Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

988 lines
29 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
using namespace cv::superres;
using namespace cv::superres::detail;
///////////////////////////////////////////////////////////////////
// CpuOpticalFlow
namespace
{
class CpuOpticalFlow : public DenseOpticalFlowExt
{
public:
explicit CpuOpticalFlow(int work_type);
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
void collectGarbage();
protected:
virtual void impl(const Mat& input0, const Mat& input1, OutputArray dst) = 0;
private:
int work_type_;
Mat buf_[6];
Mat flow_;
Mat flows_[2];
};
CpuOpticalFlow::CpuOpticalFlow(int work_type) : work_type_(work_type)
{
}
void CpuOpticalFlow::calc(InputArray _frame0, InputArray _frame1, OutputArray _flow1, OutputArray _flow2)
{
Mat frame0 = arrGetMat(_frame0, buf_[0]);
Mat frame1 = arrGetMat(_frame1, buf_[1]);
CV_Assert( frame1.type() == frame0.type() );
CV_Assert( frame1.size() == frame0.size() );
Mat input0 = convertToType(frame0, work_type_, buf_[2], buf_[3]);
Mat input1 = convertToType(frame1, work_type_, buf_[4], buf_[5]);
if (!_flow2.needed() && _flow1.kind() < _InputArray::OPENGL_BUFFER)
{
impl(input0, input1, _flow1);
return;
}
impl(input0, input1, flow_);
if (!_flow2.needed())
{
arrCopy(flow_, _flow1);
}
else
{
split(flow_, flows_);
arrCopy(flows_[0], _flow1);
arrCopy(flows_[1], _flow2);
}
}
void CpuOpticalFlow::collectGarbage()
{
for (int i = 0; i < 6; ++i)
buf_[i].release();
flow_.release();
flows_[0].release();
flows_[1].release();
}
}
///////////////////////////////////////////////////////////////////
// Farneback
namespace
{
class Farneback : public CpuOpticalFlow
{
public:
AlgorithmInfo* info() const;
Farneback();
protected:
void impl(const Mat& input0, const Mat& input1, OutputArray dst);
private:
double pyrScale_;
int numLevels_;
int winSize_;
int numIters_;
int polyN_;
double polySigma_;
int flags_;
};
CV_INIT_ALGORITHM(Farneback, "DenseOpticalFlowExt.Farneback",
obj.info()->addParam(obj, "pyrScale", obj.pyrScale_);
obj.info()->addParam(obj, "numLevels", obj.numLevels_);
obj.info()->addParam(obj, "winSize", obj.winSize_);
obj.info()->addParam(obj, "numIters", obj.numIters_);
obj.info()->addParam(obj, "polyN", obj.polyN_);
obj.info()->addParam(obj, "polySigma", obj.polySigma_);
obj.info()->addParam(obj, "flags", obj.flags_));
Farneback::Farneback() : CpuOpticalFlow(CV_8UC1)
{
pyrScale_ = 0.5;
numLevels_ = 5;
winSize_ = 13;
numIters_ = 10;
polyN_ = 5;
polySigma_ = 1.1;
flags_ = 0;
}
void Farneback::impl(const Mat& input0, const Mat& input1, OutputArray dst)
{
calcOpticalFlowFarneback(input0, input1, (InputOutputArray)dst, pyrScale_,
numLevels_, winSize_, numIters_,
polyN_, polySigma_, flags_);
}
}
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Farneback()
{
return makePtr<Farneback>();
}
///////////////////////////////////////////////////////////////////
// Simple
namespace
{
class Simple : public CpuOpticalFlow
{
public:
AlgorithmInfo* info() const;
Simple();
protected:
void impl(const Mat& input0, const Mat& input1, OutputArray dst);
private:
int layers_;
int averagingBlockSize_;
int maxFlow_;
double sigmaDist_;
double sigmaColor_;
int postProcessWindow_;
double sigmaDistFix_;
double sigmaColorFix_;
double occThr_;
int upscaleAveragingRadius_;
double upscaleSigmaDist_;
double upscaleSigmaColor_;
double speedUpThr_;
};
CV_INIT_ALGORITHM(Simple, "DenseOpticalFlowExt.Simple",
obj.info()->addParam(obj, "layers", obj.layers_);
obj.info()->addParam(obj, "averagingBlockSize", obj.averagingBlockSize_);
obj.info()->addParam(obj, "maxFlow", obj.maxFlow_);
obj.info()->addParam(obj, "sigmaDist", obj.sigmaDist_);
obj.info()->addParam(obj, "sigmaColor", obj.sigmaColor_);
obj.info()->addParam(obj, "postProcessWindow", obj.postProcessWindow_);
obj.info()->addParam(obj, "sigmaDistFix", obj.sigmaDistFix_);
obj.info()->addParam(obj, "sigmaColorFix", obj.sigmaColorFix_);
obj.info()->addParam(obj, "occThr", obj.occThr_);
obj.info()->addParam(obj, "upscaleAveragingRadius", obj.upscaleAveragingRadius_);
obj.info()->addParam(obj, "upscaleSigmaDist", obj.upscaleSigmaDist_);
obj.info()->addParam(obj, "upscaleSigmaColor", obj.upscaleSigmaColor_);
obj.info()->addParam(obj, "speedUpThr", obj.speedUpThr_));
Simple::Simple() : CpuOpticalFlow(CV_8UC3)
{
layers_ = 3;
averagingBlockSize_ = 2;
maxFlow_ = 4;
sigmaDist_ = 4.1;
sigmaColor_ = 25.5;
postProcessWindow_ = 18;
sigmaDistFix_ = 55.0;
sigmaColorFix_ = 25.5;
occThr_ = 0.35;
upscaleAveragingRadius_ = 18;
upscaleSigmaDist_ = 55.0;
upscaleSigmaColor_ = 25.5;
speedUpThr_ = 10;
}
void Simple::impl(const Mat& _input0, const Mat& _input1, OutputArray dst)
{
Mat input0 = _input0;
Mat input1 = _input1;
calcOpticalFlowSF(input0, input1, dst.getMatRef(),
layers_,
averagingBlockSize_,
maxFlow_,
sigmaDist_,
sigmaColor_,
postProcessWindow_,
sigmaDistFix_,
sigmaColorFix_,
occThr_,
upscaleAveragingRadius_,
upscaleSigmaDist_,
upscaleSigmaColor_,
speedUpThr_);
}
}
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Simple()
{
return makePtr<Simple>();
}
///////////////////////////////////////////////////////////////////
// DualTVL1
namespace
{
class DualTVL1 : public CpuOpticalFlow
{
public:
AlgorithmInfo* info() const;
DualTVL1();
void collectGarbage();
protected:
void impl(const Mat& input0, const Mat& input1, OutputArray dst);
private:
double tau_;
double lambda_;
double theta_;
int nscales_;
int warps_;
double epsilon_;
int iterations_;
bool useInitialFlow_;
Ptr<DenseOpticalFlow> alg_;
};
CV_INIT_ALGORITHM(DualTVL1, "DenseOpticalFlowExt.DualTVL1",
obj.info()->addParam(obj, "tau", obj.tau_);
obj.info()->addParam(obj, "lambda", obj.lambda_);
obj.info()->addParam(obj, "theta", obj.theta_);
obj.info()->addParam(obj, "nscales", obj.nscales_);
obj.info()->addParam(obj, "warps", obj.warps_);
obj.info()->addParam(obj, "epsilon", obj.epsilon_);
obj.info()->addParam(obj, "iterations", obj.iterations_);
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow_));
DualTVL1::DualTVL1() : CpuOpticalFlow(CV_8UC1)
{
alg_ = cv::createOptFlow_DualTVL1();
tau_ = alg_->getDouble("tau");
lambda_ = alg_->getDouble("lambda");
theta_ = alg_->getDouble("theta");
nscales_ = alg_->getInt("nscales");
warps_ = alg_->getInt("warps");
epsilon_ = alg_->getDouble("epsilon");
iterations_ = alg_->getInt("iterations");
useInitialFlow_ = alg_->getBool("useInitialFlow");
}
void DualTVL1::impl(const Mat& input0, const Mat& input1, OutputArray dst)
{
alg_->set("tau", tau_);
alg_->set("lambda", lambda_);
alg_->set("theta", theta_);
alg_->set("nscales", nscales_);
alg_->set("warps", warps_);
alg_->set("epsilon", epsilon_);
alg_->set("iterations", iterations_);
alg_->set("useInitialFlow", useInitialFlow_);
alg_->calc(input0, input1, (InputOutputArray)dst);
}
void DualTVL1::collectGarbage()
{
alg_->collectGarbage();
CpuOpticalFlow::collectGarbage();
}
}
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_DualTVL1()
{
return makePtr<DualTVL1>();
}
///////////////////////////////////////////////////////////////////
// GpuOpticalFlow
#ifndef HAVE_OPENCV_CUDAOPTFLOW
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Farneback_CUDA()
{
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
return Ptr<DenseOpticalFlowExt>();
}
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_DualTVL1_CUDA()
{
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
return Ptr<DenseOpticalFlowExt>();
}
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Brox_CUDA()
{
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
return Ptr<DenseOpticalFlowExt>();
}
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_PyrLK_CUDA()
{
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
return Ptr<DenseOpticalFlowExt>();
}
#else // HAVE_OPENCV_CUDAOPTFLOW
namespace
{
class GpuOpticalFlow : public DenseOpticalFlowExt
{
public:
explicit GpuOpticalFlow(int work_type);
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
void collectGarbage();
protected:
virtual void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2) = 0;
private:
int work_type_;
GpuMat buf_[6];
GpuMat u_, v_, flow_;
};
GpuOpticalFlow::GpuOpticalFlow(int work_type) : work_type_(work_type)
{
}
void GpuOpticalFlow::calc(InputArray _frame0, InputArray _frame1, OutputArray _flow1, OutputArray _flow2)
{
GpuMat frame0 = arrGetGpuMat(_frame0, buf_[0]);
GpuMat frame1 = arrGetGpuMat(_frame1, buf_[1]);
CV_Assert( frame1.type() == frame0.type() );
CV_Assert( frame1.size() == frame0.size() );
GpuMat input0 = convertToType(frame0, work_type_, buf_[2], buf_[3]);
GpuMat input1 = convertToType(frame1, work_type_, buf_[4], buf_[5]);
if (_flow2.needed() && _flow1.kind() == _InputArray::GPU_MAT && _flow2.kind() == _InputArray::GPU_MAT)
{
impl(input0, input1, _flow1.getGpuMatRef(), _flow2.getGpuMatRef());
return;
}
impl(input0, input1, u_, v_);
if (_flow2.needed())
{
arrCopy(u_, _flow1);
arrCopy(v_, _flow2);
}
else
{
GpuMat src[] = {u_, v_};
merge(src, 2, flow_);
arrCopy(flow_, _flow1);
}
}
void GpuOpticalFlow::collectGarbage()
{
for (int i = 0; i < 6; ++i)
buf_[i].release();
u_.release();
v_.release();
flow_.release();
}
}
///////////////////////////////////////////////////////////////////
// Brox_CUDA
namespace
{
class Brox_CUDA : public GpuOpticalFlow
{
public:
AlgorithmInfo* info() const;
Brox_CUDA();
void collectGarbage();
protected:
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2);
private:
double alpha_;
double gamma_;
double scaleFactor_;
int innerIterations_;
int outerIterations_;
int solverIterations_;
BroxOpticalFlow alg_;
};
CV_INIT_ALGORITHM(Brox_CUDA, "DenseOpticalFlowExt.Brox_CUDA",
obj.info()->addParam(obj, "alpha", obj.alpha_, false, 0, 0, "Flow smoothness");
obj.info()->addParam(obj, "gamma", obj.gamma_, false, 0, 0, "Gradient constancy importance");
obj.info()->addParam(obj, "scaleFactor", obj.scaleFactor_, false, 0, 0, "Pyramid scale factor");
obj.info()->addParam(obj, "innerIterations", obj.innerIterations_, false, 0, 0, "Number of lagged non-linearity iterations (inner loop)");
obj.info()->addParam(obj, "outerIterations", obj.outerIterations_, false, 0, 0, "Number of warping iterations (number of pyramid levels)");
obj.info()->addParam(obj, "solverIterations", obj.solverIterations_, false, 0, 0, "Number of linear system solver iterations"));
Brox_CUDA::Brox_CUDA() : GpuOpticalFlow(CV_32FC1), alg_(0.197f, 50.0f, 0.8f, 10, 77, 10)
{
alpha_ = alg_.alpha;
gamma_ = alg_.gamma;
scaleFactor_ = alg_.scale_factor;
innerIterations_ = alg_.inner_iterations;
outerIterations_ = alg_.outer_iterations;
solverIterations_ = alg_.solver_iterations;
}
void Brox_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
{
alg_.alpha = static_cast<float>(alpha_);
alg_.gamma = static_cast<float>(gamma_);
alg_.scale_factor = static_cast<float>(scaleFactor_);
alg_.inner_iterations = innerIterations_;
alg_.outer_iterations = outerIterations_;
alg_.solver_iterations = solverIterations_;
alg_(input0, input1, dst1, dst2);
}
void Brox_CUDA::collectGarbage()
{
alg_.buf.release();
GpuOpticalFlow::collectGarbage();
}
}
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Brox_CUDA()
{
return makePtr<Brox_CUDA>();
}
///////////////////////////////////////////////////////////////////
// PyrLK_CUDA
namespace
{
class PyrLK_CUDA : public GpuOpticalFlow
{
public:
AlgorithmInfo* info() const;
PyrLK_CUDA();
void collectGarbage();
protected:
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2);
private:
int winSize_;
int maxLevel_;
int iterations_;
PyrLKOpticalFlow alg_;
};
CV_INIT_ALGORITHM(PyrLK_CUDA, "DenseOpticalFlowExt.PyrLK_CUDA",
obj.info()->addParam(obj, "winSize", obj.winSize_);
obj.info()->addParam(obj, "maxLevel", obj.maxLevel_);
obj.info()->addParam(obj, "iterations", obj.iterations_));
PyrLK_CUDA::PyrLK_CUDA() : GpuOpticalFlow(CV_8UC1)
{
winSize_ = alg_.winSize.width;
maxLevel_ = alg_.maxLevel;
iterations_ = alg_.iters;
}
void PyrLK_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
{
alg_.winSize.width = winSize_;
alg_.winSize.height = winSize_;
alg_.maxLevel = maxLevel_;
alg_.iters = iterations_;
alg_.dense(input0, input1, dst1, dst2);
}
void PyrLK_CUDA::collectGarbage()
{
alg_.releaseMemory();
GpuOpticalFlow::collectGarbage();
}
}
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_PyrLK_CUDA()
{
return makePtr<PyrLK_CUDA>();
}
///////////////////////////////////////////////////////////////////
// Farneback_CUDA
namespace
{
class Farneback_CUDA : public GpuOpticalFlow
{
public:
AlgorithmInfo* info() const;
Farneback_CUDA();
void collectGarbage();
protected:
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2);
private:
double pyrScale_;
int numLevels_;
int winSize_;
int numIters_;
int polyN_;
double polySigma_;
int flags_;
FarnebackOpticalFlow alg_;
};
CV_INIT_ALGORITHM(Farneback_CUDA, "DenseOpticalFlowExt.Farneback_CUDA",
obj.info()->addParam(obj, "pyrScale", obj.pyrScale_);
obj.info()->addParam(obj, "numLevels", obj.numLevels_);
obj.info()->addParam(obj, "winSize", obj.winSize_);
obj.info()->addParam(obj, "numIters", obj.numIters_);
obj.info()->addParam(obj, "polyN", obj.polyN_);
obj.info()->addParam(obj, "polySigma", obj.polySigma_);
obj.info()->addParam(obj, "flags", obj.flags_));
Farneback_CUDA::Farneback_CUDA() : GpuOpticalFlow(CV_8UC1)
{
pyrScale_ = alg_.pyrScale;
numLevels_ = alg_.numLevels;
winSize_ = alg_.winSize;
numIters_ = alg_.numIters;
polyN_ = alg_.polyN;
polySigma_ = alg_.polySigma;
flags_ = alg_.flags;
}
void Farneback_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
{
alg_.pyrScale = pyrScale_;
alg_.numLevels = numLevels_;
alg_.winSize = winSize_;
alg_.numIters = numIters_;
alg_.polyN = polyN_;
alg_.polySigma = polySigma_;
alg_.flags = flags_;
alg_(input0, input1, dst1, dst2);
}
void Farneback_CUDA::collectGarbage()
{
alg_.releaseMemory();
GpuOpticalFlow::collectGarbage();
}
}
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Farneback_CUDA()
{
return makePtr<Farneback_CUDA>();
}
///////////////////////////////////////////////////////////////////
// DualTVL1_CUDA
namespace
{
class DualTVL1_CUDA : public GpuOpticalFlow
{
public:
AlgorithmInfo* info() const;
DualTVL1_CUDA();
void collectGarbage();
protected:
void impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2);
private:
double tau_;
double lambda_;
double theta_;
int nscales_;
int warps_;
double epsilon_;
int iterations_;
bool useInitialFlow_;
OpticalFlowDual_TVL1_CUDA alg_;
};
CV_INIT_ALGORITHM(DualTVL1_CUDA, "DenseOpticalFlowExt.DualTVL1_CUDA",
obj.info()->addParam(obj, "tau", obj.tau_);
obj.info()->addParam(obj, "lambda", obj.lambda_);
obj.info()->addParam(obj, "theta", obj.theta_);
obj.info()->addParam(obj, "nscales", obj.nscales_);
obj.info()->addParam(obj, "warps", obj.warps_);
obj.info()->addParam(obj, "epsilon", obj.epsilon_);
obj.info()->addParam(obj, "iterations", obj.iterations_);
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow_));
DualTVL1_CUDA::DualTVL1_CUDA() : GpuOpticalFlow(CV_8UC1)
{
tau_ = alg_.tau;
lambda_ = alg_.lambda;
theta_ = alg_.theta;
nscales_ = alg_.nscales;
warps_ = alg_.warps;
epsilon_ = alg_.epsilon;
iterations_ = alg_.iterations;
useInitialFlow_ = alg_.useInitialFlow;
}
void DualTVL1_CUDA::impl(const GpuMat& input0, const GpuMat& input1, GpuMat& dst1, GpuMat& dst2)
{
alg_.tau = tau_;
alg_.lambda = lambda_;
alg_.theta = theta_;
alg_.nscales = nscales_;
alg_.warps = warps_;
alg_.epsilon = epsilon_;
alg_.iterations = iterations_;
alg_.useInitialFlow = useInitialFlow_;
alg_(input0, input1, dst1, dst2);
}
void DualTVL1_CUDA::collectGarbage()
{
alg_.collectGarbage();
GpuOpticalFlow::collectGarbage();
}
}
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_DualTVL1_CUDA()
{
return makePtr<DualTVL1_CUDA>();
}
#endif // HAVE_OPENCV_CUDAOPTFLOW
#ifdef HAVE_OPENCV_OCL
namespace
{
class oclOpticalFlow : public DenseOpticalFlowExt
{
public:
explicit oclOpticalFlow(int work_type);
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
void collectGarbage();
protected:
virtual void impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2) = 0;
private:
int work_type_;
cv::ocl::oclMat buf_[6];
cv::ocl::oclMat u_, v_, flow_;
};
oclOpticalFlow::oclOpticalFlow(int work_type) : work_type_(work_type)
{
}
void oclOpticalFlow::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
{
ocl::oclMat& _frame0 = ocl::getOclMatRef(frame0);
ocl::oclMat& _frame1 = ocl::getOclMatRef(frame1);
ocl::oclMat& _flow1 = ocl::getOclMatRef(flow1);
ocl::oclMat& _flow2 = ocl::getOclMatRef(flow2);
CV_Assert( _frame1.type() == _frame0.type() );
CV_Assert( _frame1.size() == _frame0.size() );
cv::ocl::oclMat input0_ = convertToType(_frame0, work_type_, buf_[2], buf_[3]);
cv::ocl::oclMat input1_ = convertToType(_frame1, work_type_, buf_[4], buf_[5]);
impl(input0_, input1_, u_, v_);//go to tvl1 algorithm
u_.copyTo(_flow1);
v_.copyTo(_flow2);
}
void oclOpticalFlow::collectGarbage()
{
for (int i = 0; i < 6; ++i)
buf_[i].release();
u_.release();
v_.release();
flow_.release();
}
}
///////////////////////////////////////////////////////////////////
// PyrLK_OCL
namespace
{
class PyrLK_OCL : public oclOpticalFlow
{
public:
AlgorithmInfo* info() const;
PyrLK_OCL();
void collectGarbage();
protected:
void impl(const ocl::oclMat& input0, const ocl::oclMat& input1, ocl::oclMat& dst1, ocl::oclMat& dst2);
private:
int winSize_;
int maxLevel_;
int iterations_;
ocl::PyrLKOpticalFlow alg_;
};
CV_INIT_ALGORITHM(PyrLK_OCL, "DenseOpticalFlowExt.PyrLK_OCL",
obj.info()->addParam(obj, "winSize", obj.winSize_);
obj.info()->addParam(obj, "maxLevel", obj.maxLevel_);
obj.info()->addParam(obj, "iterations", obj.iterations_));
PyrLK_OCL::PyrLK_OCL() : oclOpticalFlow(CV_8UC1)
{
winSize_ = alg_.winSize.width;
maxLevel_ = alg_.maxLevel;
iterations_ = alg_.iters;
}
void PyrLK_OCL::impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2)
{
alg_.winSize.width = winSize_;
alg_.winSize.height = winSize_;
alg_.maxLevel = maxLevel_;
alg_.iters = iterations_;
alg_.dense(input0, input1, dst1, dst2);
}
void PyrLK_OCL::collectGarbage()
{
alg_.releaseMemory();
oclOpticalFlow::collectGarbage();
}
}
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_PyrLK_OCL()
{
return makePtr<PyrLK_OCL>();
}
///////////////////////////////////////////////////////////////////
// DualTVL1_OCL
namespace
{
class DualTVL1_OCL : public oclOpticalFlow
{
public:
AlgorithmInfo* info() const;
DualTVL1_OCL();
void collectGarbage();
protected:
void impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2);
private:
double tau_;
double lambda_;
double theta_;
int nscales_;
int warps_;
double epsilon_;
int iterations_;
bool useInitialFlow_;
ocl::OpticalFlowDual_TVL1_OCL alg_;
};
CV_INIT_ALGORITHM(DualTVL1_OCL, "DenseOpticalFlowExt.DualTVL1_OCL",
obj.info()->addParam(obj, "tau", obj.tau_);
obj.info()->addParam(obj, "lambda", obj.lambda_);
obj.info()->addParam(obj, "theta", obj.theta_);
obj.info()->addParam(obj, "nscales", obj.nscales_);
obj.info()->addParam(obj, "warps", obj.warps_);
obj.info()->addParam(obj, "epsilon", obj.epsilon_);
obj.info()->addParam(obj, "iterations", obj.iterations_);
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow_));
DualTVL1_OCL::DualTVL1_OCL() : oclOpticalFlow(CV_8UC1)
{
tau_ = alg_.tau;
lambda_ = alg_.lambda;
theta_ = alg_.theta;
nscales_ = alg_.nscales;
warps_ = alg_.warps;
epsilon_ = alg_.epsilon;
iterations_ = alg_.iterations;
useInitialFlow_ = alg_.useInitialFlow;
}
void DualTVL1_OCL::impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2)
{
alg_.tau = tau_;
alg_.lambda = lambda_;
alg_.theta = theta_;
alg_.nscales = nscales_;
alg_.warps = warps_;
alg_.epsilon = epsilon_;
alg_.iterations = iterations_;
alg_.useInitialFlow = useInitialFlow_;
alg_(input0, input1, dst1, dst2);
}
void DualTVL1_OCL::collectGarbage()
{
alg_.collectGarbage();
oclOpticalFlow::collectGarbage();
}
}
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_DualTVL1_OCL()
{
return makePtr<DualTVL1_OCL>();
}
///////////////////////////////////////////////////////////////////
// FarneBack
namespace
{
class FarneBack_OCL : public oclOpticalFlow
{
public:
AlgorithmInfo* info() const;
FarneBack_OCL();
void collectGarbage();
protected:
void impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2);
private:
double pyrScale_;
int numLevels_;
int winSize_;
int numIters_;
int polyN_;
double polySigma_;
int flags_;
ocl::FarnebackOpticalFlow alg_;
};
CV_INIT_ALGORITHM(FarneBack_OCL, "DenseOpticalFlowExt.FarneBack_OCL",
obj.info()->addParam(obj, "pyrScale", obj.pyrScale_);
obj.info()->addParam(obj, "numLevels", obj.numLevels_);
obj.info()->addParam(obj, "winSize", obj.winSize_);
obj.info()->addParam(obj, "numIters", obj.numIters_);
obj.info()->addParam(obj, "polyN", obj.polyN_);
obj.info()->addParam(obj, "polySigma", obj.polySigma_);
obj.info()->addParam(obj, "flags", obj.flags_));
FarneBack_OCL::FarneBack_OCL() : oclOpticalFlow(CV_8UC1)
{
pyrScale_ = alg_.pyrScale;
numLevels_ = alg_.numLevels;
winSize_ = alg_.winSize;
numIters_ = alg_.numIters;
polyN_ = alg_.polyN;
polySigma_ = alg_.polySigma;
flags_ = alg_.flags;
}
void FarneBack_OCL::impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2)
{
alg_.pyrScale = pyrScale_;
alg_.numLevels = numLevels_;
alg_.winSize = winSize_;
alg_.numIters = numIters_;
alg_.polyN = polyN_;
alg_.polySigma = polySigma_;
alg_.flags = flags_;
alg_(input0, input1, dst1, dst2);
}
void FarneBack_OCL::collectGarbage()
{
alg_.releaseMemory();
oclOpticalFlow::collectGarbage();
}
}
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Farneback_OCL()
{
return makePtr<FarneBack_OCL>();
}
#endif