mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
515 lines
18 KiB
515 lines
18 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include <algorithm> |
|
#include "autocalib.hpp" |
|
#include "motion_estimators.hpp" |
|
#include "util.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
CameraParams::CameraParams() : focal(1), R(Mat::eye(3, 3, CV_64F)), t(Mat::zeros(3, 1, CV_64F)) {} |
|
|
|
CameraParams::CameraParams(const CameraParams &other) { *this = other; } |
|
|
|
const CameraParams& CameraParams::operator =(const CameraParams &other) |
|
{ |
|
focal = other.focal; |
|
R = other.R.clone(); |
|
t = other.t.clone(); |
|
return *this; |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
struct IncDistance |
|
{ |
|
IncDistance(vector<int> &dists) : dists(&dists[0]) {} |
|
void operator ()(const GraphEdge &edge) { dists[edge.to] = dists[edge.from] + 1; } |
|
int* dists; |
|
}; |
|
|
|
|
|
struct CalcRotation |
|
{ |
|
CalcRotation(int num_images, const vector<MatchesInfo> &pairwise_matches, vector<CameraParams> &cameras) |
|
: num_images(num_images), pairwise_matches(&pairwise_matches[0]), cameras(&cameras[0]) {} |
|
|
|
void operator ()(const GraphEdge &edge) |
|
{ |
|
int pair_idx = edge.from * num_images + edge.to; |
|
|
|
double f_from = cameras[edge.from].focal; |
|
double f_to = cameras[edge.to].focal; |
|
|
|
Mat K_from = Mat::eye(3, 3, CV_64F); |
|
K_from.at<double>(0, 0) = f_from; |
|
K_from.at<double>(1, 1) = f_from; |
|
|
|
Mat K_to = Mat::eye(3, 3, CV_64F); |
|
K_to.at<double>(0, 0) = f_to; |
|
K_to.at<double>(1, 1) = f_to; |
|
|
|
Mat R = K_from.inv() * pairwise_matches[pair_idx].H.inv() * K_to; |
|
cameras[edge.to].R = cameras[edge.from].R * R; |
|
} |
|
|
|
int num_images; |
|
const MatchesInfo* pairwise_matches; |
|
CameraParams* cameras; |
|
}; |
|
|
|
|
|
void HomographyBasedEstimator::estimate(const vector<ImageFeatures> &features, const vector<MatchesInfo> &pairwise_matches, |
|
vector<CameraParams> &cameras) |
|
{ |
|
const int num_images = static_cast<int>(features.size()); |
|
|
|
// Estimate focal length and set it for all cameras |
|
vector<double> focals; |
|
estimateFocal(features, pairwise_matches, focals); |
|
cameras.resize(num_images); |
|
for (int i = 0; i < num_images; ++i) |
|
cameras[i].focal = focals[i]; |
|
|
|
// Restore global motion |
|
Graph span_tree; |
|
vector<int> span_tree_centers; |
|
findMaxSpanningTree(num_images, pairwise_matches, span_tree, span_tree_centers); |
|
span_tree.walkBreadthFirst(span_tree_centers[0], CalcRotation(num_images, pairwise_matches, cameras)); |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
void BundleAdjuster::estimate(const vector<ImageFeatures> &features, const vector<MatchesInfo> &pairwise_matches, |
|
vector<CameraParams> &cameras) |
|
{ |
|
num_images_ = static_cast<int>(features.size()); |
|
features_ = &features[0]; |
|
pairwise_matches_ = &pairwise_matches[0]; |
|
|
|
// Prepare focals and rotations |
|
cameras_.create(num_images_ * 4, 1, CV_64F); |
|
SVD svd; |
|
for (int i = 0; i < num_images_; ++i) |
|
{ |
|
cameras_.at<double>(i * 4, 0) = cameras[i].focal; |
|
|
|
svd(cameras[i].R, SVD::FULL_UV); |
|
Mat R = svd.u * svd.vt; |
|
if (determinant(R) < 0) |
|
R *= -1; |
|
|
|
Mat rvec; |
|
Rodrigues(R, rvec); CV_Assert(rvec.type() == CV_32F); |
|
cameras_.at<double>(i * 4 + 1, 0) = rvec.at<float>(0, 0); |
|
cameras_.at<double>(i * 4 + 2, 0) = rvec.at<float>(1, 0); |
|
cameras_.at<double>(i * 4 + 3, 0) = rvec.at<float>(2, 0); |
|
} |
|
|
|
// Select only consistent image pairs for futher adjustment |
|
edges_.clear(); |
|
for (int i = 0; i < num_images_ - 1; ++i) |
|
{ |
|
for (int j = i + 1; j < num_images_; ++j) |
|
{ |
|
const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j]; |
|
if (matches_info.confidence > conf_thresh_) |
|
edges_.push_back(make_pair(i, j)); |
|
} |
|
} |
|
|
|
// Compute number of correspondences |
|
total_num_matches_ = 0; |
|
for (size_t i = 0; i < edges_.size(); ++i) |
|
total_num_matches_ += static_cast<int>(pairwise_matches[edges_[i].first * num_images_ + edges_[i].second].num_inliers); |
|
|
|
CvLevMarq solver(num_images_ * 4, total_num_matches_ * 3, |
|
cvTermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 1000, DBL_EPSILON)); |
|
|
|
CvMat matParams = cameras_; |
|
cvCopy(&matParams, solver.param); |
|
|
|
int count = 0; |
|
for(;;) |
|
{ |
|
const CvMat* _param = 0; |
|
CvMat* _J = 0; |
|
CvMat* _err = 0; |
|
|
|
bool proceed = solver.update(_param, _J, _err); |
|
|
|
cvCopy( _param, &matParams ); |
|
|
|
if( !proceed || !_err ) |
|
break; |
|
|
|
if( _J ) |
|
{ |
|
calcJacobian(); |
|
CvMat matJ = J_; |
|
cvCopy( &matJ, _J ); |
|
} |
|
|
|
if (_err) |
|
{ |
|
calcError(err_); |
|
LOG("."); |
|
count++; |
|
CvMat matErr = err_; |
|
cvCopy( &matErr, _err ); |
|
} |
|
} |
|
LOGLN(""); |
|
LOGLN("Bundle adjustment, final error: " << sqrt(err_.dot(err_))); |
|
LOGLN("Bundle adjustment, iterations done: " << count); |
|
|
|
// Obtain global motion |
|
for (int i = 0; i < num_images_; ++i) |
|
{ |
|
cameras[i].focal = cameras_.at<double>(i * 4, 0); |
|
Mat rvec(3, 1, CV_64F); |
|
rvec.at<double>(0, 0) = cameras_.at<double>(i * 4 + 1, 0); |
|
rvec.at<double>(1, 0) = cameras_.at<double>(i * 4 + 2, 0); |
|
rvec.at<double>(2, 0) = cameras_.at<double>(i * 4 + 3, 0); |
|
Rodrigues(rvec, cameras[i].R); |
|
Mat Mf; |
|
cameras[i].R.convertTo(Mf, CV_32F); |
|
cameras[i].R = Mf; |
|
} |
|
|
|
// Normalize motion to center image |
|
Graph span_tree; |
|
vector<int> span_tree_centers; |
|
findMaxSpanningTree(num_images_, pairwise_matches, span_tree, span_tree_centers); |
|
Mat R_inv = cameras[span_tree_centers[0]].R.inv(); |
|
for (int i = 0; i < num_images_; ++i) |
|
cameras[i].R = R_inv * cameras[i].R; |
|
} |
|
|
|
|
|
void BundleAdjuster::calcError(Mat &err) |
|
{ |
|
err.create(total_num_matches_ * 3, 1, CV_64F); |
|
|
|
int match_idx = 0; |
|
for (size_t edge_idx = 0; edge_idx < edges_.size(); ++edge_idx) |
|
{ |
|
int i = edges_[edge_idx].first; |
|
int j = edges_[edge_idx].second; |
|
double f1 = cameras_.at<double>(i * 4, 0); |
|
double f2 = cameras_.at<double>(j * 4, 0); |
|
double R1[9], R2[9]; |
|
Mat R1_(3, 3, CV_64F, R1), R2_(3, 3, CV_64F, R2); |
|
Mat rvec(3, 1, CV_64F); |
|
rvec.at<double>(0, 0) = cameras_.at<double>(i * 4 + 1, 0); |
|
rvec.at<double>(1, 0) = cameras_.at<double>(i * 4 + 2, 0); |
|
rvec.at<double>(2, 0) = cameras_.at<double>(i * 4 + 3, 0); |
|
Rodrigues(rvec, R1_); CV_Assert(R1_.type() == CV_64F); |
|
rvec.at<double>(0, 0) = cameras_.at<double>(j * 4 + 1, 0); |
|
rvec.at<double>(1, 0) = cameras_.at<double>(j * 4 + 2, 0); |
|
rvec.at<double>(2, 0) = cameras_.at<double>(j * 4 + 3, 0); |
|
Rodrigues(rvec, R2_); CV_Assert(R2_.type() == CV_64F); |
|
|
|
const ImageFeatures& features1 = features_[i]; |
|
const ImageFeatures& features2 = features_[j]; |
|
const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j]; |
|
|
|
for (size_t k = 0; k < matches_info.matches.size(); ++k) |
|
{ |
|
if (!matches_info.inliers_mask[k]) |
|
continue; |
|
|
|
const DMatch& m = matches_info.matches[k]; |
|
|
|
Point2d kp1 = features1.keypoints[m.queryIdx].pt; |
|
kp1.x -= 0.5 * features1.img_size.width; |
|
kp1.y -= 0.5 * features1.img_size.height; |
|
Point2d kp2 = features2.keypoints[m.trainIdx].pt; |
|
kp2.x -= 0.5 * features2.img_size.width; |
|
kp2.y -= 0.5 * features2.img_size.height; |
|
double len1 = sqrt(kp1.x * kp1.x + kp1.y * kp1.y + f1 * f1); |
|
double len2 = sqrt(kp2.x * kp2.x + kp2.y * kp2.y + f2 * f2); |
|
Point3d p1(kp1.x / len1, kp1.y / len1, f1 / len1); |
|
Point3d p2(kp2.x / len2, kp2.y / len2, f2 / len2); |
|
|
|
Point3d d1(p1.x * R1[0] + p1.y * R1[1] + p1.z * R1[2], |
|
p1.x * R1[3] + p1.y * R1[4] + p1.z * R1[5], |
|
p1.x * R1[6] + p1.y * R1[7] + p1.z * R1[8]); |
|
Point3d d2(p2.x * R2[0] + p2.y * R2[1] + p2.z * R2[2], |
|
p2.x * R2[3] + p2.y * R2[4] + p2.z * R2[5], |
|
p2.x * R2[6] + p2.y * R2[7] + p2.z * R2[8]); |
|
|
|
double mult = 1; |
|
if (cost_space_ == FOCAL_RAY_SPACE) |
|
mult = sqrt(f1 * f2); |
|
err.at<double>(3 * match_idx, 0) = mult * (d1.x - d2.x); |
|
err.at<double>(3 * match_idx + 1, 0) = mult * (d1.y - d2.y); |
|
err.at<double>(3 * match_idx + 2, 0) = mult * (d1.z - d2.z); |
|
match_idx++; |
|
} |
|
} |
|
} |
|
|
|
|
|
void calcDeriv(const Mat &err1, const Mat &err2, double h, Mat res) |
|
{ |
|
for (int i = 0; i < err1.rows; ++i) |
|
res.at<double>(i, 0) = (err2.at<double>(i, 0) - err1.at<double>(i, 0)) / h; |
|
} |
|
|
|
|
|
void BundleAdjuster::calcJacobian() |
|
{ |
|
J_.create(total_num_matches_ * 3, num_images_ * 4, CV_64F); |
|
|
|
double f, r; |
|
const double df = 0.001; // Focal length step |
|
const double dr = 0.001; // Angle step |
|
|
|
for (int i = 0; i < num_images_; ++i) |
|
{ |
|
f = cameras_.at<double>(i * 4, 0); |
|
cameras_.at<double>(i * 4, 0) = f - df; |
|
calcError(err1_); |
|
cameras_.at<double>(i * 4, 0) = f + df; |
|
calcError(err2_); |
|
calcDeriv(err1_, err2_, 2 * df, J_.col(i * 4)); |
|
cameras_.at<double>(i * 4, 0) = f; |
|
|
|
r = cameras_.at<double>(i * 4 + 1, 0); |
|
cameras_.at<double>(i * 4 + 1, 0) = r - dr; |
|
calcError(err1_); |
|
cameras_.at<double>(i * 4 + 1, 0) = r + dr; |
|
calcError(err2_); |
|
calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 1)); |
|
cameras_.at<double>(i * 4 + 1, 0) = r; |
|
|
|
r = cameras_.at<double>(i * 4 + 2, 0); |
|
cameras_.at<double>(i * 4 + 2, 0) = r - dr; |
|
calcError(err1_); |
|
cameras_.at<double>(i * 4 + 2, 0) = r + dr; |
|
calcError(err2_); |
|
calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 2)); |
|
cameras_.at<double>(i * 4 + 2, 0) = r; |
|
|
|
r = cameras_.at<double>(i * 4 + 3, 0); |
|
cameras_.at<double>(i * 4 + 3, 0) = r - dr; |
|
calcError(err1_); |
|
cameras_.at<double>(i * 4 + 3, 0) = r + dr; |
|
calcError(err2_); |
|
calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 3)); |
|
cameras_.at<double>(i * 4 + 3, 0) = r; |
|
} |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
void waveCorrect(vector<Mat> &rmats) |
|
{ |
|
float data[9]; |
|
Mat r0(1, 3, CV_32F, data); |
|
Mat r1(1, 3, CV_32F, data + 3); |
|
Mat r2(1, 3, CV_32F, data + 6); |
|
Mat R(3, 3, CV_32F, data); |
|
|
|
Mat cov = Mat::zeros(3, 3, CV_32F); |
|
for (size_t i = 0; i < rmats.size(); ++i) |
|
{ |
|
Mat r0 = rmats[i].col(0); |
|
cov += r0 * r0.t(); |
|
} |
|
|
|
SVD svd; |
|
svd(cov, SVD::FULL_UV); |
|
svd.vt.row(2).copyTo(r1); |
|
if (determinant(svd.vt) < 0) r1 *= -1; |
|
|
|
Mat avgz = Mat::zeros(3, 1, CV_32F); |
|
for (size_t i = 0; i < rmats.size(); ++i) |
|
avgz += rmats[i].col(2); |
|
r1.cross(avgz.t()).copyTo(r0); |
|
normalize(r0, r0); |
|
|
|
r1.cross(r0).copyTo(r2); |
|
if (determinant(R) < 0) R *= -1; |
|
|
|
for (size_t i = 0; i < rmats.size(); ++i) |
|
rmats[i] = R * rmats[i]; |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
vector<int> leaveBiggestComponent(vector<ImageFeatures> &features, vector<MatchesInfo> &pairwise_matches, |
|
float conf_threshold) |
|
{ |
|
const int num_images = static_cast<int>(features.size()); |
|
|
|
DjSets comps(num_images); |
|
for (int i = 0; i < num_images; ++i) |
|
{ |
|
for (int j = 0; j < num_images; ++j) |
|
{ |
|
if (pairwise_matches[i*num_images + j].confidence < conf_threshold) |
|
continue; |
|
int comp1 = comps.find(i); |
|
int comp2 = comps.find(j); |
|
if (comp1 != comp2) |
|
comps.merge(comp1, comp2); |
|
} |
|
} |
|
|
|
int max_comp = max_element(comps.size.begin(), comps.size.end()) - comps.size.begin(); |
|
|
|
vector<int> indices; |
|
vector<int> indices_removed; |
|
for (int i = 0; i < num_images; ++i) |
|
if (comps.find(i) == max_comp) |
|
indices.push_back(i); |
|
else |
|
indices_removed.push_back(i); |
|
|
|
vector<ImageFeatures> features_subset; |
|
vector<MatchesInfo> pairwise_matches_subset; |
|
for (size_t i = 0; i < indices.size(); ++i) |
|
{ |
|
features_subset.push_back(features[indices[i]]); |
|
for (size_t j = 0; j < indices.size(); ++j) |
|
{ |
|
pairwise_matches_subset.push_back(pairwise_matches[indices[i]*num_images + indices[j]]); |
|
pairwise_matches_subset.back().src_img_idx = i; |
|
pairwise_matches_subset.back().dst_img_idx = j; |
|
} |
|
} |
|
|
|
if (static_cast<int>(features_subset.size()) == num_images) |
|
return indices; |
|
|
|
LOG("Removed some images, because can't match them: ("); |
|
LOG(indices_removed[0]+1); |
|
for (size_t i = 1; i < indices_removed.size(); ++i) |
|
LOG(", " << indices_removed[i]+1); |
|
LOGLN("). Try decrease --match_conf value."); |
|
|
|
features = features_subset; |
|
pairwise_matches = pairwise_matches_subset; |
|
|
|
return indices; |
|
} |
|
|
|
|
|
void findMaxSpanningTree(int num_images, const vector<MatchesInfo> &pairwise_matches, |
|
Graph &span_tree, vector<int> ¢ers) |
|
{ |
|
Graph graph(num_images); |
|
vector<GraphEdge> edges; |
|
|
|
// Construct images graph and remember its edges |
|
for (int i = 0; i < num_images; ++i) |
|
{ |
|
for (int j = 0; j < num_images; ++j) |
|
{ |
|
if (pairwise_matches[i * num_images + j].H.empty()) |
|
continue; |
|
float conf = static_cast<float>(pairwise_matches[i * num_images + j].num_inliers); |
|
graph.addEdge(i, j, conf); |
|
edges.push_back(GraphEdge(i, j, conf)); |
|
} |
|
} |
|
|
|
DjSets comps(num_images); |
|
span_tree.create(num_images); |
|
vector<int> span_tree_powers(num_images, 0); |
|
|
|
// Find maximum spanning tree |
|
sort(edges.begin(), edges.end(), greater<GraphEdge>()); |
|
for (size_t i = 0; i < edges.size(); ++i) |
|
{ |
|
int comp1 = comps.find(edges[i].from); |
|
int comp2 = comps.find(edges[i].to); |
|
if (comp1 != comp2) |
|
{ |
|
comps.merge(comp1, comp2); |
|
span_tree.addEdge(edges[i].from, edges[i].to, edges[i].weight); |
|
span_tree.addEdge(edges[i].to, edges[i].from, edges[i].weight); |
|
span_tree_powers[edges[i].from]++; |
|
span_tree_powers[edges[i].to]++; |
|
} |
|
} |
|
|
|
// Find spanning tree leafs |
|
vector<int> span_tree_leafs; |
|
for (int i = 0; i < num_images; ++i) |
|
if (span_tree_powers[i] == 1) |
|
span_tree_leafs.push_back(i); |
|
|
|
// Find maximum distance from each spanning tree vertex |
|
vector<int> max_dists(num_images, 0); |
|
vector<int> cur_dists; |
|
for (size_t i = 0; i < span_tree_leafs.size(); ++i) |
|
{ |
|
cur_dists.assign(num_images, 0); |
|
span_tree.walkBreadthFirst(span_tree_leafs[i], IncDistance(cur_dists)); |
|
for (int j = 0; j < num_images; ++j) |
|
max_dists[j] = max(max_dists[j], cur_dists[j]); |
|
} |
|
|
|
// Find min-max distance |
|
int min_max_dist = max_dists[0]; |
|
for (int i = 1; i < num_images; ++i) |
|
if (min_max_dist > max_dists[i]) |
|
min_max_dist = max_dists[i]; |
|
|
|
// Find spanning tree centers |
|
centers.clear(); |
|
for (int i = 0; i < num_images; ++i) |
|
if (max_dists[i] == min_max_dist) |
|
centers.push_back(i); |
|
CV_Assert(centers.size() > 0 && centers.size() <= 2); |
|
}
|
|
|