mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
317 lines
9.2 KiB
317 lines
9.2 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_CUDA |
|
|
|
using cv::gpu::GpuMat; |
|
|
|
// show detection results on input image with cv::imshow |
|
//#define SHOW_DETECTIONS |
|
|
|
#if defined SHOW_DETECTIONS |
|
# define SHOW(res) \ |
|
cv::imshow(#res, res); \ |
|
cv::waitKey(0); |
|
#else |
|
# define SHOW(res) |
|
#endif |
|
|
|
static std::string path(std::string relative) |
|
{ |
|
return cvtest::TS::ptr()->get_data_path() + "../cv/cascadeandhog/" + relative; |
|
} |
|
|
|
TEST(SCascadeTest, readCascade) |
|
{ |
|
std::string xml = path("cascades/inria_caltech-17.01.2013.xml"); |
|
cv::FileStorage fs(xml, cv::FileStorage::READ); |
|
|
|
cv::gpu::SCascade cascade; |
|
|
|
ASSERT_TRUE(fs.isOpened()); |
|
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode())); |
|
} |
|
|
|
namespace |
|
{ |
|
typedef cv::gpu::SCascade::Detection Detection; |
|
|
|
cv::Rect getFromTable(int idx) |
|
{ |
|
static const cv::Rect rois[] = |
|
{ |
|
cv::Rect( 65 * 4, 20 * 4, 35 * 4, 80 * 4), |
|
cv::Rect( 95 * 4, 35 * 4, 45 * 4, 40 * 4), |
|
cv::Rect( 45 * 4, 35 * 4, 45 * 4, 40 * 4), |
|
cv::Rect( 25 * 4, 27 * 4, 50 * 4, 45 * 4), |
|
cv::Rect(100 * 4, 50 * 4, 45 * 4, 40 * 4), |
|
|
|
cv::Rect( 60 * 4, 30 * 4, 45 * 4, 40 * 4), |
|
cv::Rect( 40 * 4, 55 * 4, 50 * 4, 40 * 4), |
|
cv::Rect( 48 * 4, 37 * 4, 72 * 4, 80 * 4), |
|
cv::Rect( 48 * 4, 32 * 4, 85 * 4, 58 * 4), |
|
cv::Rect( 48 * 4, 0 * 4, 32 * 4, 27 * 4) |
|
}; |
|
|
|
return rois[idx]; |
|
} |
|
|
|
|
|
void print(std::ostream &out, const Detection& d) |
|
{ |
|
#if defined SHOW_DETECTIONS |
|
out << "\x1b[32m[ detection]\x1b[0m (" |
|
<< std::setw(4) << d.x |
|
<< " " |
|
<< std::setw(4) << d.y |
|
<< ") (" |
|
<< std::setw(4) << d.w |
|
<< " " |
|
<< std::setw(4) << d.h |
|
<< ") " |
|
<< std::setw(12) << d.confidence |
|
<< std::endl; |
|
#else |
|
(void)out; (void)d; |
|
#endif |
|
} |
|
|
|
void printTotal(std::ostream &out, int detbytes) |
|
{ |
|
#if defined SHOW_DETECTIONS |
|
out << "\x1b[32m[ ]\x1b[0m Total detections " << (detbytes / sizeof(Detection)) << std::endl; |
|
#else |
|
(void)out; (void)detbytes; |
|
#endif |
|
} |
|
|
|
std::string itoa(long i) |
|
{ |
|
static char s[65]; |
|
sprintf(s, "%ld", i); |
|
return std::string(s); |
|
} |
|
|
|
#if defined SHOW_DETECTIONS |
|
std::string getImageName(int level) |
|
{ |
|
time_t rawtime; |
|
struct tm * timeinfo; |
|
char buffer [80]; |
|
|
|
time ( &rawtime ); |
|
timeinfo = localtime ( &rawtime ); |
|
|
|
strftime (buffer,80,"%Y-%m-%d--%H-%M-%S",timeinfo); |
|
return "gpu_rec_level_" + itoa(level)+ "_" + std::string(buffer) + ".png"; |
|
} |
|
|
|
void writeResult(const cv::Mat& result, const int level) |
|
{ |
|
std::string path = cv::tempfile(getImageName(level).c_str()); |
|
cv::imwrite(path, result); |
|
std::cout << "\x1b[32m" << "[ ]" << std::endl << "[ stored in]"<< "\x1b[0m" << path << std::endl; |
|
} |
|
#endif |
|
} |
|
|
|
PARAM_TEST_CASE(SCascadeTestRoi, cv::gpu::DeviceInfo, std::string, std::string, int) |
|
{ |
|
virtual void SetUp() |
|
{ |
|
cv::gpu::setDevice(GET_PARAM(0).deviceID()); |
|
} |
|
}; |
|
|
|
GPU_TEST_P(SCascadeTestRoi, Detect) |
|
{ |
|
cv::Mat coloredCpu = cv::imread(path(GET_PARAM(2))); |
|
ASSERT_FALSE(coloredCpu.empty()); |
|
|
|
cv::gpu::SCascade cascade; |
|
|
|
cv::FileStorage fs(path(GET_PARAM(1)), cv::FileStorage::READ); |
|
ASSERT_TRUE(fs.isOpened()); |
|
|
|
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode())); |
|
|
|
GpuMat colored(coloredCpu), objectBoxes(1, 16384, CV_8UC1), rois(colored.size(), CV_8UC1); |
|
rois.setTo(0); |
|
|
|
int nroi = GET_PARAM(3); |
|
cv::Mat result(coloredCpu); |
|
cv::RNG rng; |
|
for (int i = 0; i < nroi; ++i) |
|
{ |
|
cv::Rect r = getFromTable(rng(10)); |
|
GpuMat sub(rois, r); |
|
sub.setTo(1); |
|
cv::rectangle(result, r, cv::Scalar(0, 0, 255, 255), 1); |
|
} |
|
objectBoxes.setTo(0); |
|
|
|
cascade.detect(colored, rois, objectBoxes); |
|
|
|
cv::Mat dt(objectBoxes); |
|
typedef cv::gpu::SCascade::Detection Detection; |
|
|
|
Detection* dts = ((Detection*)dt.data) + 1; |
|
int* count = dt.ptr<int>(0); |
|
|
|
printTotal(std::cout, *count); |
|
|
|
for (int i = 0; i < *count; ++i) |
|
{ |
|
Detection d = dts[i]; |
|
print(std::cout, d); |
|
cv::rectangle(result, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1); |
|
} |
|
|
|
SHOW(result); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_SoftCascade, SCascadeTestRoi, testing::Combine( |
|
ALL_DEVICES, |
|
testing::Values(std::string("cascades/inria_caltech-17.01.2013.xml"), |
|
std::string("cascades/sc_cvpr_2012_to_opencv_new_format.xml")), |
|
testing::Values(std::string("images/image_00000000_0.png")), |
|
testing::Range(0, 5))); |
|
|
|
//////////////////////////////////////// |
|
|
|
namespace { |
|
|
|
struct Fixture |
|
{ |
|
std::string path; |
|
int expected; |
|
|
|
Fixture(){} |
|
Fixture(std::string p, int e): path(p), expected(e) {} |
|
}; |
|
} |
|
|
|
PARAM_TEST_CASE(SCascadeTestAll, cv::gpu::DeviceInfo, Fixture) |
|
{ |
|
|
|
std::string xml; |
|
int expected; |
|
|
|
virtual void SetUp() |
|
{ |
|
cv::gpu::setDevice(GET_PARAM(0).deviceID()); |
|
xml = path(GET_PARAM(1).path); |
|
expected = GET_PARAM(1).expected; |
|
} |
|
}; |
|
|
|
GPU_TEST_P(SCascadeTestAll, detect) |
|
{ |
|
cv::gpu::SCascade cascade; |
|
|
|
cv::FileStorage fs(xml, cv::FileStorage::READ); |
|
ASSERT_TRUE(fs.isOpened()); |
|
|
|
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode())); |
|
|
|
cv::Mat coloredCpu = cv::imread(path("images/image_00000000_0.png")); |
|
ASSERT_FALSE(coloredCpu.empty()); |
|
|
|
GpuMat colored(coloredCpu), objectBoxes, rois(colored.size(), CV_8UC1); |
|
rois.setTo(1); |
|
|
|
cascade.detect(colored, rois, objectBoxes); |
|
|
|
typedef cv::gpu::SCascade::Detection Detection; |
|
cv::Mat dt(objectBoxes); |
|
|
|
|
|
Detection* dts = ((Detection*)dt.data) + 1; |
|
int* count = dt.ptr<int>(0); |
|
|
|
printTotal(std::cout, *count); |
|
|
|
for (int i = 0; i < *count; ++i) |
|
{ |
|
Detection d = dts[i]; |
|
print(std::cout, d); |
|
cv::rectangle(coloredCpu, cv::Rect(d.x, d.y, d.w, d.h), cv::Scalar(255, 0, 0, 255), 1); |
|
} |
|
|
|
SHOW(coloredCpu); |
|
ASSERT_EQ(*count, expected); |
|
} |
|
|
|
GPU_TEST_P(SCascadeTestAll, detectStream) |
|
{ |
|
cv::gpu::SCascade cascade; |
|
|
|
cv::FileStorage fs(xml, cv::FileStorage::READ); |
|
ASSERT_TRUE(fs.isOpened()); |
|
|
|
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode())); |
|
|
|
cv::Mat coloredCpu = cv::imread(path("images/image_00000000_0.png")); |
|
ASSERT_FALSE(coloredCpu.empty()); |
|
|
|
GpuMat colored(coloredCpu), objectBoxes(1, 100000, CV_8UC1), rois(colored.size(), CV_8UC1); |
|
rois.setTo(cv::Scalar::all(1)); |
|
|
|
cv::gpu::Stream s; |
|
|
|
objectBoxes.setTo(0); |
|
cascade.detect(colored, rois, objectBoxes, s); |
|
s.waitForCompletion(); |
|
|
|
typedef cv::gpu::SCascade::Detection Detection; |
|
cv::Mat detections(objectBoxes); |
|
int a = *(detections.ptr<int>(0)); |
|
ASSERT_EQ(a, expected); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_SoftCascade, SCascadeTestAll, testing::Combine( ALL_DEVICES, |
|
testing::Values(Fixture("cascades/inria_caltech-17.01.2013.xml", 7), |
|
Fixture("cascades/sc_cvpr_2012_to_opencv_new_format.xml", 1291)))); |
|
|
|
#endif
|
|
|