAS"; |
|
} |
|
|
|
|
|
typedef tuple<Conv3DParamID, tuple<Backend, Target> > Conv3DTestParam_t; |
|
typedef TestBaseWithParam<Conv3DTestParam_t> Conv3D; |
|
|
|
PERF_TEST_P_(Conv3D, conv3d) |
|
{ |
|
int test_id = (int)get<0>(GetParam()); |
|
ASSERT_GE(test_id, 0); ASSERT_LT(test_id, Conv3DParamID::CONV_LAST); |
|
const Conv3DParam_t& params = testConvolution3DConfigs[test_id]; |
|
double declared_flops = params.declared_flops; |
|
|
|
DictValue kernel = DictValue::arrayInt(¶ms.kernel[0], 3); |
|
DictValue stride = DictValue::arrayInt(¶ms.stride[0], 3); |
|
DictValue pad = DictValue::arrayInt(¶ms.pad[0], 6); |
|
DictValue dilation = DictValue::arrayInt(¶ms.dilation[0], 3); |
|
|
|
MatShape inputShape = MatShape(params.shapeIn.dims, params.shapeIn.dims + 5); |
|
int outChannels = params.outCN; |
|
int groups = params.groups; |
|
std::string padMode(params.padMode); |
|
|
|
bool hasBias = params.hasBias; |
|
Backend backendId = get<0>(get<1>(GetParam())); |
|
Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
if (targetId != DNN_TARGET_CPU) |
|
throw SkipTestException("Only CPU is supported"); |
|
|
|
int inChannels = inputShape[1]; |
|
|
|
int sz[] = {outChannels, inChannels / groups, params.kernel[0], params.kernel[1], params.kernel[2]}; |
|
Mat weights(5, &sz[0], CV_32F); |
|
randu(weights, -1.0f, 1.0f); |
|
|
|
LayerParams lp; |
|
lp.set("kernel_size", kernel); |
|
lp.set("pad", pad); |
|
if (!padMode.empty()) |
|
lp.set("pad_mode", padMode); |
|
|
|
lp.set("stride", stride); |
|
lp.set("dilation", dilation); |
|
lp.set("num_output", outChannels); |
|
lp.set("group", groups); |
|
lp.set("bias_term", hasBias); |
|
lp.type = "Convolution"; |
|
lp.name = "testLayer"; |
|
lp.blobs.push_back(weights); |
|
|
|
if (hasBias) |
|
{ |
|
Mat bias(1, outChannels, CV_32F); |
|
randu(bias, -1.0f, 1.0f); |
|
lp.blobs.push_back(bias); |
|
} |
|
int inpSz[] = {1, inChannels, inputShape[2], inputShape[3], inputShape[4]}; |
|
Mat input(5, &inpSz[0], CV_32F); |
|
randu(input, -1.0f, 1.0f); |
|
|
|
Net net; |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
|
|
net.setInput(input); |
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
|
|
Mat output = net.forward(); |
|
|
|
MatShape netInputShape = shape(input); |
|
size_t weightsMemory = 0, blobsMemory = 0; |
|
net.getMemoryConsumption(netInputShape, weightsMemory, blobsMemory); |
|
int64 flops = net.getFLOPS(netInputShape); |
|
CV_Assert(flops > 0); |
|
|
|
std::cout |
|
<< "IN=" << divUp(input.total() * input.elemSize(), 1u<<10) << " Kb " << netInputShape |
|
<< " OUT=" << divUp(output.total() * output.elemSize(), 1u<<10) << " Kb " << shape(output) |
|
<< " Weights(parameters): " << divUp(weightsMemory, 1u<<10) << " Kb" |
|
<< " MFLOPS=" << flops * 1e-6 << std::endl; |
|
|
|
TEST_CYCLE() |
|
{ |
|
Mat res = net.forward(); |
|
} |
|
EXPECT_NEAR(flops, declared_flops, declared_flops * 1e-6); |
|
SANITY_CHECK_NOTHING(); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Conv3D, Combine( |
|
Conv3DParamID::all(), |
|
dnnBackendsAndTargets(false, false) // defined in ../test/test_common.hpp |
|
)); |
|
|
|
} // namespace
|
|
|