mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
50 lines
1.2 KiB
50 lines
1.2 KiB
#!/usr/bin/env python |
|
|
|
''' |
|
K-means clusterization sample. |
|
Usage: |
|
kmeans.py |
|
|
|
Keyboard shortcuts: |
|
ESC - exit |
|
space - generate new distribution |
|
''' |
|
|
|
# Python 2/3 compatibility |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
from gaussian_mix import make_gaussians |
|
|
|
if __name__ == '__main__': |
|
cluster_n = 5 |
|
img_size = 512 |
|
|
|
print(__doc__) |
|
|
|
# generating bright palette |
|
colors = np.zeros((1, cluster_n, 3), np.uint8) |
|
colors[0,:] = 255 |
|
colors[0,:,0] = np.arange(0, 180, 180.0/cluster_n) |
|
colors = cv.cvtColor(colors, cv.COLOR_HSV2BGR)[0] |
|
|
|
while True: |
|
print('sampling distributions...') |
|
points, _ = make_gaussians(cluster_n, img_size) |
|
|
|
term_crit = (cv.TERM_CRITERIA_EPS, 30, 0.1) |
|
ret, labels, centers = cv.kmeans(points, cluster_n, None, term_crit, 10, 0) |
|
|
|
img = np.zeros((img_size, img_size, 3), np.uint8) |
|
for (x, y), label in zip(np.int32(points), labels.ravel()): |
|
c = list(map(int, colors[label])) |
|
|
|
cv.circle(img, (x, y), 1, c, -1) |
|
|
|
cv.imshow('gaussian mixture', img) |
|
ch = cv.waitKey(0) |
|
if ch == 27: |
|
break |
|
cv.destroyAllWindows()
|
|
|