mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
988 lines
29 KiB
988 lines
29 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::cuda; |
|
using namespace cv::superres; |
|
using namespace cv::superres::detail; |
|
|
|
/////////////////////////////////////////////////////////////////// |
|
// CpuOpticalFlow |
|
|
|
namespace |
|
{ |
|
class CpuOpticalFlow : public DenseOpticalFlowExt |
|
{ |
|
public: |
|
explicit CpuOpticalFlow(int work_type); |
|
|
|
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2); |
|
void collectGarbage(); |
|
|
|
protected: |
|
virtual void impl(const Mat& input0, const Mat& input1, OutputArray dst) = 0; |
|
|
|
private: |
|
int work_type_; |
|
Mat buf_[6]; |
|
Mat flow_; |
|
Mat flows_[2]; |
|
}; |
|
|
|
CpuOpticalFlow::CpuOpticalFlow(int work_type) : work_type_(work_type) |
|
{ |
|
} |
|
|
|
void CpuOpticalFlow::calc(InputArray _frame0, InputArray _frame1, OutputArray _flow1, OutputArray _flow2) |
|
{ |
|
Mat frame0 = arrGetMat(_frame0, buf_[0]); |
|
Mat frame1 = arrGetMat(_frame1, buf_[1]); |
|
|
|
CV_Assert( frame1.type() == frame0.type() ); |
|
CV_Assert( frame1.size() == frame0.size() ); |
|
|
|
Mat input0 = convertToType(frame0, work_type_, buf_[2], buf_[3]); |
|
Mat input1 = convertToType(frame1, work_type_, buf_[4], buf_[5]); |
|
|
|
if (!_flow2.needed() && _flow1.kind() < _InputArray::OPENGL_BUFFER) |
|
{ |
|
impl(input0, input1, _flow1); |
|
return; |
|
} |
|
|
|
impl(input0, input1, flow_); |
|
|
|
if (!_flow2.needed()) |
|
{ |
|
arrCopy(flow_, _flow1); |
|
} |
|
else |
|
{ |
|
split(flow_, flows_); |
|
|
|
arrCopy(flows_[0], _flow1); |
|
arrCopy(flows_[1], _flow2); |
|
} |
|
} |
|
|
|
void CpuOpticalFlow::collectGarbage() |
|
{ |
|
for (int i = 0; i < 6; ++i) |
|
buf_[i].release(); |
|
flow_.release(); |
|
flows_[0].release(); |
|
flows_[1].release(); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////// |
|
// Farneback |
|
|
|
namespace |
|
{ |
|
class Farneback : public CpuOpticalFlow |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
Farneback(); |
|
|
|
protected: |
|
void impl(const Mat& input0, const Mat& input1, OutputArray dst); |
|
|
|
private: |
|
double pyrScale_; |
|
int numLevels_; |
|
int winSize_; |
|
int numIters_; |
|
int polyN_; |
|
double polySigma_; |
|
int flags_; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(Farneback, "DenseOpticalFlowExt.Farneback", |
|
obj.info()->addParam(obj, "pyrScale", obj.pyrScale_); |
|
obj.info()->addParam(obj, "numLevels", obj.numLevels_); |
|
obj.info()->addParam(obj, "winSize", obj.winSize_); |
|
obj.info()->addParam(obj, "numIters", obj.numIters_); |
|
obj.info()->addParam(obj, "polyN", obj.polyN_); |
|
obj.info()->addParam(obj, "polySigma", obj.polySigma_); |
|
obj.info()->addParam(obj, "flags", obj.flags_)); |
|
|
|
Farneback::Farneback() : CpuOpticalFlow(CV_8UC1) |
|
{ |
|
pyrScale_ = 0.5; |
|
numLevels_ = 5; |
|
winSize_ = 13; |
|
numIters_ = 10; |
|
polyN_ = 5; |
|
polySigma_ = 1.1; |
|
flags_ = 0; |
|
} |
|
|
|
void Farneback::impl(const Mat& input0, const Mat& input1, OutputArray dst) |
|
{ |
|
calcOpticalFlowFarneback(input0, input1, (InputOutputArray)dst, pyrScale_, |
|
numLevels_, winSize_, numIters_, |
|
polyN_, polySigma_, flags_); |
|
} |
|
} |
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Farneback() |
|
{ |
|
return makePtr<Farneback>(); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////// |
|
// Simple |
|
|
|
namespace |
|
{ |
|
class Simple : public CpuOpticalFlow |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
Simple(); |
|
|
|
protected: |
|
void impl(const Mat& input0, const Mat& input1, OutputArray dst); |
|
|
|
private: |
|
int layers_; |
|
int averagingBlockSize_; |
|
int maxFlow_; |
|
double sigmaDist_; |
|
double sigmaColor_; |
|
int postProcessWindow_; |
|
double sigmaDistFix_; |
|
double sigmaColorFix_; |
|
double occThr_; |
|
int upscaleAveragingRadius_; |
|
double upscaleSigmaDist_; |
|
double upscaleSigmaColor_; |
|
double speedUpThr_; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(Simple, "DenseOpticalFlowExt.Simple", |
|
obj.info()->addParam(obj, "layers", obj.layers_); |
|
obj.info()->addParam(obj, "averagingBlockSize", obj.averagingBlockSize_); |
|
obj.info()->addParam(obj, "maxFlow", obj.maxFlow_); |
|
obj.info()->addParam(obj, "sigmaDist", obj.sigmaDist_); |
|
obj.info()->addParam(obj, "sigmaColor", obj.sigmaColor_); |
|
obj.info()->addParam(obj, "postProcessWindow", obj.postProcessWindow_); |
|
obj.info()->addParam(obj, "sigmaDistFix", obj.sigmaDistFix_); |
|
obj.info()->addParam(obj, "sigmaColorFix", obj.sigmaColorFix_); |
|
obj.info()->addParam(obj, "occThr", obj.occThr_); |
|
obj.info()->addParam(obj, "upscaleAveragingRadius", obj.upscaleAveragingRadius_); |
|
obj.info()->addParam(obj, "upscaleSigmaDist", obj.upscaleSigmaDist_); |
|
obj.info()->addParam(obj, "upscaleSigmaColor", obj.upscaleSigmaColor_); |
|
obj.info()->addParam(obj, "speedUpThr", obj.speedUpThr_)); |
|
|
|
Simple::Simple() : CpuOpticalFlow(CV_8UC3) |
|
{ |
|
layers_ = 3; |
|
averagingBlockSize_ = 2; |
|
maxFlow_ = 4; |
|
sigmaDist_ = 4.1; |
|
sigmaColor_ = 25.5; |
|
postProcessWindow_ = 18; |
|
sigmaDistFix_ = 55.0; |
|
sigmaColorFix_ = 25.5; |
|
occThr_ = 0.35; |
|
upscaleAveragingRadius_ = 18; |
|
upscaleSigmaDist_ = 55.0; |
|
upscaleSigmaColor_ = 25.5; |
|
speedUpThr_ = 10; |
|
} |
|
|
|
void Simple::impl(const Mat& _input0, const Mat& _input1, OutputArray dst) |
|
{ |
|
Mat input0 = _input0; |
|
Mat input1 = _input1; |
|
calcOpticalFlowSF(input0, input1, dst.getMatRef(), |
|
layers_, |
|
averagingBlockSize_, |
|
maxFlow_, |
|
sigmaDist_, |
|
sigmaColor_, |
|
postProcessWindow_, |
|
sigmaDistFix_, |
|
sigmaColorFix_, |
|
occThr_, |
|
upscaleAveragingRadius_, |
|
upscaleSigmaDist_, |
|
upscaleSigmaColor_, |
|
speedUpThr_); |
|
} |
|
} |
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Simple() |
|
{ |
|
return makePtr<Simple>(); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////// |
|
// DualTVL1 |
|
|
|
namespace |
|
{ |
|
class DualTVL1 : public CpuOpticalFlow |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
DualTVL1(); |
|
|
|
void collectGarbage(); |
|
|
|
protected: |
|
void impl(const Mat& input0, const Mat& input1, OutputArray dst); |
|
|
|
private: |
|
double tau_; |
|
double lambda_; |
|
double theta_; |
|
int nscales_; |
|
int warps_; |
|
double epsilon_; |
|
int iterations_; |
|
bool useInitialFlow_; |
|
|
|
Ptr<DenseOpticalFlow> alg_; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(DualTVL1, "DenseOpticalFlowExt.DualTVL1", |
|
obj.info()->addParam(obj, "tau", obj.tau_); |
|
obj.info()->addParam(obj, "lambda", obj.lambda_); |
|
obj.info()->addParam(obj, "theta", obj.theta_); |
|
obj.info()->addParam(obj, "nscales", obj.nscales_); |
|
obj.info()->addParam(obj, "warps", obj.warps_); |
|
obj.info()->addParam(obj, "epsilon", obj.epsilon_); |
|
obj.info()->addParam(obj, "iterations", obj.iterations_); |
|
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow_)); |
|
|
|
DualTVL1::DualTVL1() : CpuOpticalFlow(CV_8UC1) |
|
{ |
|
alg_ = cv::createOptFlow_DualTVL1(); |
|
tau_ = alg_->getDouble("tau"); |
|
lambda_ = alg_->getDouble("lambda"); |
|
theta_ = alg_->getDouble("theta"); |
|
nscales_ = alg_->getInt("nscales"); |
|
warps_ = alg_->getInt("warps"); |
|
epsilon_ = alg_->getDouble("epsilon"); |
|
iterations_ = alg_->getInt("iterations"); |
|
useInitialFlow_ = alg_->getBool("useInitialFlow"); |
|
} |
|
|
|
void DualTVL1::impl(const Mat& input0, const Mat& input1, OutputArray dst) |
|
{ |
|
alg_->set("tau", tau_); |
|
alg_->set("lambda", lambda_); |
|
alg_->set("theta", theta_); |
|
alg_->set("nscales", nscales_); |
|
alg_->set("warps", warps_); |
|
alg_->set("epsilon", epsilon_); |
|
alg_->set("iterations", iterations_); |
|
alg_->set("useInitialFlow", useInitialFlow_); |
|
|
|
alg_->calc(input0, input1, (InputOutputArray)dst); |
|
} |
|
|
|
void DualTVL1::collectGarbage() |
|
{ |
|
alg_->collectGarbage(); |
|
CpuOpticalFlow::collectGarbage(); |
|
} |
|
} |
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_DualTVL1() |
|
{ |
|
return makePtr<DualTVL1>(); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////// |
|
// GpuOpticalFlow |
|
|
|
#ifndef HAVE_OPENCV_CUDAOPTFLOW |
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Farneback_CUDA() |
|
{ |
|
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform"); |
|
return Ptr<DenseOpticalFlowExt>(); |
|
} |
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_DualTVL1_CUDA() |
|
{ |
|
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform"); |
|
return Ptr<DenseOpticalFlowExt>(); |
|
} |
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Brox_CUDA() |
|
{ |
|
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform"); |
|
return Ptr<DenseOpticalFlowExt>(); |
|
} |
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_PyrLK_CUDA() |
|
{ |
|
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform"); |
|
return Ptr<DenseOpticalFlowExt>(); |
|
} |
|
|
|
#else // HAVE_OPENCV_CUDAOPTFLOW |
|
|
|
namespace |
|
{ |
|
class GpuOpticalFlow : public DenseOpticalFlowExt |
|
{ |
|
public: |
|
explicit GpuOpticalFlow(int work_type); |
|
|
|
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2); |
|
void collectGarbage(); |
|
|
|
protected: |
|
virtual void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2) = 0; |
|
|
|
private: |
|
int work_type_; |
|
GpuMat buf_[6]; |
|
GpuMat u_, v_, flow_; |
|
}; |
|
|
|
GpuOpticalFlow::GpuOpticalFlow(int work_type) : work_type_(work_type) |
|
{ |
|
} |
|
|
|
void GpuOpticalFlow::calc(InputArray _frame0, InputArray _frame1, OutputArray _flow1, OutputArray _flow2) |
|
{ |
|
GpuMat frame0 = arrGetGpuMat(_frame0, buf_[0]); |
|
GpuMat frame1 = arrGetGpuMat(_frame1, buf_[1]); |
|
|
|
CV_Assert( frame1.type() == frame0.type() ); |
|
CV_Assert( frame1.size() == frame0.size() ); |
|
|
|
GpuMat input0 = convertToType(frame0, work_type_, buf_[2], buf_[3]); |
|
GpuMat input1 = convertToType(frame1, work_type_, buf_[4], buf_[5]); |
|
|
|
if (_flow2.needed() && _flow1.kind() == _InputArray::GPU_MAT && _flow2.kind() == _InputArray::GPU_MAT) |
|
{ |
|
impl(input0, input1, _flow1.getGpuMatRef(), _flow2.getGpuMatRef()); |
|
return; |
|
} |
|
|
|
impl(input0, input1, u_, v_); |
|
|
|
if (_flow2.needed()) |
|
{ |
|
arrCopy(u_, _flow1); |
|
arrCopy(v_, _flow2); |
|
} |
|
else |
|
{ |
|
GpuMat src[] = {u_, v_}; |
|
merge(src, 2, flow_); |
|
arrCopy(flow_, _flow1); |
|
} |
|
} |
|
|
|
void GpuOpticalFlow::collectGarbage() |
|
{ |
|
for (int i = 0; i < 6; ++i) |
|
buf_[i].release(); |
|
u_.release(); |
|
v_.release(); |
|
flow_.release(); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////// |
|
// Brox_CUDA |
|
|
|
namespace |
|
{ |
|
class Brox_CUDA : public GpuOpticalFlow |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
Brox_CUDA(); |
|
|
|
void collectGarbage(); |
|
|
|
protected: |
|
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2); |
|
|
|
private: |
|
double alpha_; |
|
double gamma_; |
|
double scaleFactor_; |
|
int innerIterations_; |
|
int outerIterations_; |
|
int solverIterations_; |
|
|
|
BroxOpticalFlow alg_; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(Brox_CUDA, "DenseOpticalFlowExt.Brox_CUDA", |
|
obj.info()->addParam(obj, "alpha", obj.alpha_, false, 0, 0, "Flow smoothness"); |
|
obj.info()->addParam(obj, "gamma", obj.gamma_, false, 0, 0, "Gradient constancy importance"); |
|
obj.info()->addParam(obj, "scaleFactor", obj.scaleFactor_, false, 0, 0, "Pyramid scale factor"); |
|
obj.info()->addParam(obj, "innerIterations", obj.innerIterations_, false, 0, 0, "Number of lagged non-linearity iterations (inner loop)"); |
|
obj.info()->addParam(obj, "outerIterations", obj.outerIterations_, false, 0, 0, "Number of warping iterations (number of pyramid levels)"); |
|
obj.info()->addParam(obj, "solverIterations", obj.solverIterations_, false, 0, 0, "Number of linear system solver iterations")); |
|
|
|
Brox_CUDA::Brox_CUDA() : GpuOpticalFlow(CV_32FC1), alg_(0.197f, 50.0f, 0.8f, 10, 77, 10) |
|
{ |
|
alpha_ = alg_.alpha; |
|
gamma_ = alg_.gamma; |
|
scaleFactor_ = alg_.scale_factor; |
|
innerIterations_ = alg_.inner_iterations; |
|
outerIterations_ = alg_.outer_iterations; |
|
solverIterations_ = alg_.solver_iterations; |
|
} |
|
|
|
void Brox_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2) |
|
{ |
|
alg_.alpha = static_cast<float>(alpha_); |
|
alg_.gamma = static_cast<float>(gamma_); |
|
alg_.scale_factor = static_cast<float>(scaleFactor_); |
|
alg_.inner_iterations = innerIterations_; |
|
alg_.outer_iterations = outerIterations_; |
|
alg_.solver_iterations = solverIterations_; |
|
|
|
alg_(input0, input1, dst1, dst2); |
|
} |
|
|
|
void Brox_CUDA::collectGarbage() |
|
{ |
|
alg_.buf.release(); |
|
GpuOpticalFlow::collectGarbage(); |
|
} |
|
} |
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Brox_CUDA() |
|
{ |
|
return makePtr<Brox_CUDA>(); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////// |
|
// PyrLK_CUDA |
|
|
|
namespace |
|
{ |
|
class PyrLK_CUDA : public GpuOpticalFlow |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
PyrLK_CUDA(); |
|
|
|
void collectGarbage(); |
|
|
|
protected: |
|
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2); |
|
|
|
private: |
|
int winSize_; |
|
int maxLevel_; |
|
int iterations_; |
|
|
|
PyrLKOpticalFlow alg_; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(PyrLK_CUDA, "DenseOpticalFlowExt.PyrLK_CUDA", |
|
obj.info()->addParam(obj, "winSize", obj.winSize_); |
|
obj.info()->addParam(obj, "maxLevel", obj.maxLevel_); |
|
obj.info()->addParam(obj, "iterations", obj.iterations_)); |
|
|
|
PyrLK_CUDA::PyrLK_CUDA() : GpuOpticalFlow(CV_8UC1) |
|
{ |
|
winSize_ = alg_.winSize.width; |
|
maxLevel_ = alg_.maxLevel; |
|
iterations_ = alg_.iters; |
|
} |
|
|
|
void PyrLK_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2) |
|
{ |
|
alg_.winSize.width = winSize_; |
|
alg_.winSize.height = winSize_; |
|
alg_.maxLevel = maxLevel_; |
|
alg_.iters = iterations_; |
|
|
|
alg_.dense(input0, input1, dst1, dst2); |
|
} |
|
|
|
void PyrLK_CUDA::collectGarbage() |
|
{ |
|
alg_.releaseMemory(); |
|
GpuOpticalFlow::collectGarbage(); |
|
} |
|
} |
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_PyrLK_CUDA() |
|
{ |
|
return makePtr<PyrLK_CUDA>(); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////// |
|
// Farneback_CUDA |
|
|
|
namespace |
|
{ |
|
class Farneback_CUDA : public GpuOpticalFlow |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
Farneback_CUDA(); |
|
|
|
void collectGarbage(); |
|
|
|
protected: |
|
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2); |
|
|
|
private: |
|
double pyrScale_; |
|
int numLevels_; |
|
int winSize_; |
|
int numIters_; |
|
int polyN_; |
|
double polySigma_; |
|
int flags_; |
|
|
|
FarnebackOpticalFlow alg_; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(Farneback_CUDA, "DenseOpticalFlowExt.Farneback_CUDA", |
|
obj.info()->addParam(obj, "pyrScale", obj.pyrScale_); |
|
obj.info()->addParam(obj, "numLevels", obj.numLevels_); |
|
obj.info()->addParam(obj, "winSize", obj.winSize_); |
|
obj.info()->addParam(obj, "numIters", obj.numIters_); |
|
obj.info()->addParam(obj, "polyN", obj.polyN_); |
|
obj.info()->addParam(obj, "polySigma", obj.polySigma_); |
|
obj.info()->addParam(obj, "flags", obj.flags_)); |
|
|
|
Farneback_CUDA::Farneback_CUDA() : GpuOpticalFlow(CV_8UC1) |
|
{ |
|
pyrScale_ = alg_.pyrScale; |
|
numLevels_ = alg_.numLevels; |
|
winSize_ = alg_.winSize; |
|
numIters_ = alg_.numIters; |
|
polyN_ = alg_.polyN; |
|
polySigma_ = alg_.polySigma; |
|
flags_ = alg_.flags; |
|
} |
|
|
|
void Farneback_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2) |
|
{ |
|
alg_.pyrScale = pyrScale_; |
|
alg_.numLevels = numLevels_; |
|
alg_.winSize = winSize_; |
|
alg_.numIters = numIters_; |
|
alg_.polyN = polyN_; |
|
alg_.polySigma = polySigma_; |
|
alg_.flags = flags_; |
|
|
|
alg_(input0, input1, dst1, dst2); |
|
} |
|
|
|
void Farneback_CUDA::collectGarbage() |
|
{ |
|
alg_.releaseMemory(); |
|
GpuOpticalFlow::collectGarbage(); |
|
} |
|
} |
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Farneback_CUDA() |
|
{ |
|
return makePtr<Farneback_CUDA>(); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////// |
|
// DualTVL1_CUDA |
|
|
|
namespace |
|
{ |
|
class DualTVL1_CUDA : public GpuOpticalFlow |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
DualTVL1_CUDA(); |
|
|
|
void collectGarbage(); |
|
|
|
protected: |
|
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2); |
|
|
|
private: |
|
double tau_; |
|
double lambda_; |
|
double theta_; |
|
int nscales_; |
|
int warps_; |
|
double epsilon_; |
|
int iterations_; |
|
bool useInitialFlow_; |
|
|
|
OpticalFlowDual_TVL1_CUDA alg_; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(DualTVL1_CUDA, "DenseOpticalFlowExt.DualTVL1_CUDA", |
|
obj.info()->addParam(obj, "tau", obj.tau_); |
|
obj.info()->addParam(obj, "lambda", obj.lambda_); |
|
obj.info()->addParam(obj, "theta", obj.theta_); |
|
obj.info()->addParam(obj, "nscales", obj.nscales_); |
|
obj.info()->addParam(obj, "warps", obj.warps_); |
|
obj.info()->addParam(obj, "epsilon", obj.epsilon_); |
|
obj.info()->addParam(obj, "iterations", obj.iterations_); |
|
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow_)); |
|
|
|
DualTVL1_CUDA::DualTVL1_CUDA() : GpuOpticalFlow(CV_8UC1) |
|
{ |
|
tau_ = alg_.tau; |
|
lambda_ = alg_.lambda; |
|
theta_ = alg_.theta; |
|
nscales_ = alg_.nscales; |
|
warps_ = alg_.warps; |
|
epsilon_ = alg_.epsilon; |
|
iterations_ = alg_.iterations; |
|
useInitialFlow_ = alg_.useInitialFlow; |
|
} |
|
|
|
void DualTVL1_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2) |
|
{ |
|
alg_.tau = tau_; |
|
alg_.lambda = lambda_; |
|
alg_.theta = theta_; |
|
alg_.nscales = nscales_; |
|
alg_.warps = warps_; |
|
alg_.epsilon = epsilon_; |
|
alg_.iterations = iterations_; |
|
alg_.useInitialFlow = useInitialFlow_; |
|
|
|
alg_(input0, input1, dst1, dst2); |
|
} |
|
|
|
void DualTVL1_CUDA::collectGarbage() |
|
{ |
|
alg_.collectGarbage(); |
|
GpuOpticalFlow::collectGarbage(); |
|
} |
|
} |
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_DualTVL1_CUDA() |
|
{ |
|
return makePtr<DualTVL1_CUDA>(); |
|
} |
|
|
|
#endif // HAVE_OPENCV_CUDAOPTFLOW |
|
#ifdef HAVE_OPENCV_OCL |
|
|
|
namespace |
|
{ |
|
class oclOpticalFlow : public DenseOpticalFlowExt |
|
{ |
|
public: |
|
explicit oclOpticalFlow(int work_type); |
|
|
|
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2); |
|
void collectGarbage(); |
|
|
|
protected: |
|
virtual void impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2) = 0; |
|
|
|
private: |
|
int work_type_; |
|
cv::ocl::oclMat buf_[6]; |
|
cv::ocl::oclMat u_, v_, flow_; |
|
}; |
|
|
|
oclOpticalFlow::oclOpticalFlow(int work_type) : work_type_(work_type) |
|
{ |
|
} |
|
|
|
void oclOpticalFlow::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2) |
|
{ |
|
ocl::oclMat& _frame0 = ocl::getOclMatRef(frame0); |
|
ocl::oclMat& _frame1 = ocl::getOclMatRef(frame1); |
|
ocl::oclMat& _flow1 = ocl::getOclMatRef(flow1); |
|
ocl::oclMat& _flow2 = ocl::getOclMatRef(flow2); |
|
|
|
CV_Assert( _frame1.type() == _frame0.type() ); |
|
CV_Assert( _frame1.size() == _frame0.size() ); |
|
|
|
cv::ocl::oclMat input0_ = convertToType(_frame0, work_type_, buf_[2], buf_[3]); |
|
cv::ocl::oclMat input1_ = convertToType(_frame1, work_type_, buf_[4], buf_[5]); |
|
|
|
impl(input0_, input1_, u_, v_);//go to tvl1 algorithm |
|
|
|
u_.copyTo(_flow1); |
|
v_.copyTo(_flow2); |
|
} |
|
|
|
void oclOpticalFlow::collectGarbage() |
|
{ |
|
for (int i = 0; i < 6; ++i) |
|
buf_[i].release(); |
|
u_.release(); |
|
v_.release(); |
|
flow_.release(); |
|
} |
|
} |
|
/////////////////////////////////////////////////////////////////// |
|
// PyrLK_OCL |
|
|
|
namespace |
|
{ |
|
class PyrLK_OCL : public oclOpticalFlow |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
PyrLK_OCL(); |
|
|
|
void collectGarbage(); |
|
|
|
protected: |
|
void impl(const ocl::oclMat& input0, const ocl::oclMat& input1, ocl::oclMat& dst1, ocl::oclMat& dst2); |
|
|
|
private: |
|
int winSize_; |
|
int maxLevel_; |
|
int iterations_; |
|
|
|
ocl::PyrLKOpticalFlow alg_; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(PyrLK_OCL, "DenseOpticalFlowExt.PyrLK_OCL", |
|
obj.info()->addParam(obj, "winSize", obj.winSize_); |
|
obj.info()->addParam(obj, "maxLevel", obj.maxLevel_); |
|
obj.info()->addParam(obj, "iterations", obj.iterations_)); |
|
|
|
PyrLK_OCL::PyrLK_OCL() : oclOpticalFlow(CV_8UC1) |
|
{ |
|
winSize_ = alg_.winSize.width; |
|
maxLevel_ = alg_.maxLevel; |
|
iterations_ = alg_.iters; |
|
} |
|
|
|
void PyrLK_OCL::impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2) |
|
{ |
|
alg_.winSize.width = winSize_; |
|
alg_.winSize.height = winSize_; |
|
alg_.maxLevel = maxLevel_; |
|
alg_.iters = iterations_; |
|
|
|
alg_.dense(input0, input1, dst1, dst2); |
|
} |
|
|
|
void PyrLK_OCL::collectGarbage() |
|
{ |
|
alg_.releaseMemory(); |
|
oclOpticalFlow::collectGarbage(); |
|
} |
|
} |
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_PyrLK_OCL() |
|
{ |
|
return makePtr<PyrLK_OCL>(); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////// |
|
// DualTVL1_OCL |
|
|
|
namespace |
|
{ |
|
class DualTVL1_OCL : public oclOpticalFlow |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
DualTVL1_OCL(); |
|
|
|
void collectGarbage(); |
|
|
|
protected: |
|
void impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2); |
|
|
|
private: |
|
double tau_; |
|
double lambda_; |
|
double theta_; |
|
int nscales_; |
|
int warps_; |
|
double epsilon_; |
|
int iterations_; |
|
bool useInitialFlow_; |
|
|
|
ocl::OpticalFlowDual_TVL1_OCL alg_; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(DualTVL1_OCL, "DenseOpticalFlowExt.DualTVL1_OCL", |
|
obj.info()->addParam(obj, "tau", obj.tau_); |
|
obj.info()->addParam(obj, "lambda", obj.lambda_); |
|
obj.info()->addParam(obj, "theta", obj.theta_); |
|
obj.info()->addParam(obj, "nscales", obj.nscales_); |
|
obj.info()->addParam(obj, "warps", obj.warps_); |
|
obj.info()->addParam(obj, "epsilon", obj.epsilon_); |
|
obj.info()->addParam(obj, "iterations", obj.iterations_); |
|
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow_)); |
|
|
|
DualTVL1_OCL::DualTVL1_OCL() : oclOpticalFlow(CV_8UC1) |
|
{ |
|
tau_ = alg_.tau; |
|
lambda_ = alg_.lambda; |
|
theta_ = alg_.theta; |
|
nscales_ = alg_.nscales; |
|
warps_ = alg_.warps; |
|
epsilon_ = alg_.epsilon; |
|
iterations_ = alg_.iterations; |
|
useInitialFlow_ = alg_.useInitialFlow; |
|
} |
|
|
|
void DualTVL1_OCL::impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2) |
|
{ |
|
alg_.tau = tau_; |
|
alg_.lambda = lambda_; |
|
alg_.theta = theta_; |
|
alg_.nscales = nscales_; |
|
alg_.warps = warps_; |
|
alg_.epsilon = epsilon_; |
|
alg_.iterations = iterations_; |
|
alg_.useInitialFlow = useInitialFlow_; |
|
|
|
alg_(input0, input1, dst1, dst2); |
|
|
|
} |
|
|
|
void DualTVL1_OCL::collectGarbage() |
|
{ |
|
alg_.collectGarbage(); |
|
oclOpticalFlow::collectGarbage(); |
|
} |
|
} |
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_DualTVL1_OCL() |
|
{ |
|
return makePtr<DualTVL1_OCL>(); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////// |
|
// FarneBack |
|
|
|
namespace |
|
{ |
|
class FarneBack_OCL : public oclOpticalFlow |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
FarneBack_OCL(); |
|
|
|
void collectGarbage(); |
|
|
|
protected: |
|
void impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2); |
|
|
|
private: |
|
double pyrScale_; |
|
int numLevels_; |
|
int winSize_; |
|
int numIters_; |
|
int polyN_; |
|
double polySigma_; |
|
int flags_; |
|
|
|
ocl::FarnebackOpticalFlow alg_; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(FarneBack_OCL, "DenseOpticalFlowExt.FarneBack_OCL", |
|
obj.info()->addParam(obj, "pyrScale", obj.pyrScale_); |
|
obj.info()->addParam(obj, "numLevels", obj.numLevels_); |
|
obj.info()->addParam(obj, "winSize", obj.winSize_); |
|
obj.info()->addParam(obj, "numIters", obj.numIters_); |
|
obj.info()->addParam(obj, "polyN", obj.polyN_); |
|
obj.info()->addParam(obj, "polySigma", obj.polySigma_); |
|
obj.info()->addParam(obj, "flags", obj.flags_)); |
|
|
|
FarneBack_OCL::FarneBack_OCL() : oclOpticalFlow(CV_8UC1) |
|
{ |
|
pyrScale_ = alg_.pyrScale; |
|
numLevels_ = alg_.numLevels; |
|
winSize_ = alg_.winSize; |
|
numIters_ = alg_.numIters; |
|
polyN_ = alg_.polyN; |
|
polySigma_ = alg_.polySigma; |
|
flags_ = alg_.flags; |
|
} |
|
|
|
void FarneBack_OCL::impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2) |
|
{ |
|
alg_.pyrScale = pyrScale_; |
|
alg_.numLevels = numLevels_; |
|
alg_.winSize = winSize_; |
|
alg_.numIters = numIters_; |
|
alg_.polyN = polyN_; |
|
alg_.polySigma = polySigma_; |
|
alg_.flags = flags_; |
|
|
|
alg_(input0, input1, dst1, dst2); |
|
} |
|
|
|
void FarneBack_OCL::collectGarbage() |
|
{ |
|
alg_.releaseMemory(); |
|
oclOpticalFlow::collectGarbage(); |
|
} |
|
} |
|
|
|
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Farneback_OCL() |
|
{ |
|
return makePtr<FarneBack_OCL>(); |
|
} |
|
|
|
#endif
|
|
|