mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
216 lines
8.2 KiB
216 lines
8.2 KiB
Expectation Maximization |
|
======================== |
|
|
|
The EM (Expectation Maximization) algorithm estimates the parameters of the multivariate probability density function in the form of a Gaussian mixture distribution with a specified number of mixtures. |
|
|
|
Consider the set of the N feature vectors |
|
{ :math:`x_1, x_2,...,x_{N}` } from a d-dimensional Euclidean space drawn from a Gaussian mixture: |
|
|
|
.. math:: |
|
|
|
p(x;a_k,S_k, \pi _k) = \sum _{k=1}^{m} \pi _kp_k(x), \quad \pi _k \geq 0, \quad \sum _{k=1}^{m} \pi _k=1, |
|
|
|
.. math:: |
|
|
|
p_k(x)= \varphi (x;a_k,S_k)= \frac{1}{(2\pi)^{d/2}\mid{S_k}\mid^{1/2}} exp \left \{ - \frac{1}{2} (x-a_k)^TS_k^{-1}(x-a_k) \right \} , |
|
|
|
where |
|
:math:`m` is the number of mixtures, |
|
:math:`p_k` is the normal distribution |
|
density with the mean |
|
:math:`a_k` and covariance matrix |
|
:math:`S_k`, |
|
:math:`\pi_k` is the weight of the k-th mixture. Given the number of mixtures |
|
:math:`M` and the samples |
|
:math:`x_i`, |
|
:math:`i=1..N` the algorithm finds the |
|
maximum-likelihood estimates (MLE) of all the mixture parameters, |
|
that is, |
|
:math:`a_k`, |
|
:math:`S_k` and |
|
:math:`\pi_k` : |
|
|
|
.. math:: |
|
|
|
L(x, \theta )=logp(x, \theta )= \sum _{i=1}^{N}log \left ( \sum _{k=1}^{m} \pi _kp_k(x) \right ) \to \max _{ \theta \in \Theta }, |
|
|
|
.. math:: |
|
|
|
\Theta = \left \{ (a_k,S_k, \pi _k): a_k \in \mathbbm{R} ^d,S_k=S_k^T>0,S_k \in \mathbbm{R} ^{d \times d}, \pi _k \geq 0, \sum _{k=1}^{m} \pi _k=1 \right \} . |
|
|
|
The EM algorithm is an iterative procedure. Each iteration includes |
|
two steps. At the first step (Expectation step or E-step), you find a |
|
probability |
|
:math:`p_{i,k}` (denoted |
|
:math:`\alpha_{i,k}` in the formula below) of |
|
sample ``i`` to belong to mixture ``k`` using the currently |
|
available mixture parameter estimates: |
|
|
|
.. math:: |
|
|
|
\alpha _{ki} = \frac{\pi_k\varphi(x;a_k,S_k)}{\sum\limits_{j=1}^{m}\pi_j\varphi(x;a_j,S_j)} . |
|
|
|
At the second step (Maximization step or M-step), the mixture parameter estimates are refined using the computed probabilities: |
|
|
|
.. math:: |
|
|
|
\pi _k= \frac{1}{N} \sum _{i=1}^{N} \alpha _{ki}, \quad a_k= \frac{\sum\limits_{i=1}^{N}\alpha_{ki}x_i}{\sum\limits_{i=1}^{N}\alpha_{ki}} , \quad S_k= \frac{\sum\limits_{i=1}^{N}\alpha_{ki}(x_i-a_k)(x_i-a_k)^T}{\sum\limits_{i=1}^{N}\alpha_{ki}} |
|
|
|
Alternatively, the algorithm may start with the M-step when the initial values for |
|
:math:`p_{i,k}` can be provided. Another alternative when |
|
:math:`p_{i,k}` are unknown is to use a simpler clustering algorithm to pre-cluster the input samples and thus obtain initial |
|
:math:`p_{i,k}` . Often (including ML) the |
|
:ref:`kmeans` algorithm is used for that purpose. |
|
|
|
One of the main problems of the EM algorithm is a large number |
|
of parameters to estimate. The majority of the parameters reside in |
|
covariance matrices, which are |
|
:math:`d \times d` elements each |
|
where |
|
:math:`d` is the feature space dimensionality. However, in |
|
many practical problems, the covariance matrices are close to diagonal |
|
or even to |
|
:math:`\mu_k*I` , where |
|
:math:`I` is an identity matrix and |
|
:math:`\mu_k` is a mixture-dependent "scale" parameter. So, a robust computation |
|
scheme could start with harder constraints on the covariance |
|
matrices and then use the estimated parameters as an input for a less |
|
constrained optimization problem (often a diagonal covariance matrix is |
|
already a good enough approximation). |
|
|
|
**References:** |
|
|
|
* |
|
Bilmes98 J. A. Bilmes. *A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models*. Technical Report TR-97-021, International Computer Science Institute and Computer Science Division, University of California at Berkeley, April 1998. |
|
|
|
.. index:: CvEMParams |
|
|
|
.. _CvEMParams: |
|
|
|
CvEMParams |
|
---------- |
|
.. c:type:: CvEMParams |
|
|
|
Parameters of the EM algorithm :: |
|
|
|
struct CvEMParams |
|
{ |
|
CvEMParams() : nclusters(10), cov_mat_type(CvEM::COV_MAT_DIAGONAL), |
|
start_step(CvEM::START_AUTO_STEP), probs(0), weights(0), means(0), |
|
covs(0) |
|
{ |
|
term_crit=cvTermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, |
|
100, FLT_EPSILON ); |
|
} |
|
|
|
CvEMParams( int _nclusters, int _cov_mat_type=1/*CvEM::COV_MAT_DIAGONAL*/, |
|
int _start_step=0/*CvEM::START_AUTO_STEP*/, |
|
CvTermCriteria _term_crit=cvTermCriteria( |
|
CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, |
|
100, FLT_EPSILON), |
|
const CvMat* _probs=0, const CvMat* _weights=0, |
|
const CvMat* _means=0, const CvMat** _covs=0 ) : |
|
nclusters(_nclusters), cov_mat_type(_cov_mat_type), |
|
start_step(_start_step), |
|
probs(_probs), weights(_weights), means(_means), covs(_covs), |
|
term_crit(_term_crit) |
|
{} |
|
|
|
int nclusters; |
|
int cov_mat_type; |
|
int start_step; |
|
const CvMat* probs; |
|
const CvMat* weights; |
|
const CvMat* means; |
|
const CvMat** covs; |
|
CvTermCriteria term_crit; |
|
}; |
|
|
|
|
|
The structure has two constructors. The default one represents a rough rule-of-the-thumb. With another one it is possible to override a variety of parameters from a single number of mixtures (the only essential problem-dependent parameter) to initial values for the mixture parameters. |
|
|
|
.. index:: CvEM |
|
|
|
.. _CvEM: |
|
|
|
CvEM |
|
---- |
|
.. c:type:: CvEM |
|
|
|
EM model :: |
|
|
|
class CV_EXPORTS CvEM : public CvStatModel |
|
{ |
|
public: |
|
// Type of covariance matrices |
|
enum { COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2 }; |
|
|
|
// Initial step |
|
enum { START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0 }; |
|
|
|
CvEM(); |
|
CvEM( const Mat& samples, const Mat& sample_idx=Mat(), |
|
CvEMParams params=CvEMParams(), Mat* labels=0 ); |
|
virtual ~CvEM(); |
|
|
|
virtual bool train( const Mat& samples, const Mat& sample_idx=Mat(), |
|
CvEMParams params=CvEMParams(), Mat* labels=0 ); |
|
|
|
virtual float predict( const Mat& sample, Mat& probs ) const; |
|
virtual void clear(); |
|
|
|
int get_nclusters() const { return params.nclusters; } |
|
const Mat& get_means() const { return means; } |
|
const Mat&* get_covs() const { return covs; } |
|
const Mat& get_weights() const { return weights; } |
|
const Mat& get_probs() const { return probs; } |
|
|
|
protected: |
|
|
|
virtual void set_params( const CvEMParams& params, |
|
const CvVectors& train_data ); |
|
virtual void init_em( const CvVectors& train_data ); |
|
virtual double run_em( const CvVectors& train_data ); |
|
virtual void init_auto( const CvVectors& samples ); |
|
virtual void kmeans( const CvVectors& train_data, int nclusters, |
|
Mat& labels, CvTermCriteria criteria, |
|
const Mat& means ); |
|
CvEMParams params; |
|
double log_likelihood; |
|
|
|
Mat& means; |
|
Mat&* covs; |
|
Mat& weights; |
|
Mat& probs; |
|
|
|
Mat& log_weight_div_det; |
|
Mat& inv_eigen_values; |
|
Mat&* cov_rotate_mats; |
|
}; |
|
|
|
|
|
.. index:: CvEM::train |
|
|
|
.. _CvEM::train: |
|
|
|
CvEM::train |
|
----------- |
|
.. ocv:function:: void CvEM::train( const Mat& samples, const Mat& sample_idx=Mat(), CvEMParams params=CvEMParams(), Mat* labels=0 ) |
|
|
|
Estimates the Gaussian mixture parameters from a sample set. |
|
|
|
Unlike many of the ML models, EM is an unsupervised learning algorithm and it does not take responses (class labels or function values) as input. Instead, it computes the |
|
*Maximum Likelihood Estimate* of the Gaussian mixture parameters from an input sample set, stores all the parameters inside the structure: |
|
:math:`p_{i,k}` in ``probs``, |
|
:math:`a_k` in ``means`` , |
|
:math:`S_k` in ``covs[k]``, |
|
:math:`\pi_k` in ``weights`` , and optionally computes the output "class label" for each sample: |
|
:math:`\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N` (indices of the most probable mixture for each sample). |
|
|
|
The trained model can be used further for prediction, just like any other classifier. The trained model is similar to the |
|
:ref:`Bayes classifier`. |
|
|
|
For example of clustering random samples of multi-Gaussian distribution using EM see em.cpp sample in OpenCV distribution. |
|
|
|
|
|
|
|
|