Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
555 lines
24 KiB
555 lines
24 KiB
/*#****************************************************************************** |
|
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
** |
|
** By downloading, copying, installing or using the software you agree to this license. |
|
** If you do not agree to this license, do not download, install, |
|
** copy or use the software. |
|
** |
|
** |
|
** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. |
|
** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping. |
|
** |
|
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) |
|
** |
|
** Creation - enhancement process 2007-2011 |
|
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France |
|
** |
|
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr). |
|
** Refer to the following research paper for more information: |
|
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 |
|
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book: |
|
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. |
|
** |
|
** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author : |
|
** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper: |
|
** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007 |
|
** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions. |
|
** ====> more informations in the above cited Jeanny Heraults's book. |
|
** |
|
** License Agreement |
|
** For Open Source Computer Vision Library |
|
** |
|
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. |
|
** |
|
** For Human Visual System tools (bioinspired) |
|
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. |
|
** |
|
** Third party copyrights are property of their respective owners. |
|
** |
|
** Redistribution and use in source and binary forms, with or without modification, |
|
** are permitted provided that the following conditions are met: |
|
** |
|
** * Redistributions of source code must retain the above copyright notice, |
|
** this list of conditions and the following disclaimer. |
|
** |
|
** * Redistributions in binary form must reproduce the above copyright notice, |
|
** this list of conditions and the following disclaimer in the documentation |
|
** and/or other materials provided with the distribution. |
|
** |
|
** * The name of the copyright holders may not be used to endorse or promote products |
|
** derived from this software without specific prior written permission. |
|
** |
|
** This software is provided by the copyright holders and contributors "as is" and |
|
** any express or implied warranties, including, but not limited to, the implied |
|
** warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
** In no event shall the Intel Corporation or contributors be liable for any direct, |
|
** indirect, incidental, special, exemplary, or consequential damages |
|
** (including, but not limited to, procurement of substitute goods or services; |
|
** loss of use, data, or profits; or business interruption) however caused |
|
** and on any theory of liability, whether in contract, strict liability, |
|
** or tort (including negligence or otherwise) arising in any way out of |
|
** the use of this software, even if advised of the possibility of such damage. |
|
*******************************************************************************/ |
|
|
|
#ifndef __TEMPLATEBUFFER_HPP__ |
|
#define __TEMPLATEBUFFER_HPP__ |
|
|
|
#include <valarray> |
|
#include <cstdlib> |
|
#include <iostream> |
|
#include <cmath> |
|
|
|
|
|
//#define __TEMPLATEBUFFERDEBUG //define TEMPLATEBUFFERDEBUG in order to display debug information |
|
|
|
namespace cv |
|
{ |
|
namespace bioinspired |
|
{ |
|
//// If a parallelization method is available then, you should define MAKE_PARALLEL, in the other case, the classical serial code will be used |
|
#define MAKE_PARALLEL |
|
// ==> then include required includes |
|
#ifdef MAKE_PARALLEL |
|
|
|
// ==> declare usefull generic tools |
|
template <class type> |
|
class Parallel_clipBufferValues: public cv::ParallelLoopBody |
|
{ |
|
private: |
|
type *bufferToClip; |
|
type minValue, maxValue; |
|
|
|
public: |
|
Parallel_clipBufferValues(type* bufferToProcess, const type min, const type max) |
|
: bufferToClip(bufferToProcess), minValue(min), maxValue(max) { } |
|
|
|
virtual void operator()( const cv::Range &r ) const { |
|
register type *inputOutputBufferPTR=bufferToClip+r.start; |
|
for (register int jf = r.start; jf != r.end; ++jf, ++inputOutputBufferPTR) |
|
{ |
|
if (*inputOutputBufferPTR>maxValue) |
|
*inputOutputBufferPTR=maxValue; |
|
else if (*inputOutputBufferPTR<minValue) |
|
*inputOutputBufferPTR=minValue; |
|
} |
|
} |
|
}; |
|
#endif |
|
|
|
/** |
|
* @class TemplateBuffer |
|
* @brief this class is a simple template memory buffer which contains basic functions to get information on or normalize the buffer content |
|
* note that thanks to the parent STL template class "valarray", it is possible to perform easily operations on the full array such as addition, product etc. |
|
* @author Alexandre BENOIT (benoit.alexandre.vision@gmail.com), helped by Gelu IONESCU (gelu.ionescu@lis.inpg.fr) |
|
* creation date: september 2007 |
|
*/ |
|
template <class type> class TemplateBuffer : public std::valarray<type> |
|
{ |
|
public: |
|
|
|
/** |
|
* constructor for monodimensional array |
|
* @param dim: the size of the vector |
|
*/ |
|
TemplateBuffer(const size_t dim=0) |
|
: std::valarray<type>((type)0, dim) |
|
{ |
|
_NBrows=1; |
|
_NBcolumns=dim; |
|
_NBdepths=1; |
|
_NBpixels=dim; |
|
_doubleNBpixels=2*dim; |
|
} |
|
|
|
/** |
|
* constructor by copy for monodimensional array |
|
* @param pVal: the pointer to a buffer to copy |
|
* @param dim: the size of the vector |
|
*/ |
|
TemplateBuffer(const type* pVal, const size_t dim) |
|
: std::valarray<type>(pVal, dim) |
|
{ |
|
_NBrows=1; |
|
_NBcolumns=dim; |
|
_NBdepths=1; |
|
_NBpixels=dim; |
|
_doubleNBpixels=2*dim; |
|
} |
|
|
|
/** |
|
* constructor for bidimensional array |
|
* @param dimRows: the size of the vector |
|
* @param dimColumns: the size of the vector |
|
* @param depth: the number of layers of the buffer in its third dimension (3 of color images, 1 for gray images. |
|
*/ |
|
TemplateBuffer(const size_t dimRows, const size_t dimColumns, const size_t depth=1) |
|
: std::valarray<type>((type)0, dimRows*dimColumns*depth) |
|
{ |
|
#ifdef TEMPLATEBUFFERDEBUG |
|
std::cout<<"TemplateBuffer::TemplateBuffer: new buffer, size="<<dimRows<<", "<<dimColumns<<", "<<depth<<"valarraySize="<<this->size()<<std::endl; |
|
#endif |
|
_NBrows=dimRows; |
|
_NBcolumns=dimColumns; |
|
_NBdepths=depth; |
|
_NBpixels=dimRows*dimColumns; |
|
_doubleNBpixels=2*dimRows*dimColumns; |
|
//_createTableIndex(); |
|
#ifdef TEMPLATEBUFFERDEBUG |
|
std::cout<<"TemplateBuffer::TemplateBuffer: construction successful"<<std::endl; |
|
#endif |
|
|
|
} |
|
|
|
/** |
|
* copy constructor |
|
* @param toCopy |
|
* @return thenconstructed instance |
|
*emplateBuffer(const TemplateBuffer &toCopy) |
|
:_NBrows(toCopy.getNBrows()),_NBcolumns(toCopy.getNBcolumns()),_NBdepths(toCopy.getNBdephs()), _NBpixels(toCopy.getNBpixels()), _doubleNBpixels(toCopy.getNBpixels()*2) |
|
//std::valarray<type>(toCopy) |
|
{ |
|
memcpy(Buffer(), toCopy.Buffer(), this->size()); |
|
}*/ |
|
/** |
|
* destructor |
|
*/ |
|
virtual ~TemplateBuffer() |
|
{ |
|
#ifdef TEMPLATEBUFFERDEBUG |
|
std::cout<<"~TemplateBuffer"<<std::endl; |
|
#endif |
|
} |
|
|
|
/** |
|
* delete the buffer content (set zeros) |
|
*/ |
|
inline void setZero() { std::valarray<type>::operator=(0); } //memset(Buffer(), 0, sizeof(type)*_NBpixels); } |
|
|
|
/** |
|
* @return the numbers of rows (height) of the images used by the object |
|
*/ |
|
inline unsigned int getNBrows() { return (unsigned int)_NBrows; } |
|
|
|
/** |
|
* @return the numbers of columns (width) of the images used by the object |
|
*/ |
|
inline unsigned int getNBcolumns() { return (unsigned int)_NBcolumns; } |
|
|
|
/** |
|
* @return the numbers of pixels (width*height) of the images used by the object |
|
*/ |
|
inline unsigned int getNBpixels() { return (unsigned int)_NBpixels; } |
|
|
|
/** |
|
* @return the numbers of pixels (width*height) of the images used by the object |
|
*/ |
|
inline unsigned int getDoubleNBpixels() { return (unsigned int)_doubleNBpixels; } |
|
|
|
/** |
|
* @return the numbers of depths (3rd dimension: 1 for gray images, 3 for rgb images) of the images used by the object |
|
*/ |
|
inline unsigned int getDepthSize() { return (unsigned int)_NBdepths; } |
|
|
|
/** |
|
* resize the buffer and recompute table index etc. |
|
*/ |
|
void resizeBuffer(const size_t dimRows, const size_t dimColumns, const size_t depth=1) |
|
{ |
|
this->resize(dimRows*dimColumns*depth); |
|
_NBrows=dimRows; |
|
_NBcolumns=dimColumns; |
|
_NBdepths=depth; |
|
_NBpixels=dimRows*dimColumns; |
|
_doubleNBpixels=2*dimRows*dimColumns; |
|
} |
|
|
|
inline TemplateBuffer<type> & operator=(const std::valarray<type> &b) |
|
{ |
|
//std::cout<<"TemplateBuffer<type> & operator= affect vector: "<<std::endl; |
|
std::valarray<type>::operator=(b); |
|
return *this; |
|
} |
|
|
|
inline TemplateBuffer<type> & operator=(const type &b) |
|
{ |
|
//std::cout<<"TemplateBuffer<type> & operator= affect value: "<<b<<std::endl; |
|
std::valarray<type>::operator=(b); |
|
return *this; |
|
} |
|
|
|
/* inline const type &operator[](const unsigned int &b) |
|
{ |
|
return (*this)[b]; |
|
} |
|
*/ |
|
/** |
|
* @return the buffer adress in non const mode |
|
*/ |
|
inline type* Buffer() { return &(*this)[0]; } |
|
|
|
/////////////////////////////////////////////////////// |
|
// Standard Image manipulation functions |
|
|
|
/** |
|
* standard 0 to 255 image normalization function |
|
* @param inputOutputBuffer: the image to be normalized (rewrites the input), if no parameter, then, the built in buffer reachable by getOutput() function is normalized |
|
* @param nbPixels: specifies the number of pixel on which the normalization should be performed, if 0, then all pixels specified in the constructor are processed |
|
* @param maxOutputValue: the maximum output value |
|
*/ |
|
static void normalizeGrayOutput_0_maxOutputValue(type *inputOutputBuffer, const size_t nbPixels, const type maxOutputValue=(type)255.0); |
|
|
|
/** |
|
* standard 0 to 255 image normalization function |
|
* @param inputOutputBuffer: the image to be normalized (rewrites the input), if no parameter, then, the built in buffer reachable by getOutput() function is normalized |
|
* @param nbPixels: specifies the number of pixel on which the normalization should be performed, if 0, then all pixels specified in the constructor are processed |
|
* @param maxOutputValue: the maximum output value |
|
*/ |
|
void normalizeGrayOutput_0_maxOutputValue(const type maxOutputValue=(type)255.0) { normalizeGrayOutput_0_maxOutputValue(this->Buffer(), this->size(), maxOutputValue); } |
|
|
|
/** |
|
* sigmoide image normalization function (saturates min and max values) |
|
* @param meanValue: specifies the mean value of th pixels to be processed |
|
* @param sensitivity: strenght of the sigmoide |
|
* @param inputPicture: the image to be normalized if no parameter, then, the built in buffer reachable by getOutput() function is normalized |
|
* @param outputBuffer: the ouput buffer on which the result is writed, if no parameter, then, the built in buffer reachable by getOutput() function is normalized |
|
* @param maxOutputValue: the maximum output value |
|
*/ |
|
static void normalizeGrayOutputCentredSigmoide(const type meanValue, const type sensitivity, const type maxOutputValue, type *inputPicture, type *outputBuffer, const unsigned int nbPixels); |
|
|
|
/** |
|
* sigmoide image normalization function on the current buffer (saturates min and max values) |
|
* @param meanValue: specifies the mean value of th pixels to be processed |
|
* @param sensitivity: strenght of the sigmoide |
|
* @param maxOutputValue: the maximum output value |
|
*/ |
|
inline void normalizeGrayOutputCentredSigmoide(const type meanValue=(type)0.0, const type sensitivity=(type)2.0, const type maxOutputValue=(type)255.0) { (void)maxOutputValue; normalizeGrayOutputCentredSigmoide(meanValue, sensitivity, 255.0, this->Buffer(), this->Buffer(), this->getNBpixels()); } |
|
|
|
/** |
|
* sigmoide image normalization function (saturates min and max values), in this function, the sigmoide is centered on low values (high saturation of the medium and high values |
|
* @param inputPicture: the image to be normalized if no parameter, then, the built in buffer reachable by getOutput() function is normalized |
|
* @param outputBuffer: the ouput buffer on which the result is writed, if no parameter, then, the built in buffer reachable by getOutput() function is normalized |
|
* @param sensitivity: strenght of the sigmoide |
|
* @param maxOutputValue: the maximum output value |
|
*/ |
|
void normalizeGrayOutputNearZeroCentreredSigmoide(type *inputPicture=(type*)NULL, type *outputBuffer=(type*)NULL, const type sensitivity=(type)40, const type maxOutputValue=(type)255.0); |
|
|
|
/** |
|
* center and reduct the image (image-mean)/std |
|
* @param inputOutputBuffer: the image to be normalized if no parameter, the result is rewrited on it |
|
*/ |
|
void centerReductImageLuminance(type *inputOutputBuffer=(type*)NULL); |
|
|
|
/** |
|
* @return standard deviation of the buffer |
|
*/ |
|
double getStandardDeviation() |
|
{ |
|
double standardDeviation=0; |
|
double meanValue=getMean(); |
|
|
|
type *bufferPTR=Buffer(); |
|
for (unsigned int i=0;i<this->size();++i) |
|
{ |
|
double diff=(*(bufferPTR++)-meanValue); |
|
standardDeviation+=diff*diff; |
|
} |
|
return std::sqrt(standardDeviation/this->size()); |
|
} |
|
|
|
/** |
|
* Clip buffer histogram |
|
* @param minRatio: the minimum ratio of the lower pixel values, range=[0,1] and lower than maxRatio |
|
* @param maxRatio: the aximum ratio of the higher pixel values, range=[0,1] and higher than minRatio |
|
*/ |
|
void clipHistogram(double minRatio, double maxRatio, double maxOutputValue) |
|
{ |
|
|
|
if (minRatio>=maxRatio) |
|
{ |
|
std::cerr<<"TemplateBuffer::clipHistogram: minRatio must be inferior to maxRatio, buffer unchanged"<<std::endl; |
|
return; |
|
} |
|
|
|
/* minRatio=min(max(minRatio, 1.0),0.0); |
|
maxRatio=max(max(maxRatio, 0.0),1.0); |
|
*/ |
|
|
|
// find the pixel value just above the threshold |
|
const double maxThreshold=this->max()*maxRatio; |
|
const double minThreshold=(this->max()-this->min())*minRatio+this->min(); |
|
|
|
type *bufferPTR=this->Buffer(); |
|
|
|
double deltaH=maxThreshold; |
|
double deltaL=maxThreshold; |
|
|
|
double updatedHighValue=maxThreshold; |
|
double updatedLowValue=maxThreshold; |
|
|
|
for (unsigned int i=0;i<this->size();++i) |
|
{ |
|
double curentValue=(double)*(bufferPTR++); |
|
|
|
// updating "closest to the high threshold" pixel value |
|
double highValueTest=maxThreshold-curentValue; |
|
if (highValueTest>0) |
|
{ |
|
if (deltaH>highValueTest) |
|
{ |
|
deltaH=highValueTest; |
|
updatedHighValue=curentValue; |
|
} |
|
} |
|
|
|
// updating "closest to the low threshold" pixel value |
|
double lowValueTest=curentValue-minThreshold; |
|
if (lowValueTest>0) |
|
{ |
|
if (deltaL>lowValueTest) |
|
{ |
|
deltaL=lowValueTest; |
|
updatedLowValue=curentValue; |
|
} |
|
} |
|
} |
|
|
|
std::cout<<"Tdebug"<<std::endl; |
|
std::cout<<"deltaL="<<deltaL<<", deltaH="<<deltaH<<std::endl; |
|
std::cout<<"this->max()"<<this->max()<<"maxThreshold="<<maxThreshold<<"updatedHighValue="<<updatedHighValue<<std::endl; |
|
std::cout<<"this->min()"<<this->min()<<"minThreshold="<<minThreshold<<"updatedLowValue="<<updatedLowValue<<std::endl; |
|
// clipping values outside than the updated thresholds |
|
bufferPTR=this->Buffer(); |
|
#ifdef MAKE_PARALLEL // call the TemplateBuffer multitreaded clipping method |
|
parallel_for_(cv::Range(0,this->size()), Parallel_clipBufferValues<type>(bufferPTR, updatedLowValue, updatedHighValue)); |
|
#else |
|
|
|
for (unsigned int i=0;i<this->size();++i, ++bufferPTR) |
|
{ |
|
if (*bufferPTR<updatedLowValue) |
|
*bufferPTR=updatedLowValue; |
|
else if (*bufferPTR>updatedHighValue) |
|
*bufferPTR=updatedHighValue; |
|
} |
|
#endif |
|
normalizeGrayOutput_0_maxOutputValue(this->Buffer(), this->size(), maxOutputValue); |
|
|
|
} |
|
|
|
/** |
|
* @return the mean value of the vector |
|
*/ |
|
inline double getMean() { return this->sum()/this->size(); } |
|
|
|
protected: |
|
size_t _NBrows; |
|
size_t _NBcolumns; |
|
size_t _NBdepths; |
|
size_t _NBpixels; |
|
size_t _doubleNBpixels; |
|
// utilities |
|
static type _abs(const type x); |
|
|
|
}; |
|
|
|
/////////////////////////////////////////////////////////////////////// |
|
/// normalize output between 0 and 255, can be applied on images of different size that the declared size if nbPixels parameters is setted up; |
|
template <class type> |
|
void TemplateBuffer<type>::normalizeGrayOutput_0_maxOutputValue(type *inputOutputBuffer, const size_t processedPixels, const type maxOutputValue) |
|
{ |
|
type maxValue=inputOutputBuffer[0], minValue=inputOutputBuffer[0]; |
|
|
|
// get the min and max value |
|
register type *inputOutputBufferPTR=inputOutputBuffer; |
|
for (register size_t j = 0; j<processedPixels; ++j) |
|
{ |
|
type pixValue = *(inputOutputBufferPTR++); |
|
if (maxValue < pixValue) |
|
maxValue = pixValue; |
|
else if (minValue > pixValue) |
|
minValue = pixValue; |
|
} |
|
// change the range of the data to 0->255 |
|
|
|
type factor = maxOutputValue/(maxValue-minValue); |
|
type offset = (type)(-minValue*factor); |
|
|
|
inputOutputBufferPTR=inputOutputBuffer; |
|
for (register size_t j = 0; j < processedPixels; ++j, ++inputOutputBufferPTR) |
|
*inputOutputBufferPTR=*(inputOutputBufferPTR)*factor+offset; |
|
|
|
} |
|
// normalize data with a sigmoide close to 0 (saturates values for those superior to 0) |
|
template <class type> |
|
void TemplateBuffer<type>::normalizeGrayOutputNearZeroCentreredSigmoide(type *inputBuffer, type *outputBuffer, const type sensitivity, const type maxOutputValue) |
|
{ |
|
if (inputBuffer==NULL) |
|
inputBuffer=Buffer(); |
|
if (outputBuffer==NULL) |
|
outputBuffer=Buffer(); |
|
|
|
type X0cube=sensitivity*sensitivity*sensitivity; |
|
|
|
register type *inputBufferPTR=inputBuffer; |
|
register type *outputBufferPTR=outputBuffer; |
|
|
|
for (register size_t j = 0; j < _NBpixels; ++j, ++inputBufferPTR) |
|
{ |
|
|
|
type currentCubeLuminance=*inputBufferPTR**inputBufferPTR**inputBufferPTR; |
|
*(outputBufferPTR++)=maxOutputValue*currentCubeLuminance/(currentCubeLuminance+X0cube); |
|
} |
|
} |
|
|
|
// normalize and adjust luminance with a centered to 128 sigmode |
|
template <class type> |
|
void TemplateBuffer<type>::normalizeGrayOutputCentredSigmoide(const type meanValue, const type sensitivity, const type maxOutputValue, type *inputBuffer, type *outputBuffer, const unsigned int nbPixels) |
|
{ |
|
|
|
if (sensitivity==1.0) |
|
{ |
|
std::cerr<<"TemplateBuffer::TemplateBuffer<type>::normalizeGrayOutputCentredSigmoide error: 2nd parameter (sensitivity) must not equal 0, copying original data..."<<std::endl; |
|
memcpy(outputBuffer, inputBuffer, sizeof(type)*nbPixels); |
|
return; |
|
} |
|
|
|
type X0=maxOutputValue/(sensitivity-(type)1.0); |
|
|
|
register type *inputBufferPTR=inputBuffer; |
|
register type *outputBufferPTR=outputBuffer; |
|
|
|
for (register size_t j = 0; j < nbPixels; ++j, ++inputBufferPTR) |
|
*(outputBufferPTR++)=(meanValue+(meanValue+X0)*(*(inputBufferPTR)-meanValue)/(_abs(*(inputBufferPTR)-meanValue)+X0)); |
|
|
|
} |
|
|
|
// center and reduct the image (image-mean)/std |
|
template <class type> |
|
void TemplateBuffer<type>::centerReductImageLuminance(type *inputOutputBuffer) |
|
{ |
|
// if outputBuffer unsassigned, the rewrite the buffer |
|
if (inputOutputBuffer==NULL) |
|
inputOutputBuffer=Buffer(); |
|
type meanValue=0, stdValue=0; |
|
|
|
// compute mean value |
|
for (register size_t j = 0; j < _NBpixels; ++j) |
|
meanValue+=inputOutputBuffer[j]; |
|
meanValue/=((type)_NBpixels); |
|
|
|
// compute std value |
|
register type *inputOutputBufferPTR=inputOutputBuffer; |
|
for (size_t index=0;index<_NBpixels;++index) |
|
{ |
|
type inputMinusMean=*(inputOutputBufferPTR++)-meanValue; |
|
stdValue+=inputMinusMean*inputMinusMean; |
|
} |
|
|
|
stdValue=std::sqrt(stdValue/((type)_NBpixels)); |
|
// adjust luminance in regard of mean and std value; |
|
inputOutputBufferPTR=inputOutputBuffer; |
|
for (size_t index=0;index<_NBpixels;++index, ++inputOutputBufferPTR) |
|
*inputOutputBufferPTR=(*(inputOutputBufferPTR)-meanValue)/stdValue; |
|
} |
|
|
|
|
|
template <class type> |
|
type TemplateBuffer<type>::_abs(const type x) |
|
{ |
|
|
|
if (x>0) |
|
return x; |
|
else |
|
return -x; |
|
} |
|
|
|
template < > |
|
inline int TemplateBuffer<int>::_abs(const int x) |
|
{ |
|
return std::abs(x); |
|
} |
|
template < > |
|
inline double TemplateBuffer<double>::_abs(const double x) |
|
{ |
|
return std::fabs(x); |
|
} |
|
|
|
template < > |
|
inline float TemplateBuffer<float>::_abs(const float x) |
|
{ |
|
return std::fabs(x); |
|
} |
|
|
|
}// end of namespace bioinspired |
|
}// end of namespace cv |
|
#endif
|
|
|