Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

453 lines
16 KiB

#include <opencv2/opencv.hpp>
#include <vector>
#include <map>
#include <iostream>
using namespace std;
using namespace cv;
void Example_MSER(vector<String> &fileName);
static void help()
{
cout << "\n This program demonstrates how to use BLOB and MSER to detect region \n"
"Usage: \n"
" ./BLOB_MSER <image1(../data/forme2.jpg as default)>\n"
"Press a key when image window is active to change descriptor";
}
struct MSERParams
{
MSERParams(int _delta = 5, int _min_area = 60, int _max_area = 14400,
double _max_variation = 0.25, double _min_diversity = .2,
int _max_evolution = 200, double _area_threshold = 1.01,
double _min_margin = 0.003, int _edge_blur_size = 5)
{
delta = _delta;
minArea = _min_area;
maxArea = _max_area;
maxVariation = _max_variation;
minDiversity = _min_diversity;
maxEvolution = _max_evolution;
areaThreshold = _area_threshold;
minMargin = _min_margin;
edgeBlurSize = _edge_blur_size;
pass2Only = false;
}
int delta;
int minArea;
int maxArea;
double maxVariation;
double minDiversity;
bool pass2Only;
int maxEvolution;
double areaThreshold;
double minMargin;
int edgeBlurSize;
};
String Legende(SimpleBlobDetector::Params &pAct)
{
String s="";
if (pAct.filterByArea)
{
String inf = static_cast<ostringstream*>(&(ostringstream() << pAct.minArea))->str();
String sup = static_cast<ostringstream*>(&(ostringstream() << pAct.maxArea))->str();
s = " Area range [" + inf + " to " + sup + "]";
}
if (pAct.filterByCircularity)
{
String inf = static_cast<ostringstream*>(&(ostringstream() << pAct.minCircularity))->str();
String sup = static_cast<ostringstream*>(&(ostringstream() << pAct.maxCircularity))->str();
if (s.length()==0)
s = " Circularity range [" + inf + " to " + sup + "]";
else
s += " AND Circularity range [" + inf + " to " + sup + "]";
}
if (pAct.filterByColor)
{
String inf = static_cast<ostringstream*>(&(ostringstream() << (int)pAct.blobColor))->str();
if (s.length() == 0)
s = " Blob color " + inf;
else
s += " AND Blob color " + inf;
}
if (pAct.filterByConvexity)
{
String inf = static_cast<ostringstream*>(&(ostringstream() << pAct.minConvexity))->str();
String sup = static_cast<ostringstream*>(&(ostringstream() << pAct.maxConvexity))->str();
if (s.length() == 0)
s = " Convexity range[" + inf + " to " + sup + "]";
else
s += " AND Convexity range[" + inf + " to " + sup + "]";
}
if (pAct.filterByInertia)
{
String inf = static_cast<ostringstream*>(&(ostringstream() << pAct.minInertiaRatio))->str();
String sup = static_cast<ostringstream*>(&(ostringstream() << pAct.maxInertiaRatio))->str();
if (s.length() == 0)
s = " Inertia ratio range [" + inf + " to " + sup + "]";
else
s += " AND Inertia ratio range [" + inf + " to " + sup + "]";
}
return s;
}
int main(int argc, char *argv[])
{
vector<String> fileName;
Example_MSER(fileName);
Mat img(600,800,CV_8UC1);
if (argc == 1)
{
fileName.push_back("../data/BLOB_MSER.bmp");
}
else if (argc == 2)
{
fileName.push_back(argv[1]);
}
else
{
help();
return(0);
}
img = imread(fileName[0], IMREAD_UNCHANGED);
if (img.rows*img.cols <= 0)
{
cout << "Image " << fileName[0] << " is empty or cannot be found\n";
return(0);
}
SimpleBlobDetector::Params pDefaultBLOB;
MSERParams pDefaultMSER;
// This is default parameters for SimpleBlobDetector
pDefaultBLOB.thresholdStep = 10;
pDefaultBLOB.minThreshold = 10;
pDefaultBLOB.maxThreshold = 220;
pDefaultBLOB.minRepeatability = 2;
pDefaultBLOB.minDistBetweenBlobs = 10;
pDefaultBLOB.filterByColor = false;
pDefaultBLOB.blobColor = 0;
pDefaultBLOB.filterByArea = false;
pDefaultBLOB.minArea = 25;
pDefaultBLOB.maxArea = 5000;
pDefaultBLOB.filterByCircularity = false;
pDefaultBLOB.minCircularity = 0.9f;
pDefaultBLOB.maxCircularity = std::numeric_limits<float>::max();
pDefaultBLOB.filterByInertia = false;
pDefaultBLOB.minInertiaRatio = 0.1f;
pDefaultBLOB.maxInertiaRatio = std::numeric_limits<float>::max();
pDefaultBLOB.filterByConvexity = false;
pDefaultBLOB.minConvexity = 0.95f;
pDefaultBLOB.maxConvexity = std::numeric_limits<float>::max();
// Descriptor array (BLOB or MSER)
vector<String> typeDesc;
// Param array for BLOB
vector<SimpleBlobDetector::Params> pBLOB;
vector<SimpleBlobDetector::Params>::iterator itBLOB;
// Param array for MSER
vector<MSERParams> pMSER;
vector<MSERParams>::iterator itMSER;
// Color palette
vector<Vec3b> palette;
for (int i=0;i<65536;i++)
palette.push_back(Vec3b((uchar)rand(), (uchar)rand(), (uchar)rand()));
help();
/* typeDesc.push_back("MSER");
pMSER.push_back(pDefaultMSER);
pMSER.back().delta = 1;
pMSER.back().minArea = 1;
pMSER.back().maxArea = 180000;
pMSER.back().maxVariation= 500;
pMSER.back().minDiversity = 0;
pMSER.back().pass2Only = false;*/
typeDesc.push_back("BLOB");
pBLOB.push_back(pDefaultBLOB);
pBLOB.back().filterByColor = true;
pBLOB.back().blobColor = 0;
// This descriptor are going to be detect and compute 4 BLOBS with 4 differents params
// Param for first BLOB detector we want all
typeDesc.push_back("BLOB"); // see http://docs.opencv.org/trunk/d0/d7a/classcv_1_1SimpleBlobDetector.html
pBLOB.push_back(pDefaultBLOB);
pBLOB.back().filterByArea = true;
pBLOB.back().minArea = 1;
pBLOB.back().maxArea = int(img.rows*img.cols);
// Param for second BLOB detector we want area between 500 and 2900 pixels
typeDesc.push_back("BLOB");
pBLOB.push_back(pDefaultBLOB);
pBLOB.back().filterByArea = true;
pBLOB.back().minArea = 500;
pBLOB.back().maxArea = 2900;
// Param for third BLOB detector we want only circular object
typeDesc.push_back("BLOB");
pBLOB.push_back(pDefaultBLOB);
pBLOB.back().filterByCircularity = true;
// Param for Fourth BLOB detector we want ratio inertia
typeDesc.push_back("BLOB");
pBLOB.push_back(pDefaultBLOB);
pBLOB.back().filterByInertia = true;
pBLOB.back().minInertiaRatio = 0;
pBLOB.back().maxInertiaRatio = (float)0.2;
// Param for Fourth BLOB detector we want ratio inertia
typeDesc.push_back("BLOB");
pBLOB.push_back(pDefaultBLOB);
pBLOB.back().filterByConvexity = true;
pBLOB.back().minConvexity = 0.;
pBLOB.back().maxConvexity = (float)0.9;
itBLOB = pBLOB.begin();
itMSER = pMSER.begin();
vector<double> desMethCmp;
Ptr<Feature2D> b;
String label;
// Descriptor loop
vector<String>::iterator itDesc;
for (itDesc = typeDesc.begin(); itDesc != typeDesc.end(); itDesc++)
{
vector<KeyPoint> keyImg1;
if (*itDesc == "BLOB"){
b = SimpleBlobDetector::create(*itBLOB);
label=Legende(*itBLOB);
itBLOB++;
}
if (*itDesc == "MSER"){
if(img.type()==CV_8UC3)
{
b = MSER::create(itMSER->delta, itMSER->minArea, itMSER->maxArea, itMSER->maxVariation, itMSER->minDiversity, itMSER->maxEvolution,
itMSER->areaThreshold, itMSER->minMargin, itMSER->edgeBlurSize);
b.dynamicCast<MSER>()->setPass2Only(itMSER->pass2Only);
}
else
{
b = MSER::create(itMSER->delta, itMSER->minArea, itMSER->maxArea, itMSER->maxVariation, itMSER->minDiversity);
}
//b = MSER::create();
//b = MSER::create();
}
try {
// We can detect keypoint with detect method
vector<KeyPoint> keyImg;
vector<Rect> zone;
vector<vector <Point>> region;
Mat desc, result(img.rows,img.cols,CV_8UC3);
if (b.dynamicCast<SimpleBlobDetector>() != NULL)
{
Ptr<SimpleBlobDetector> sbd = b.dynamicCast<SimpleBlobDetector>();
sbd->detect(img, keyImg, Mat());
drawKeypoints(img,keyImg,result);
int i=0;
for (vector<KeyPoint>::iterator k=keyImg.begin();k!=keyImg.end();k++,i++)
circle(result,k->pt,k->size,palette[i%65536]);
}
if (b.dynamicCast<MSER>() != NULL)
{
Ptr<MSER> sbd = b.dynamicCast<MSER>();
sbd->detectRegions(img, region, zone);
int i = 0;
result=Scalar(0,0,0);
for (vector<Rect>::iterator r = zone.begin(); r != zone.end();r++,i++)
{
// we draw a white rectangle which include all region pixels
rectangle(result, *r, Vec3b(255, 0, 0), 2);
}
i=0;
for (vector<vector <Point>>::iterator itr = region.begin(); itr != region.end(); itr++, i++)
{
for (vector <Point>::iterator itp = region[i].begin(); itp != region[i].end(); itp++)
{
// all pixels belonging to region are red
result.at<Vec3b>(itp->y, itp->x) = Vec3b(0,0,128);
}
}
}
namedWindow(*itDesc+label , WINDOW_AUTOSIZE);
imshow(*itDesc + label, result);
imshow("Original", img);
FileStorage fs(*itDesc + "_" + fileName[0] + ".xml", FileStorage::WRITE);
fs<<*itDesc<<keyImg;
waitKey();
}
catch (Exception& e)
{
cout << "Feature : " << *itDesc << "\n";
cout<<e.msg<<endl;
}
}
return 0;
}
void Example_MSER(vector<String> &fileName)
{
Mat img(600, 800, CV_8UC1);
fileName.push_back("SyntheticImage.bmp");
map<int, char> val;
int fond = 255;
img = Scalar(fond);
val[fond] = 1;
Point p[] = { Point(img.cols / 4, img.rows / 4), Point(3 * img.cols / 4, img.rows / 4) };
for (int j = 0; j<1; j++)
{
for (int i = 1; i<min(img.cols / 4, img.rows / 4); i += 2)
{
int v = 200 - (i / 40);
Rect r(p[j] - Point(i / 2, i / 2), Size(i, i));
rectangle(img, r, Scalar(v), 1);
if (val.find(v) == val.end())
val[v] = 1;
//circle(img, p[j], i, Scalar(255 - (j + 1)*(i / 30)),2);
}
}
for (int j = 1; j<2; j++)
{
for (int i = 1; i<min(img.cols / 4, img.rows / 4); i += 2)
{
int v = i / 40+30;
Rect r(p[j] - Point(i / 2, i / 2), Size(i, i));
rectangle(img, r, Scalar(v), 1);
if (val.find(v) == val.end())
val[v] = 1;
//circle(img, p[j], i, Scalar(255 - (j + 1)*(i / 30)),2);
}
}
int channel = 1;
int histSize = 256 ;
float range[] = { 0, 256 };
const float* histRange[] = { range };
Mat hist;
// we compute the histogram from the 0-th and 1-st channels
calcHist(&img, 1, 0, Mat(), hist, 1, &histSize, histRange, true, false);
Mat cumHist(hist.size(), hist.type());
cumHist.at<float>(0, 0) = hist.at<float>(0, 0);
for (int i = 1; i < hist.rows; i++)
cumHist.at<float>(i, 0) = cumHist.at<float>(i - 1, 0) + hist.at<float>(i, 0);
imwrite(fileName[0], img);
cout << "****************Maximal region************************\n";
for (map<int, char>::iterator it = val.begin(); it != val.end(); it++)
{
cout << "h" << it->first << "=\t" << hist.at<float>(it->first, 0) << "\t" << cumHist.at<float>(it->first, 0) << "\t\t";
if (it->first <= 254 && it->first >= 1)
{
cout << (cumHist.at<float>(it->first + 1, 0) - cumHist.at<float>(it->first - 1, 0)) / cumHist.at<float>(it->first, 0);
}
cout << endl;
}
cout << "****************Minimal region************************\n";
cumHist.at<float>(255, 0) = hist.at<float>(255, 0);
for (int i = 254; i >= 0; i--)
cumHist.at<float>(i, 0) = cumHist.at<float>(i + 1, 0) + hist.at<float>(i, 0);
map<int, char>::iterator it = val.end();
for (it--; it != val.begin(); it--)
{
cout << "h" << it->first << "=\t" << hist.at<float>(it->first, 0) << "\t" << cumHist.at<float>(it->first, 0) << "\t\t";
if (it->first <= 254 && it->first >= 1)
{
cout << (cumHist.at<float>(it->first - 1, 0) - cumHist.at<float>(it->first + 1, 0)) / cumHist.at<float>(it->first, 0);
}
cout << endl;
}
// img = imread("C:/Users/laurent_2/Pictures/basketball1.png", IMREAD_GRAYSCALE);
MSERParams pDefaultMSER;
// Descriptor array (BLOB or MSER)
vector<String> typeDesc;
// Param array for BLOB
// Param array for MSER
vector<MSERParams> pMSER;
vector<MSERParams>::iterator itMSER;
// Color palette
vector<Vec3b> palette;
for (int i = 0; i<65536; i++)
palette.push_back(Vec3b((uchar)rand(), (uchar)rand(), (uchar)rand()));
help();
typeDesc.push_back("MSER");
pMSER.push_back(pDefaultMSER);
pMSER.back().delta = 1;
pMSER.back().minArea = 1;
pMSER.back().maxArea = 180000;
pMSER.back().maxVariation = 500;
pMSER.back().minDiversity = 0;
pMSER.back().pass2Only = true;
itMSER = pMSER.begin();
vector<double> desMethCmp;
Ptr<Feature2D> b;
String label;
// Descriptor loop
vector<String>::iterator itDesc;
for (itDesc = typeDesc.begin(); itDesc != typeDesc.end(); itDesc++)
{
vector<KeyPoint> keyImg1;
if (*itDesc == "MSER"){
if (img.type() == CV_8UC3)
{
b = MSER::create(itMSER->delta, itMSER->minArea, itMSER->maxArea, itMSER->maxVariation, itMSER->minDiversity, itMSER->maxEvolution,
itMSER->areaThreshold, itMSER->minMargin, itMSER->edgeBlurSize);
b.dynamicCast<MSER>()->setPass2Only(itMSER->pass2Only);
}
else
{
b = MSER::create(itMSER->delta, itMSER->minArea, itMSER->maxArea, itMSER->maxVariation, itMSER->minDiversity);
}
}
try {
// We can detect keypoint with detect method
vector<KeyPoint> keyImg;
vector<Rect> zone;
vector<vector <Point>> region;
Mat desc, result(img.rows, img.cols, CV_8UC3);
int nb = img.channels();
if (b.dynamicCast<MSER>() != NULL)
{
Ptr<MSER> sbd = b.dynamicCast<MSER>();
sbd->detectRegions(img, region, zone);
int i = 0;
result = Scalar(0, 0, 0);
for (vector<Rect>::iterator r = zone.begin(); r != zone.end(); r++, i++)
{
// we draw a white rectangle which include all region pixels
rectangle(result, *r, Vec3b(255, 0, 0), 2);
}
i = 0;
for (vector<vector <Point>>::iterator itr = region.begin(); itr != region.end(); itr++, i++)
{
for (vector <Point>::iterator itp = region[i].begin(); itp != region[i].end(); itp++)
{
// all pixels belonging to region are red
result.at<Vec3b>(itp->y, itp->x) = Vec3b(0, 0, 128);
}
}
}
namedWindow(*itDesc + label, WINDOW_AUTOSIZE);
imshow(*itDesc + label, result);
imshow("Original", img);
FileStorage fs(*itDesc + "_" + fileName[0] + ".xml", FileStorage::WRITE);
fs << *itDesc << keyImg;
waitKey();
}
catch (Exception& e)
{
cout << "Feature : " << *itDesc << "\n";
cout << e.msg << endl;
}
}
return;
}