Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3485 lines
101 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_cuda.hpp"
#include "../op_halide.hpp"
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"
#include "../op_vkcom.hpp"
#include "../op_webnn.hpp"
#include "../op_cann.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include <iostream>
#include <limits>
#include <cfenv>
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
#endif
#ifdef HAVE_CUDA
#include "../cuda4dnn/primitives/activation.hpp"
using namespace cv::dnn::cuda4dnn;
#endif
#include <opencv2/core/utils/logger.hpp>
namespace cv
{
namespace dnn
{
using std::abs;
using std::exp;
using std::expm1;
using std::tanh;
using std::pow;
using std::ceil;
using std::floor;
using std::log;
using std::log1p;
using std::sqrt;
using std::round;
using std::acos;
using std::acosh;
using std::asin;
using std::asinh;
using std::atan;
using std::atanh;
using std::cos;
using std::cosh;
using std::erf;
using std::sin;
using std::sinh;
using std::tan;
template<typename Func>
class ElementWiseLayer : public Func::Layer
{
public:
class PBody : public cv::ParallelLoopBody
{
public:
const Func* func_;
const Mat* src_;
Mat* dst_;
int nstripes_;
PBody(const Func &func, const Mat &src, Mat& dst, int nstripes)
{
func_ = &func;
src_ = &src;
dst_ = &dst;
nstripes_ = nstripes;
}
void operator()(const Range &r) const CV_OVERRIDE
{
int nstripes = nstripes_, nsamples = 1, outCn = 1;
size_t planeSize = 1;
if (src_->dims > 1)
{
nsamples = src_->size[0];
outCn = src_->size[1];
}
else
outCn = src_->size[0];
for (int i = 2; i < src_->dims; ++i)
planeSize *= src_->size[i];
size_t stripeSize = (planeSize + nstripes - 1)/nstripes;
size_t stripeStart = r.start*stripeSize;
size_t stripeEnd = std::min(r.end*stripeSize, planeSize);
for( int i = 0; i < nsamples; i++ )
{
const float* srcptr = src_->ptr<float>(i) + stripeStart;
float* dstptr = dst_->ptr<float>(i) + stripeStart;
func_->apply(srcptr, dstptr, stripeStart, (int)(stripeEnd - stripeStart), planeSize, 0, outCn);
}
}
};
ElementWiseLayer(const Func &f=Func()) { func = f; }
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
return func.supportBackend(backendId, this->preferableTarget);
}
virtual void finalize(InputArrayOfArrays, OutputArrayOfArrays) CV_OVERRIDE
{
func.finalize();
}
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node) CV_OVERRIDE
{
switch (node->backendId)
{
case DNN_BACKEND_HALIDE:
{
#ifdef HAVE_HALIDE
auto base = node.dynamicCast<HalideBackendNode>();
Halide::Func& input = base->funcs.back();
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (this->name.empty() ? Halide::Func() : Halide::Func(this->name));
func.attachHalide(input(x, y, c, n), top);
return Ptr<BackendNode>(new HalideBackendNode(base, top));
#endif // HAVE_HALIDE
break;
}
}
return Ptr<BackendNode>();
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
{
#ifdef HAVE_HALIDE
Halide::Buffer<float> input = halideBuffer(inputs[0]);
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (this->name.empty() ? Halide::Func() : Halide::Func(this->name));
func.attachHalide(input(x, y, c, n), top);
return Ptr<BackendNode>(new HalideBackendNode(top));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
#ifdef HAVE_CANN
virtual Ptr<BackendNode> initCann(const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendWrapper> > &outputs,
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
return func.initCannOp(Layer::name, inputs, nodes);
}
#endif // HAVE_CANN
#ifdef HAVE_DNN_NGRAPH
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
auto node = func.initNgraphAPI(ieInpNode);
return Ptr<BackendNode>(new InfEngineNgraphNode(node));
}
#endif // HAVE_DNN_NGRAPH
#ifdef HAVE_WEBNN
virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
{
Ptr<WebnnBackendNode> node = nodes[0].dynamicCast<WebnnBackendNode>();
auto& webnnInpOperand = node->operand;
auto& webnnGraphBuilder = node->net->builder;
auto operand = func.initWebnnAPI(webnnGraphBuilder, webnnInpOperand);
return Ptr<BackendNode>(new WebnnBackendNode(operand));
}
#endif
virtual bool tryFuse(Ptr<dnn::Layer>& top) CV_OVERRIDE
{
return func.tryFuse(top);
}
void getScaleShift(Mat& scale_, Mat& shift_) const CV_OVERRIDE
{
func.getScaleShift(scale_, shift_);
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
return true;
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(this->preferableTarget),
func.applyOCL(inputs_arr, outputs_arr, internals_arr))
if (inputs_arr.depth() == CV_16F)
{
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
for (size_t i = 0; i < inputs.size(); i++)
{
const Mat &src = inputs[i];
Mat &dst = outputs[i];
CV_Assert(src.size == dst.size && src.type() == dst.type() &&
src.isContinuous() && dst.isContinuous() && src.type() == CV_32F);
const int nstripes = getNumThreads();
PBody body(func, src, dst, nstripes);
parallel_for_(Range(0, nstripes), body, nstripes);
}
}
void forwardSlice(const float* src, float* dst, int len, size_t planeSize, int cn0, int cn1) const CV_OVERRIDE
{
func.apply(src, dst, -1, len, planeSize, cn0, cn1);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(
void *context_,
const std::vector<Ptr<BackendWrapper>>& inputs,
const std::vector<Ptr<BackendWrapper>>& outputs
) override
{
auto context = reinterpret_cast<csl::CSLContext*>(context_);
return func.initCUDA(Layer::preferableTarget, context->stream);
}
#endif
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
{
return func.tryQuantize(scales, zeropoints, params);
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
long flops = 0;
for (int i = 0; i < outputs.size(); i++)
{
flops += total(outputs[i]) * func.getFLOPSPerElement();
}
return flops;
}
Func func;
};
#ifdef HAVE_OPENCL
static String oclGetTMacro(const UMat &m)
{
String str_name = ocl::typeToStr(m.type());
if (str_name == "short")
str_name = "half";
return format("-DT=%s -Dconvert_T=convert_%s ", str_name.c_str(), str_name.c_str());
}
#endif
struct BaseFunctor
{
void finalize() {}
bool tryFuse(Ptr<dnn::Layer>&) { return false; }
void getScaleShift(Mat&, Mat&) const {}
bool tryQuantize(const std::vector<std::vector<float>>&, const std::vector<std::vector<int>>&, LayerParams&) { return false; }
};
struct ReLUFunctor : public BaseFunctor
{
typedef ReLULayer Layer;
float slope;
explicit ReLUFunctor(float slope_=1.f) : slope(slope_) {}
bool supportBackend(int backendId, int)
{
#ifdef HAVE_DNN_NGRAPH
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return true;
#endif
#ifdef HAVE_WEBNN
if (backendId == DNN_BACKEND_WEBNN) {
// TODO: support PRELU
if (slope != 0)
{
CV_LOG_WARNING(NULL, "PRELU is not supported now.");
}
return slope == 0;
}
#endif
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_HALIDE ||
backendId == DNN_BACKEND_CANN;
}
void apply(const float* srcptr, float* dstptr, int stripeStart, int len, size_t planeSize, int cn0, int cn1) const
{
CV_UNUSED(stripeStart);
float s = slope;
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
int i = 0;
#if CV_SIMD128
v_float32x4 s4 = v_setall_f32(s), z = v_setzero_f32();
for( ; i <= len - 16; i += 16 )
{
v_float32x4 x0 = v_load(srcptr + i);
v_float32x4 x1 = v_load(srcptr + i + 4);
v_float32x4 x2 = v_load(srcptr + i + 8);
v_float32x4 x3 = v_load(srcptr + i + 12);
x0 = v_select(v_ge(x0, z), x0, v_mul(x0, s4));
x1 = v_select(v_ge(x1, z), x1, v_mul(x1, s4));
x2 = v_select(v_ge(x2, z), x2, v_mul(x2, s4));
x3 = v_select(v_ge(x3, z), x3, v_mul(x3, s4));
v_store(dstptr + i, x0);
v_store(dstptr + i + 4, x1);
v_store(dstptr + i + 8, x2);
v_store(dstptr + i + 12, x3);
}
#endif
for( ; i < len; i++ )
{
float x = srcptr[i];
dstptr[i] = x >= 0.f ? x : s*x;
}
}
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::ReLUOp>(target, stream, slope);
}
#endif
#ifdef HAVE_OPENCL
bool initKernel(ocl::Kernel &ker, const UMat &src) const
{
const char *buildoptSlope = (slope == 0) ? "-DRELU_NO_SLOPE" : "";
String buildopt = oclGetTMacro(src) + buildoptSlope;
if (!ker.create("ReLUForward", ocl::dnn::activations_oclsrc, buildopt))
return false;
if (slope != 0)
ker.set(3, (float)slope);
return true;
}
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
for (size_t i = 0; i < inputs.size(); i++)
{
UMat& src = inputs[i];
UMat& dst = outputs[i];
CV_Assert(src.isContinuous() && dst.isContinuous() && !src.offset && !dst.offset);
ocl::Kernel kernel;
CV_Assert(initKernel(kernel, src));
kernel.set(0, (int)src.total());
kernel.set(1, ocl::KernelArg::PtrReadOnly(src));
kernel.set(2, ocl::KernelArg::PtrWriteOnly(dst));
size_t gSize = src.total();
CV_Assert(kernel.run(1, &gSize, NULL, false));
}
return true;
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
if (slope)
{
top(x, y, c, n) = select(input >= 0.0f, input, slope * input);
}
else
{
top(x, y, c, n) = max(input, 0.0f);
}
}
#endif // HAVE_HALIDE
#ifdef HAVE_CANN
Ptr<BackendNode> initCannOp(const std::string& name,
const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes)
{
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
auto x_desc = x->getTensorDesc();
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
if (slope)
{
auto op = std::make_shared<ge::op::LeakyRelu>(name);
op->set_input_x_by_name(*op_x, x->name.c_str());
op->update_input_desc_x(*x_desc);
op->set_attr_negative_slope(slope);
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
auto op = std::make_shared<ge::op::Relu>(name);
op->set_input_x_by_name(*op_x, x->name.c_str());
op->update_input_desc_x(*x_desc);
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif
#ifdef HAVE_DNN_NGRAPH
std::shared_ptr<ov::Node> initNgraphAPI(const ov::Output<ov::Node>& node)
{
if (slope) {
auto param = std::make_shared<ov::op::v0::Constant>(ov::element::f32, ov::Shape{1}, &slope);
return std::make_shared<ov::op::v0::PRelu>(node, param);
}
return std::make_shared<ov::op::v0::Relu>(node);
}
#endif // HAVE_DNN_NGRAPH
#ifdef HAVE_WEBNN
ml::Operand initWebnnAPI(const ml::GraphBuilder& builder, const ml::Operand& input)
{
return builder.Relu(input);
}
#endif
bool tryQuantize(const std::vector<std::vector<float> > &scales,
const std::vector<std::vector<int> > &zeropoints, LayerParams& params)
{
if (slope != 0.f)
{
float inpScale = scales[0][0], outScale = scales[1][0];
int inpZp = zeropoints[0][0], outZp = zeropoints[1][0];
Mat lookUpTable(1, 256, CV_8S);
int8_t* table = lookUpTable.ptr<int8_t>();
for (int i = -128; i < 128; i++)
{
float x = inpScale*(i - inpZp);
float y = x >= 0.f ? x : slope*x;
int quantized = outZp + (int)std::round(y/outScale);
table[i+128] = saturate_cast<int8_t>(quantized);
}
params.blobs.clear();
params.blobs.push_back(lookUpTable);
}
params.set("input_scale", scales[0][0]);
params.set("input_zeropoint", zeropoints[0][0]);
params.set("slope", slope);
return true;
}
int64 getFLOPSPerElement() const { return 1; }
};
struct ReLU6Functor : public BaseFunctor
{
typedef ReLU6Layer Layer;
float minValue, maxValue;
ReLU6Functor(float minValue_ = 0.0f, float maxValue_ = 6.0f)
: minValue(minValue_), maxValue(maxValue_)
{
CV_Assert(minValue <= maxValue);
}
bool supportBackend(int backendId, int)
{
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return true;
#endif
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_HALIDE ||
backendId == DNN_BACKEND_WEBNN ||
backendId == DNN_BACKEND_CANN;
}
void apply(const float* srcptr, float* dstptr, int stripeStart, int len, size_t planeSize, int cn0, int cn1) const
{
CV_UNUSED(stripeStart);
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
int i = 0;
#if CV_SIMD128
v_float32x4 minV = v_setall_f32(minValue), maxV = v_setall_f32(maxValue);
for( ; i <= len - 16; i += 16 )
{
v_float32x4 x0 = v_load(srcptr + i);
v_float32x4 x1 = v_load(srcptr + i + 4);
v_float32x4 x2 = v_load(srcptr + i + 8);
v_float32x4 x3 = v_load(srcptr + i + 12);
x0 = v_min(v_max(minV, x0), maxV);
x1 = v_min(v_max(minV, x1), maxV);
x2 = v_min(v_max(minV, x2), maxV);
x3 = v_min(v_max(minV, x3), maxV);
v_store(dstptr + i, x0);
v_store(dstptr + i + 4, x1);
v_store(dstptr + i + 8, x2);
v_store(dstptr + i + 12, x3);
}
#endif
for( ; i < len; i++ )
{
float x = srcptr[i];
if (x >= minValue)
dstptr[i] = x <= maxValue ? x : maxValue;
else
dstptr[i] = minValue;
}
}
}
#ifdef HAVE_OPENCL
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
String buildopt = oclGetTMacro(inputs[0]);
for (size_t i = 0; i < inputs.size(); i++)
{
UMat& src = inputs[i];
UMat& dst = outputs[i];
ocl::Kernel kernel("ReLU6Forward", ocl::dnn::activations_oclsrc, buildopt);
kernel.set(0, (int)src.total());
kernel.set(1, ocl::KernelArg::PtrReadOnly(src));
kernel.set(2, ocl::KernelArg::PtrWriteOnly(dst));
kernel.set(3, (float)minValue);
kernel.set(4, (float)maxValue);
size_t gSize = src.total();
CV_Assert(kernel.run(1, &gSize, NULL, false));
}
return true;
}
#endif
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::ClippedReLUOp>(target, stream, minValue, maxValue);
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = clamp(input, minValue, maxValue);
}
#endif // HAVE_HALIDE
#ifdef HAVE_CANN
Ptr<BackendNode> initCannOp(const std::string& name,
const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes)
{
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
auto op = std::make_shared<ge::op::ClipByValue>(name);
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
op->set_input_x_by_name(*op_x, x->name.c_str());
auto x_desc = x->getTensorDesc();
op->update_input_desc_x(*x_desc);
Mat min_value_mat(1, 1, CV_32F, Scalar(minValue));
std::vector<int> shape_{1};
auto op_const_minv = std::make_shared<CannConstOp>(min_value_mat.data, min_value_mat.type(), shape_, cv::format("%s_min_value", name.c_str()));
op->set_input_clip_value_min(*(op_const_minv->getOp()));
op->update_input_desc_clip_value_min(*(op_const_minv->getTensorDesc()));
Mat max_value_mat(1, 1, CV_32F, Scalar(maxValue));
auto op_const_maxv = std::make_shared<CannConstOp>(max_value_mat.data, max_value_mat.type(), shape_, cv::format("%s_max_value", name.c_str()));
op->set_input_clip_value_max(*(op_const_maxv->getOp()));
op->update_input_desc_clip_value_max(*(op_const_maxv->getTensorDesc()));
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif
#ifdef HAVE_DNN_NGRAPH
std::shared_ptr<ov::Node> initNgraphAPI(const ov::Output<ov::Node>& node)
{
return std::make_shared<ov::op::v0::Clamp>(node, minValue, maxValue);
}
#endif // HAVE_DNN_NGRAPH
#ifdef HAVE_WEBNN
ml::Operand initWebnnAPI(const ml::GraphBuilder& builder, const ml::Operand& input)
{
ml::ClampOptions clampOptions;
clampOptions.minValue = minValue;
clampOptions.maxValue = maxValue;
return builder.Clamp(input, &clampOptions);
}
#endif
bool tryQuantize(const std::vector<std::vector<float> > &scales,
const std::vector<std::vector<int> > &zeropoints, LayerParams& params)
{
params.set("input_scale", scales[0][0]);
params.set("input_zeropoint", zeropoints[0][0]);
return true;
}
int64 getFLOPSPerElement() const { return 2; }
};
template <class T>
struct BaseDefaultFunctor : public BaseFunctor
{
void apply(const float* srcptr, float* dstptr, int stripeStart, int len, size_t planeSize, int cn0, int cn1) const
{
CV_UNUSED(stripeStart);
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
for( int i = 0; i < len; i++ )
{
float x = srcptr[i];
dstptr[i] = static_cast<const T*>(this)->calculate(x);
}
}
}
#ifdef HAVE_OPENCL
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
String buildopt = oclGetTMacro(inputs[0]);
for (size_t i = 0; i < inputs.size(); i++)
{
UMat& src = inputs[i];
UMat& dst = outputs[i];
ocl::Kernel kernel(ocl_kernel_name, ocl::dnn::activations_oclsrc, buildopt);
kernel.set(0, static_cast<int>(src.total()));
kernel.set(1, ocl::KernelArg::PtrReadOnly(src));
kernel.set(2, ocl::KernelArg::PtrWriteOnly(dst));
static_cast<const T*>(this)->setKernelParams(kernel);
size_t gSize = src.total();
CV_Assert(kernel.run(1, &gSize, nullptr, false));
}
return true;
}
#endif
inline void setKernelParams(ocl::Kernel& kernel) const {}
bool tryQuantize(const std::vector<std::vector<float> > &scales,
const std::vector<std::vector<int> > &zeropoints, LayerParams& params)
{
float inpScale = scales[0][0], outScale = scales[1][0];
int inpZp = zeropoints[0][0], outZp = zeropoints[1][0];
Mat lookUpTable(1, 256, CV_8S);
int8_t* table = lookUpTable.ptr<int8_t>();
for (int i = -128; i < 128; i++)
{
float x = inpScale * static_cast<float>(i - inpZp);
float y = static_cast<T const*>(this)->calculate(x);
int quantized = outZp + static_cast<int>(std::round(y/outScale));
table[i+128] = saturate_cast<int8_t>(quantized);
}
params.blobs.clear();
params.blobs.push_back(lookUpTable);
params.set("input_scale", scales[0][0]);
params.set("input_zeropoint", zeropoints[0][0]);
return true;
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
CV_Error(Error::StsNotImplemented, "");
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
CV_Error(Error::StsNotImplemented, "");
}
#endif // HAVE_HALIDE
#ifdef HAVE_CANN
Ptr<BackendNode> initCannOp(const std::string& name,
const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes)
{
CV_Error(Error::StsNotImplemented, "");
}
#endif // HAVE_CANN
#ifdef HAVE_DNN_NGRAPH
std::shared_ptr<ov::Node> initNgraphAPI(const ov::Output<ov::Node>& node)
{
CV_Error(Error::StsNotImplemented, "");
}
#endif // HAVE_DNN_NGRAPH
#ifdef HAVE_WEBNN
ml::Operand initWebnnAPI(const ml::GraphBuilder& builder, const ml::Operand& input)
{
CV_Error(Error::StsNotImplemented, "");
}
#endif
private:
static const char* const ocl_kernel_name;
};
namespace {
// Refer to v_erf in modules/core/include/opencv2/core/hal/intrin_math.hpp
constexpr float c_erf_coef0 = 0.3275911f;
constexpr float c_erf_coef1 = 1.061405429f;
constexpr float c_erf_coef2 = -1.453152027f;
constexpr float c_erf_coef3 = 1.421413741f;
constexpr float c_erf_coef4 = -0.284496736f;
constexpr float c_erf_coef5 = 0.254829592f;
inline float erf_approx(float v) {
float t = 1.f / fmaf(fabsf(v), c_erf_coef0, 1.f);
float r = fmaf(c_erf_coef1, t, c_erf_coef2);
r = fmaf(r, t, c_erf_coef3);
r = fmaf(r, t, c_erf_coef4);
r = fmaf(r, t, c_erf_coef5);
r = 1.f - r * t * expf(-v * v);
return std::copysignf(r, v);
}
}
struct GeluFunctor : public BaseFunctor {
using Layer = GeluLayer;
int vlanes;
explicit GeluFunctor() {
#if (CV_SIMD || CV_SIMD_SCALABLE)
vlanes = VTraits<v_float32>::vlanes();
#else
vlanes = 1;
#endif
}
bool supportBackend(int backendId, int) {
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH;
}
void apply(const float* srcptr, float* dstptr, int stripeStart, int len, size_t planeSize, int cn0, int cn1) const {
CV_UNUSED(stripeStart);
for (int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize) {
int i = 0;
#if (CV_SIMD || CV_SIMD_SCALABLE)
// 0.5f * x * (1.0f + erf(x * M_SQRT1_2));
v_float32 half = vx_setall_f32(0.5f),
one = vx_setall_f32(1.0f),
reciprocal_sqrt2 = vx_setall_f32(M_SQRT1_2);
for (; i <= len - vlanes; i += vlanes) {
v_float32 x0 = vx_load(srcptr + i);
// t = x * M_SQRT1_2
v_float32 t0 = v_mul(reciprocal_sqrt2, x0);
// t = 1.0f + t
t0 = v_add(one, v_erf(t0));
// x = 0.5 * x
x0 = v_mul(half, x0);
// x = x * t
x0 = v_mul(x0, t0);
vx_store(dstptr + i, x0);
}
#endif
// 0.5f * x * (1.0f + erf(x * M_SQRT1_2));
for( ; i < len; i++ )
{
float x = srcptr[i];
dstptr[i] = 0.5f * x * (1.0f + erf_approx(x * M_SQRT1_2));
}
}
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::GeluOp>(target, stream);
}
#endif
#ifdef HAVE_OPENCL
bool initKernel(ocl::Kernel &ker, const UMat &src) const
{
String buildopt = oclGetTMacro(src);
if (!ker.create("GeluForward", ocl::dnn::activations_oclsrc, buildopt))
return false;
return true;
}
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
for (size_t i = 0; i < inputs.size(); i++)
{
UMat& src = inputs[i];
UMat& dst = outputs[i];
CV_Assert(src.isContinuous() && dst.isContinuous() && !src.offset && !dst.offset);
ocl::Kernel kernel;
CV_Assert(initKernel(kernel, src));
kernel.set(0, (int)src.total());
kernel.set(1, ocl::KernelArg::PtrReadOnly(src));
kernel.set(2, ocl::KernelArg::PtrWriteOnly(dst));
size_t gSize = src.total();
CV_Assert(kernel.run(1, &gSize, NULL, false));
}
return true;
}
#endif
#ifdef HAVE_DNN_NGRAPH
std::shared_ptr<ov::Node> initNgraphAPI(const ov::Output<ov::Node>& node)
{
return std::make_shared<ov::op::v0::Gelu>(node);
}
#endif // HAVE_DNN_NGRAPH
int64 getFLOPSPerElement() const { return 100; }
};
namespace GeluApproximationConstants
{
static constexpr float sqrt_2_pi = 0.7978845834732056f;
static constexpr float coef_sqrt_2_pi = 0.044714998453855515f * sqrt_2_pi;
}
struct GeluApproximationFunctor : public BaseDefaultFunctor<GeluApproximationFunctor>
{
typedef GeluApproximationLayer Layer;
explicit GeluApproximationFunctor() {}
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV;
}
inline float calculate(float x) const
{
return 0.5f * x * (1.f + tanh(x * (GeluApproximationConstants::sqrt_2_pi +
GeluApproximationConstants::coef_sqrt_2_pi * x * x)));
}
int64 getFLOPSPerElement() const { return 100; }
};
template<>
const char* const BaseDefaultFunctor<GeluApproximationFunctor>::ocl_kernel_name = "GeluApproximationForward";
struct TanHFunctor : public BaseDefaultFunctor<TanHFunctor>
{
typedef TanHLayer Layer;
bool supportBackend(int backendId, int)
{
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return true;
#endif
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_HALIDE ||
backendId == DNN_BACKEND_CANN;
}
inline float calculate(float x) const
{
return tanh(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::TanHOp>(target, stream);
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = tanh(input);
}
#endif // HAVE_HALIDE
#ifdef HAVE_CANN
Ptr<BackendNode> initCannOp(const std::string& name,
const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes)
{
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
auto op = std::make_shared<ge::op::Tanh>(name);
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
op->set_input_x_by_name(*op_x, x->name.c_str());
auto x_desc = x->getTensorDesc();
op->update_input_desc_x(*x_desc);
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif // HAVE_CANN
#ifdef HAVE_DNN_NGRAPH
std::shared_ptr<ov::Node> initNgraphAPI(const ov::Output<ov::Node>& node)
{
return std::make_shared<ov::op::v0::Tanh>(node);
}
#endif // HAVE_DNN_NGRAPH
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const TanHFunctor::BaseDefaultFunctor<TanHFunctor>::ocl_kernel_name = "TanHForward";
struct SwishFunctor : public BaseDefaultFunctor<SwishFunctor>
{
using Layer = SwishLayer;
int vlanes;
explicit SwishFunctor() {
#if (CV_SIMD || CV_SIMD_SCALABLE)
vlanes = VTraits<v_float32>::vlanes();
#else
vlanes = 1;
#endif
}
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_HALIDE ||
backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ||
backendId == DNN_BACKEND_CANN;
}
inline float calculate(float x) const
{
return x / (1.f + exp(-x));
}
void apply(const float* srcptr, float* dstptr, int stripeStart, int len, size_t planeSize, int cn0, int cn1) const {
CV_UNUSED(stripeStart);
for (int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize) {
int i = 0;
#if (CV_SIMD || CV_SIMD_SCALABLE)
// x / (1.f + exp(-x));
v_float32 one = vx_setall_f32(1.0f),
zero = vx_setzero_f32();
for (; i <= len - vlanes; i += vlanes) {
v_float32 x = vx_load(srcptr + i);
v_float32 t = v_sub(zero, x);
t = v_exp(t);
t = v_add(one, t);
t = v_div(x, t);
vx_store(dstptr + i, t);
}
#endif
// In case SIMD is not available or len < vlanes
for (; i < len; i++) {
dstptr[i] = calculate(srcptr[i]);
}
}
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::SwishOp>(target, stream);
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = input / (1.0f + exp(-input));
}
#endif // HAVE_HALIDE
#ifdef HAVE_CANN
Ptr<BackendNode> initCannOp(const std::string& name,
const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes)
{
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
auto op = std::make_shared<ge::op::Swish>(name);
op->set_attr_scale(1.0f);
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
op->set_input_x_by_name(*op_x, x->name.c_str());
auto x_desc = x->getTensorDesc();
op->update_input_desc_x(*x_desc);
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif // HAVE_CANN
#ifdef HAVE_DNN_NGRAPH
std::shared_ptr<ov::Node> initNgraphAPI(const ov::Output<ov::Node>& node)
{
auto sigmoid = std::make_shared<ov::op::v0::Sigmoid>(node);
return std::make_shared<ov::op::v1::Multiply>(node, sigmoid);
}
#endif // HAVE_DNN_NGRAPH
int64 getFLOPSPerElement() const { return 3; }
};
template<>
const char* const SwishFunctor::BaseDefaultFunctor<SwishFunctor>::ocl_kernel_name = "SwishForward";
namespace {
constexpr float MISH_THRESHOLD = -36.73f;
}
/*
This implementation is derived from
https://github.com/vpisarev/ficus/blob/3c9a8b78f49e17489c5e1fd6dd5dd487348c99c2/lib/NN/OpElemwise.fx#L110
*/
struct MishFunctor : public BaseDefaultFunctor<MishFunctor>
{
using Layer = MishLayer;
int vlanes;
explicit MishFunctor() {
#if (CV_SIMD || CV_SIMD_SCALABLE)
vlanes = VTraits<v_float32>::vlanes();
#else
vlanes = 1;
#endif
}
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_HALIDE ||
backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ||
backendId == DNN_BACKEND_CANN;
}
inline float calculate(float x) const
{
float y = x > MISH_THRESHOLD ? std::exp(-x) : 1.f;
x *= x > MISH_THRESHOLD ? 1.f : 0.f;
return x * (1 + 2 * y) / (1 + 2 * y + 2 * y * y);
}
void apply(const float* srcptr, float* dstptr, int stripeStart, int len, size_t planeSize, int cn0, int cn1) const {
CV_UNUSED(stripeStart);
for (int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize) {
int i = 0;
#if (CV_SIMD || CV_SIMD_SCALABLE)
v_float32 v_threshold = vx_setall_f32(MISH_THRESHOLD), one = vx_setall_f32(1.f), z = vx_setzero_f32();
for (; i <= len - vlanes; i += vlanes) {
v_float32 x = vx_load(srcptr + i);
x = v_select(v_le(x, v_threshold), z, x);
v_float32 y = v_exp(v_sub(z, x));
v_float32 _2y = v_add(y, y),
_2ya1 = v_add(_2y, one);
x = v_div(v_mul(x, _2ya1), v_add(_2ya1, v_mul(_2y, y)));
vx_store(dstptr + i, x);
}
#endif
// In case SIMD is not available or len < vlanes
for (; i < len; i++) {
dstptr[i] = calculate(srcptr[i]);
}
}
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::MishOp>(target, stream);
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = input * tanh(log(1.0f + exp(input)));
}
#endif // HAVE_HALIDE
#ifdef HAVE_CANN
Ptr<BackendNode> initCannOp(const std::string& name,
const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes)
{
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
auto op = std::make_shared<ge::op::Mish>(name);
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
op->set_input_x_by_name(*op_x, x->name.c_str());
auto x_desc = x->getTensorDesc();
op->update_input_desc_x(*x_desc);
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif // HAVE_CANN
#ifdef HAVE_DNN_NGRAPH
std::shared_ptr<ov::Node> initNgraphAPI(const ov::Output<ov::Node>& node)
{
return std::make_shared<ov::op::v4::Mish>(node);
}
#endif // HAVE_DNN_NGRAPH
int64 getFLOPSPerElement() const { return 3; }
};
template<>
const char* const MishFunctor::BaseDefaultFunctor<MishFunctor>::ocl_kernel_name = "MishForward";
struct SigmoidFunctor : public BaseDefaultFunctor<SigmoidFunctor>
{
typedef SigmoidLayer Layer;
bool supportBackend(int backendId, int)
{
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return true;
#endif
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_HALIDE ||
backendId == DNN_BACKEND_CANN;
}
inline float calculate(float x) const
{
float y;
if (x >= 0)
y = 1.f / (1.f + exp(-x));
else {
y = exp(x);
y = y / (1 + y);
}
return y;
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::SigmoidOp>(target, stream);
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = 1.0f / (1.0f + exp(-input));
}
#endif // HAVE_HALIDE
#ifdef HAVE_CANN
Ptr<BackendNode> initCannOp(const std::string& name,
const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes)
{
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
auto op = std::make_shared<ge::op::Sigmoid>(name);
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
op->set_input_x_by_name(*op_x, x->name.c_str());
auto x_desc = x->getTensorDesc();
op->update_input_desc_x(*x_desc);
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif // HAVE_CANN
#ifdef HAVE_DNN_NGRAPH
std::shared_ptr<ov::Node> initNgraphAPI(const ov::Output<ov::Node>& node)
{
return std::make_shared<ov::op::v0::Sigmoid>(node);
}
#endif // HAVE_DNN_NGRAPH
int64 getFLOPSPerElement() const { return 3; }
};
template<>
const char* const SigmoidFunctor::BaseDefaultFunctor<SigmoidFunctor>::ocl_kernel_name = "SigmoidForward";
struct ELUFunctor : public BaseDefaultFunctor<ELUFunctor>
{
using Layer = ELULayer;
float alpha;
int vlanes;
explicit ELUFunctor(float alpha_ = 1.f) : alpha(alpha_) {
#if (CV_SIMD || CV_SIMD_SCALABLE)
vlanes = VTraits<v_float32>::vlanes();
#else
vlanes = 1;
#endif
}
bool supportBackend(int backendId, int)
{
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return true;
#endif
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_HALIDE ||
backendId == DNN_BACKEND_CANN;
}
inline float calculate(float x) const
{
return x >= 0.f ? x : alpha * (exp(x) - 1.f);
}
void apply(const float* srcptr, float* dstptr, int stripeStart, int len, size_t planeSize, int cn0, int cn1) const {
CV_UNUSED(stripeStart);
for (int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize) {
int i = 0;
#if (CV_SIMD || CV_SIMD_SCALABLE)
v_float32 z = vx_setzero_f32(), v_alpha = vx_setall_f32(alpha), one = vx_setall_f32(1.0f);
for (; i <= len - vlanes; i += vlanes) {
v_float32 x = vx_load(srcptr + i);
v_float32 t = v_mul(v_alpha, v_sub(v_exp(x), one));
x = v_select(v_ge(x, z), x, t);
vx_store(dstptr + i, x);
}
#endif
// In case SIMD is not available or len < vlanes
for (; i < len; i++) {
dstptr[i] = calculate(srcptr[i]);
}
}
}
inline void setKernelParams(ocl::Kernel& kernel) const
{
kernel.set(3, alpha);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::ELUOp>(target, stream, alpha);
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = select(input >= 0.0f, input, alpha * (exp(input) - 1));
}
#endif // HAVE_HALIDE
#ifdef HAVE_CANN
Ptr<BackendNode> initCannOp(const std::string& name,
const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes)
{
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
auto op = std::make_shared<ge::op::Elu>(name);
op->set_attr_alpha(alpha);
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
op->set_input_x_by_name(*op_x, x->name.c_str());
auto x_desc = x->getTensorDesc();
op->update_input_desc_x(*x_desc);
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif // HAVE_CANN
#ifdef HAVE_DNN_NGRAPH
std::shared_ptr<ov::Node> initNgraphAPI(const ov::Output<ov::Node>& node)
{
return std::make_shared<ov::op::v0::Elu>(node, alpha);
}
#endif // HAVE_DNN_NGRAPH
int64 getFLOPSPerElement() const { return 2; }
};
template<>
const char* const ELUFunctor::BaseDefaultFunctor<ELUFunctor>::ocl_kernel_name = "ELUForward";
struct AbsValFunctor : public BaseDefaultFunctor<AbsValFunctor>
{
typedef AbsLayer Layer;
bool supportBackend(int backendId, int)
{
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return true;
#endif
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_HALIDE ||
backendId == DNN_BACKEND_CANN;
}
inline float calculate(float x) const
{
return abs(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::AbsValOp>(target, stream);
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = abs(input);
}
#endif // HAVE_HALIDE
#ifdef HAVE_CANN
Ptr<BackendNode> initCannOp(const std::string& name,
const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes)
{
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
auto op = std::make_shared<ge::op::Abs>(name);
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
op->set_input_x_by_name(*op_x, x->name.c_str());
auto x_desc = x->getTensorDesc();
op->update_input_desc_x(*x_desc);
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif // HAVE_CANN
#ifdef HAVE_DNN_NGRAPH
std::shared_ptr<ov::Node> initNgraphAPI(const ov::Output<ov::Node>& node)
{
return std::make_shared<ov::op::v0::Abs>(node);
}
#endif // HAVE_DNN_NGRAPH
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const AbsValFunctor::BaseDefaultFunctor<AbsValFunctor>::ocl_kernel_name = "AbsValForward";
struct BNLLFunctor : public BaseDefaultFunctor<BNLLFunctor>
{
typedef BNLLLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_HALIDE ||
backendId == DNN_BACKEND_CANN;
}
inline float calculate(float x) const
{
// https://github.com/BVLC/caffe/blame/1.0/src/caffe/layers/bnll_layer.cpp#L17
return x > 0 ? x + log(1.f + exp(-x)) : log(1.f + exp(x));
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::BNLLOp>(target, stream);
}
#endif
#ifdef HAVE_CANN
Ptr<BackendNode> initCannOp(const std::string& name,
const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes)
{
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
auto op = std::make_shared<ge::op::BNLL>(name);
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
op->set_input_x_by_name(*op_x, x->name.c_str());
auto x_desc = x->getTensorDesc();
op->update_input_desc_x(*x_desc);
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif // HAVE_CANN
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
// https://github.com/BVLC/caffe/blame/1.0/src/caffe/layers/bnll_layer.cpp#L17
top(x, y, c, n) = max(input, 0) + log(1.0f + exp(-abs(input)));
}
#endif // HAVE_HALIDE
int64 getFLOPSPerElement() const { return 5; }
};
template<>
const char* const BNLLFunctor::BaseDefaultFunctor<BNLLFunctor>::ocl_kernel_name = "BNLLForward";
struct CeilFunctor : public BaseDefaultFunctor<CeilFunctor>
{
typedef CeilLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA || backendId == DNN_BACKEND_HALIDE;
}
inline float calculate(float x) const
{
return ceil(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::CeilOp>(target, stream);
}
#endif
#ifdef HAVE_CANN
Ptr<BackendNode> initCannOp(const std::string& name,
const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes)
{
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
auto op = std::make_shared<ge::op::BNLL>(name);
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
op->set_input_x_by_name(*op_x, x->name.c_str());
auto x_desc = x->getTensorDesc();
op->update_input_desc_x(*x_desc);
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif // HAVE_CANN
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = ceil(input);
}
#endif // HAVE_HALIDE
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<CeilFunctor>::ocl_kernel_name = "CeilForward";
struct FloorFunctor : public BaseDefaultFunctor<FloorFunctor>
{
typedef FloorLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_HALIDE ||
backendId == DNN_BACKEND_CANN;
}
inline float calculate(float x) const
{
return floor(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::FloorOp>(target, stream);
}
#endif
#ifdef HAVE_CANN
Ptr<BackendNode> initCannOp(const std::string& name,
const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes)
{
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
auto op = std::make_shared<ge::op::Floor>(name);
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
op->set_input_x_by_name(*op_x, x->name.c_str());
auto x_desc = x->getTensorDesc();
op->update_input_desc_x(*x_desc);
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif // HAVE_CANN
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = floor(input);
}
#endif // HAVE_HALIDE
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<FloorFunctor>::ocl_kernel_name = "FloorForward";
struct LogFunctor : public BaseDefaultFunctor<LogFunctor>
{
typedef LogLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA || backendId == DNN_BACKEND_HALIDE;
}
inline float calculate(float x) const
{
return log(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::LogOp>(target, stream);
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = log(input);
}
#endif // HAVE_HALIDE
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<LogFunctor>::ocl_kernel_name = "LogForward";
struct RoundFunctor : public BaseDefaultFunctor<RoundFunctor>
{
typedef RoundLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA || backendId == DNN_BACKEND_HALIDE;
}
inline float calculate(float x) const
{
// Rounds to even numbers in halfway cases, so 2.5 -> 2, -2.5 -> -2
int old_rounding_direction = std::fegetround();
std::fesetround(FE_TONEAREST);
float y = std::nearbyint(x);
std::fesetround(old_rounding_direction);
return y;
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::RoundOp>(target, stream);
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = round(input);
}
#endif // HAVE_HALIDE
int64 getFLOPSPerElement() const { return 2; }
};
template<>
const char* const BaseDefaultFunctor<RoundFunctor>::ocl_kernel_name = "RoundForward";
struct SqrtFunctor : public BaseDefaultFunctor<SqrtFunctor>
{
typedef SqrtLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA || backendId == DNN_BACKEND_HALIDE;
}
inline float calculate(float x) const
{
return sqrt(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::SqrtOp>(target, stream);
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = sqrt(input);
}
#endif // HAVE_HALIDE
#ifdef HAVE_DNN_NGRAPH
std::shared_ptr<ov::Node> initNgraphAPI(const ov::Output<ov::Node>& node)
{
return std::make_shared<ov::op::v0::Sqrt>(node);
}
#endif // HAVE_DNN_NGRAPH
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<SqrtFunctor>::ocl_kernel_name = "SqrtForward";
struct NotFunctor : public BaseDefaultFunctor<NotFunctor>
{
typedef NotLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA || backendId == DNN_BACKEND_HALIDE;
}
inline float calculate(float x) const
{
return floor(1.f - x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::NotOp>(target, stream);
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = floor(1.0f - input);
}
#endif // HAVE_HALIDE
int64 getFLOPSPerElement() const { return 2; }
};
template<>
const char* const BaseDefaultFunctor<NotFunctor>::ocl_kernel_name = "NotForward";
struct AcosFunctor : public BaseDefaultFunctor<AcosFunctor>
{
typedef AcosLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return acos(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::AcosOp>(target, stream);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<AcosFunctor>::ocl_kernel_name = "AcosForward";
struct AcoshFunctor : public BaseDefaultFunctor<AcoshFunctor>
{
typedef AcoshLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return acosh(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::AcoshOp>(target, stream);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<AcoshFunctor>::ocl_kernel_name = "AcoshForward";
struct AsinFunctor : public BaseDefaultFunctor<AsinFunctor>
{
typedef AsinLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return asin(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::AsinOp>(target, stream);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<AsinFunctor>::ocl_kernel_name = "AsinForward";
struct AsinhFunctor : public BaseDefaultFunctor<AsinhFunctor>
{
typedef AsinhLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return asinh(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::AsinhOp>(target, stream);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<AsinhFunctor>::ocl_kernel_name = "AsinhForward";
struct AtanFunctor : public BaseDefaultFunctor<AtanFunctor>
{
typedef AtanLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return atan(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::AtanOp>(target, stream);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<AtanFunctor>::ocl_kernel_name = "AtanForward";
struct AtanhFunctor : public BaseDefaultFunctor<AtanhFunctor>
{
typedef AtanhLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return atanh(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::AtanhOp>(target, stream);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<AtanhFunctor>::ocl_kernel_name = "AtanhForward";
struct CosFunctor : public BaseDefaultFunctor<CosFunctor>
{
typedef CosLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return cos(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::CosOp>(target, stream);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<CosFunctor>::ocl_kernel_name = "CosForward";
struct CoshFunctor : public BaseDefaultFunctor<CoshFunctor>
{
typedef CoshLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return cosh(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::CoshOp>(target, stream);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<CoshFunctor>::ocl_kernel_name = "CoshForward";
struct ErfFunctor : public BaseDefaultFunctor<ErfFunctor>
{
typedef ErfLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return erf(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::ErfOp>(target, stream);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<ErfFunctor>::ocl_kernel_name = "ErfForward";
struct HardSwishFunctor : public BaseDefaultFunctor<HardSwishFunctor>
{
using Layer = HardSwishLayer;
int vlanes;
explicit HardSwishFunctor() {
#if (CV_SIMD || CV_SIMD_SCALABLE)
vlanes = VTraits<v_float32>::vlanes();
#else
vlanes = 1;
#endif
}
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_CANN;
}
inline float calculate(float x) const
{
return x * std::max(0.f, std::min(1.f, x / 6.f + 0.5f));
}
void apply(const float* srcptr, float* dstptr, int stripeStart, int len, size_t planeSize, int cn0, int cn1) const {
CV_UNUSED(stripeStart);
for (int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize) {
int i = 0;
#if (CV_SIMD || CV_SIMD_SCALABLE)
v_float32 zero = vx_setzero_f32(), one = vx_setall_f32(1.0f),
half = vx_setall_f32(0.5f), sixth = vx_setall_f32(1 / 6.0f);
for (; i <= len - vlanes; i += vlanes) {
v_float32 x = vx_load(srcptr + i);
v_float32 t = v_add(v_mul(x, sixth), half);
t = v_min(one, t);
t = v_max(zero, t);
t = v_mul(x, t);
vx_store(dstptr + i, t);
}
#endif
// In case SIMD is not available or len > vlanes
for (; i < len; i++) {
dstptr[i] = calculate(srcptr[i]);
}
}
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::HardSwishOp>(target, stream);
}
#endif
#ifdef HAVE_CANN
Ptr<BackendNode> initCannOp(const std::string& name,
const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes)
{
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
auto op = std::make_shared<ge::op::HardSwish>(name);
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
op->set_input_x_by_name(*op_x, x->name.c_str());
auto x_desc = x->getTensorDesc();
op->update_input_desc_x(*x_desc);
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<HardSwishFunctor>::ocl_kernel_name = "HardSwishForward";
struct SinFunctor : public BaseDefaultFunctor<SinFunctor>
{
typedef SinLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return sin(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::SinOp>(target, stream);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<SinFunctor>::ocl_kernel_name = "SinForward";
struct SinhFunctor : public BaseDefaultFunctor<SinhFunctor>
{
typedef SinhLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return sinh(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::SinhOp>(target, stream);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<SinhFunctor>::ocl_kernel_name = "SinhForward";
struct SoftplusFunctor : public BaseDefaultFunctor<SoftplusFunctor>
{
typedef SoftplusLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return log1p(exp(x));
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::SoftplusOp>(target, stream);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<SoftplusFunctor>::ocl_kernel_name = "SoftplusForward";
struct SoftsignFunctor : public BaseDefaultFunctor<SoftsignFunctor>
{
typedef SoftsignLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return x / (1.f + abs(x));
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::SoftsignOp>(target, stream);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<SoftsignFunctor>::ocl_kernel_name = "SoftsignForward";
struct TanFunctor : public BaseDefaultFunctor<TanFunctor>
{
typedef TanLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return tan(x);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::TanOp>(target, stream);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<TanFunctor>::ocl_kernel_name = "TanForward";
struct CeluFunctor : public BaseDefaultFunctor<CeluFunctor>
{
using Layer = CeluLayer;
float alpha;
int vlanes;
explicit CeluFunctor(float alpha_ = 1.f) : alpha(alpha_) {
#if (CV_SIMD || CV_SIMD_SCALABLE)
vlanes = VTraits<v_float32>::vlanes();
#else
vlanes = 1;
#endif
}
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return std::max(0.f, x) + std::min(0.f, alpha * expm1(x / alpha));
}
void apply(const float* srcptr, float* dstptr, int stripeStart, int len, size_t planeSize, int cn0, int cn1) const {
CV_UNUSED(stripeStart);
for (int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize) {
int i = 0;
#if (CV_SIMD || CV_SIMD_SCALABLE)
v_float32 zero = vx_setzero_f32(), v_alpha = vx_setall_f32(alpha),
one = vx_setall_f32(1.0f), v_ralpha = vx_setall_f32(1.0f / alpha);
for (; i <= len - vlanes; i += vlanes) {
v_float32 x = vx_load(srcptr + i);
v_float32 t = v_min(zero, v_mul(v_alpha, v_sub(v_exp(v_mul(x, v_ralpha)), one)));
t = v_add(v_max(zero, x), t);
vx_store(dstptr + i, t);
}
#endif
// In case SIMD is not available or len < vlanes
for (; i < len; i++) {
dstptr[i] = calculate(srcptr[i]);
}
}
}
inline void setKernelParams(ocl::Kernel& kernel) const
{
kernel.set(3, alpha);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::CeluOp>(target, stream, alpha);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<CeluFunctor>::ocl_kernel_name = "CeluForward";
struct HardSigmoidFunctor : public BaseDefaultFunctor<HardSigmoidFunctor>
{
typedef HardSigmoidLayer Layer;
float alpha;
float beta;
explicit HardSigmoidFunctor(float alpha_ = 0.2f, float beta_ = 0.5f) : alpha(alpha_), beta(beta_) {}
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return max(0.f, min(1.f, alpha * x + beta));
}
inline void setKernelParams(ocl::Kernel& kernel) const
{
kernel.set(3, alpha);
kernel.set(4, beta);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::HardSigmoidOp>(target, stream, alpha, beta);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<HardSigmoidFunctor>::ocl_kernel_name = "HardSigmoidForward";
struct SeluFunctor : public BaseDefaultFunctor<SeluFunctor>
{
using Layer = SeluLayer;
float alpha;
float gamma;
int vlanes;
explicit SeluFunctor(float alpha_ = 1.67326319217681884765625f,
float gamma_ = 1.05070102214813232421875f)
: alpha(alpha_), gamma(gamma_) {
#if (CV_SIMD || CV_SIMD_SCALABLE)
vlanes = VTraits<v_float32>::vlanes();
#else
vlanes = 1;
#endif
}
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return gamma * (x > 0.f ? x : alpha * expm1(x));
}
void apply(const float* srcptr, float* dstptr, int stripeStart, int len, size_t planeSize, int cn0, int cn1) const {
CV_UNUSED(stripeStart);
for (int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize) {
int i = 0;
#if (CV_SIMD || CV_SIMD_SCALABLE)
v_float32 z = vx_setzero_f32(), one = vx_setall_f32(1.0f),
v_alpha = vx_setall_f32(alpha), v_gamma = vx_setall_f32(gamma);
for (; i <= len - vlanes; i += vlanes) {
v_float32 x = vx_load(srcptr + i);
v_float32 t = v_mul(v_alpha, v_sub(v_exp(x), one));
x = v_select(v_le(x, z), t, x);
x = v_mul(v_gamma, x);
vx_store(dstptr + i, x);
}
#endif
// In case SIMD is not available or len > vlanes
for (; i < len; i++) {
dstptr[i] = calculate(srcptr[i]);
}
}
}
inline void setKernelParams(ocl::Kernel& kernel) const
{
kernel.set(3, alpha);
kernel.set(4, gamma);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::SeluOp>(target, stream, alpha, gamma);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<SeluFunctor>::ocl_kernel_name = "SeluForward";
struct ThresholdedReluFunctor : public BaseDefaultFunctor<ThresholdedReluFunctor>
{
typedef ThresholdedReluLayer Layer;
float alpha;
explicit ThresholdedReluFunctor(float alpha_ = 1.f) : alpha(alpha_) {}
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return x > alpha ? x : 0.f;
}
inline void setKernelParams(ocl::Kernel& kernel) const
{
kernel.set(3, alpha);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::ThresholdedReluOp>(target, stream, alpha);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const BaseDefaultFunctor<ThresholdedReluFunctor>::ocl_kernel_name = "ThresholdedReluForward";
struct PowerFunctor : public BaseFunctor
{
typedef PowerLayer Layer;
float power, scale, shift;
float originPower, originScale, originShift;
explicit PowerFunctor(float power_ = 1.f, float scale_ = 1.f, float shift_ = 0.f)
: power(power_), scale(scale_), shift(shift_),
originPower(power_), originScale(scale_), originShift(shift_) {}
bool supportBackend(int backendId, int targetId)
{
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return true;
#endif
{
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_HALIDE;
}
}
void finalize()
{
power = originPower;
scale = originScale;
shift = originShift;
}
void apply(const float* srcptr, float* dstptr, int stripeStart, int len, size_t planeSize, int cn0, int cn1) const
{
CV_UNUSED(stripeStart);
float a = scale, b = shift, p = power;
if( p == 1.f )
{
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
for( int i = 0; i < len; i++ )
{
float x = srcptr[i];
dstptr[i] = a*x + b;
}
}
}
else
{
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
for( int i = 0; i < len; i++ )
{
float x = srcptr[i];
dstptr[i] = pow(a*x + b, p);
}
}
}
}
#ifdef HAVE_OPENCL
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
String buildopt = oclGetTMacro(inputs[0]);
for (size_t i = 0; i < inputs.size(); i++)
{
UMat& src = inputs[i];
UMat& dst = outputs[i];
ocl::Kernel kernel("PowForward", ocl::dnn::activations_oclsrc, buildopt);
kernel.set(0, (int)src.total());
kernel.set(1, ocl::KernelArg::PtrReadOnly(src));
kernel.set(2, ocl::KernelArg::PtrWriteOnly(dst));
kernel.set(3, (float)power);
kernel.set(4, (float)scale);
kernel.set(5, (float)shift);
size_t gSize = src.total();
CV_Assert(kernel.run(1, &gSize, NULL, false));
}
return true;
}
#endif
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::PowerOp>(target, stream, power, scale, shift);
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Expr topExpr = (scale == 1.0f ? input : input * scale);
if (shift)
{
topExpr += shift;
}
if (power != 1.0f)
{
topExpr = pow(topExpr, power);
}
top(x, y, c, n) = topExpr;
}
#endif // HAVE_HALIDE
#ifdef HAVE_CANN
Ptr<BackendNode> initCannOp(const std::string& name,
const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes)
{
CV_Error(Error::StsNotImplemented, "");
}
#endif // HAVE_CANN
#ifdef HAVE_DNN_NGRAPH
std::shared_ptr<ov::Node> initNgraphAPI(const ov::Output<ov::Node>& node)
{
auto scale_node = std::make_shared<ov::op::v0::Constant>(ov::element::f32,
ov::Shape{1}, &scale);
auto shift_node = std::make_shared<ov::op::v0::Constant>(ov::element::f32,
ov::Shape{1}, &shift);
auto mul = std::make_shared<ov::op::v1::Multiply>(scale_node, node, ov::op::AutoBroadcastType::NUMPY);
auto scale_shift = std::make_shared<ov::op::v1::Add>(mul, shift_node, ov::op::AutoBroadcastType::NUMPY);
if (power == 1)
return scale_shift;
auto power_node = std::make_shared<ov::op::v0::Constant>(ov::element::f32,
ov::Shape{1}, &power);
return std::make_shared<ov::op::v1::Power>(scale_shift, power_node, ov::op::AutoBroadcastType::NUMPY);
}
#endif // HAVE_DNN_NGRAPH
#ifdef HAVE_WEBNN
ml::Operand initWebnnAPI(const ml::GraphBuilder& builder, const ml::Operand& input)
{
CV_Error(Error::StsNotImplemented, "");
ml::Operand operand;
return operand;
}
#endif
bool tryFuse(Ptr<dnn::Layer>& top)
{
if (power != 1.0f && shift != 0.0f)
return false;
Mat w, b;
top->getScaleShift(w, b);
if ((w.empty() && b.empty()) || w.total() > 1 || b.total() > 1)
return false;
float nextScale = w.empty() ? 1.0f : w.at<float>(0);
float nextShift = b.empty() ? 0.0f : b.at<float>(0);
scale = std::pow(scale, power) * nextScale;
shift = nextScale * shift + nextShift;
return true;
}
void getScaleShift(Mat& _scale, Mat& _shift) const
{
if (power == 1.0f)
{
_scale = Mat(1, 1, CV_32F, Scalar(scale));
_shift = Mat(1, 1, CV_32F, Scalar(shift));
}
}
int64 getFLOPSPerElement() const { return power == 1 ? 2 : 10; }
};
struct ExpFunctor : public BaseDefaultFunctor<ExpFunctor>
{
typedef ExpLayer Layer;
float base, scale, shift;
float normScale, normShift;
ExpFunctor(float base_ = -1.f, float scale_ = 1.f, float shift_ = 0.f)
: base(base_), scale(scale_), shift(shift_)
{
// For base > 0 :
// y = base^(scale * input + shift)
// ln(y) = ln(base)*(scale * input + shift)
// y = exp((ln(base)*scale) * input + (ln(base)*shift))
// y = exp(normalized_scale * input + normalized_shift)
CV_Check(base, base == -1.f || base > 0.f, "Unsupported 'base' value");
const float ln_base = (base == -1.f) ? 1.f : log(base);
normScale = scale * ln_base;
normShift = shift * ln_base;
}
bool supportBackend(int backendId, int targetId)
{
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_HALIDE || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH;
}
inline float calculate(float x) const
{
return exp(normScale * x + normShift);
}
inline void setKernelParams(ocl::Kernel& kernel) const
{
kernel.set(3, normScale);
kernel.set(4, normShift);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::ExpOp>(target, stream, normScale, normShift);
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
top(x, y, c, n) = exp(normScale * input + normShift);
}
#endif // HAVE_HALIDE
#ifdef HAVE_DNN_NGRAPH
std::shared_ptr<ov::Node> initNgraphAPI(const ov::Output<ov::Node>& node)
{
auto scale_node = std::make_shared<ov::op::v0::Constant>(ov::element::f32,
ov::Shape{1}, &normScale);
auto shift_node = std::make_shared<ov::op::v0::Constant>(ov::element::f32,
ov::Shape{1}, &normShift);
auto mul = std::make_shared<ov::op::v1::Multiply>(scale_node, node, ov::op::AutoBroadcastType::NUMPY);
auto scale_shift = std::make_shared<ov::op::v1::Add>(mul, shift_node, ov::op::AutoBroadcastType::NUMPY);
return std::make_shared<ov::op::v0::Exp>(scale_shift);
}
#endif // HAVE_DNN_NGRAPH
int64 getFLOPSPerElement() const { return 3; }
};
template<>
const char* const ExpFunctor::BaseDefaultFunctor<ExpFunctor>::ocl_kernel_name = "ExpForward";
struct ChannelsPReLUFunctor : public BaseFunctor
{
typedef ChannelsPReLULayer Layer;
Mat scale;
#ifdef HAVE_OPENCL
UMat scale_umat;
std::string oclKernelName = "ChannelsPReLUForward";
#endif
explicit ChannelsPReLUFunctor(const Mat& scale_=Mat()) : scale(scale_)
{
}
bool supportBackend(int backendId, int)
{
#ifdef HAVE_INF_ENGINE
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
return true;
#endif
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA ||
backendId == DNN_BACKEND_HALIDE ||
backendId == DNN_BACKEND_CANN;
}
void apply(const float* srcptr, float* dstptr, int stripeStart, int len, size_t planeSize, int cn0, int cn1) const
{
CV_UNUSED(stripeStart);
CV_Assert(scale.isContinuous() && scale.type() == CV_32F);
const float* scaleptr = scale.ptr<float>();
CV_Assert( 0 <= cn0 && cn0 < cn1 && cn1 <= (int)scale.total() );
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
{
float s = scaleptr[cn];
int i = 0;
#if CV_SIMD128
v_float32x4 s4 = v_setall_f32(s), z = v_setzero_f32();
for( ; i <= len - 16; i += 16 )
{
v_float32x4 x0 = v_load(srcptr + i);
v_float32x4 x1 = v_load(srcptr + i + 4);
v_float32x4 x2 = v_load(srcptr + i + 8);
v_float32x4 x3 = v_load(srcptr + i + 12);
x0 = v_select(v_ge(x0, z), x0, v_mul(x0, s4));
x1 = v_select(v_ge(x1, z), x1, v_mul(x1, s4));
x2 = v_select(v_ge(x2, z), x2, v_mul(x2, s4));
x3 = v_select(v_ge(x3, z), x3, v_mul(x3, s4));
v_store(dstptr + i, x0);
v_store(dstptr + i + 4, x1);
v_store(dstptr + i + 8, x2);
v_store(dstptr + i + 12, x3);
}
#endif
for( ; i < len; i++ )
{
float x = srcptr[i];
dstptr[i] = x >= 0.f ? x : s*x;
}
}
}
#ifdef HAVE_OPENCL
bool applyOCL(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
if (scale_umat.empty())
scale.copyTo(scale_umat);
std::vector<UMat> inputs;
std::vector<UMat> outputs;
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
String buildopt = oclGetTMacro(inputs[0]);
for (size_t i = 0; i < inputs.size(); i++)
{
UMat& src = inputs[i];
UMat& dst = outputs[i];
ocl::Kernel kernel(oclKernelName.c_str(), ocl::dnn::activations_oclsrc, buildopt);
kernel.set(0, (int)src.total());
kernel.set(1, (int)src.size[1]);
kernel.set(2, (int)total(shape(src), 2));
kernel.set(3, ocl::KernelArg::PtrReadOnly(src));
kernel.set(4, ocl::KernelArg::PtrWriteOnly(dst));
kernel.set(5, ocl::KernelArg::PtrReadOnly(scale_umat));
size_t gSize = src.total();
CV_Assert(kernel.run(1, &gSize, NULL, false));
}
return true;
}
#endif
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::ChannelwiseReLUOp>(target, stream, scale);
}
#endif
#ifdef HAVE_HALIDE
void attachHalide(const Halide::Expr& input, Halide::Func& top)
{
Halide::Var x("x"), y("y"), c("c"), n("n");
auto weights = wrapToHalideBuffer(scale, {(int)scale.total()});
top(x, y, c, n) = select(input >= 0.0f, input, weights(c) * input);
}
#endif // HAVE_HALIDE
#ifdef HAVE_CANN
Ptr<BackendNode> initCannOp(const std::string& name,
const std::vector<Ptr<BackendWrapper> > &inputs,
const std::vector<Ptr<BackendNode> >& nodes)
{
auto x = inputs[0].dynamicCast<CannBackendWrapper>();
auto op_x = nodes[0].dynamicCast<CannBackendNode>()->getOp();
auto x_desc = x->getTensorDesc();
auto output_desc = std::make_shared<ge::TensorDesc>(ge::Shape(), ge::FORMAT_NCHW, ge::DT_FLOAT);
auto op = std::make_shared<ge::op::PRelu>(name);
op->set_input_x_by_name(*op_x, x->name.c_str());
op->update_input_desc_x(*x_desc);
std::vector<int> shape_{scale.size[0]}; // scale should be a 1d of shape [n] tensor, and it is a 2d mat of shape [n, 1] in opencv
auto op_const_slope = std::make_shared<CannConstOp>(scale.data, scale.type(), shape_, cv::format("%s_weight", name.c_str()));
op->set_input_weight(*(op_const_slope->getOp()));
op->update_input_desc_weight(*(op_const_slope->getTensorDesc()));
op->update_output_desc_y(*output_desc);
return Ptr<BackendNode>(new CannBackendNode(op));
}
#endif // HAVE_CANN
#ifdef HAVE_DNN_NGRAPH
std::shared_ptr<ov::Node> initNgraphAPI(const ov::Output<ov::Node>& node)
{
const size_t numChannels = scale.total();
auto slope = std::make_shared<ov::op::v0::Constant>(ov::element::f32, ov::Shape{numChannels}, scale.data);
return std::make_shared<ov::op::v0::PRelu>(node, slope);
}
#endif // HAVE_DNN_NGRAPH
#ifdef HAVE_WEBNN
ml::Operand initWebnnAPI(const ml::GraphBuilder& builder, const ml::Operand& input)
{
CV_Error(Error::StsNotImplemented, "");
ml::Operand operand;
return operand;
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
struct PReLUFunctor : public ChannelsPReLUFunctor
{
explicit PReLUFunctor(const Mat& scale_=Mat()) : ChannelsPReLUFunctor(scale_)
{
#ifdef HAVE_OPENCL
oclKernelName = "PReLUForward";
#endif
}
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CANN ||
backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH;
}
void apply(const float* srcptr, float* dstptr, int stripeStart, int len, size_t planeSize, int cn0, int cn1) const
{
CV_UNUSED(stripeStart);
CV_Assert(scale.isContinuous() && scale.type() == CV_32F);
if (stripeStart < 0)
CV_Error(Error::StsNotImplemented, "PReLUFunctor requires stripe offset parameter");
const float* scaleptr = scale.ptr<float>() + cn0 * planeSize + stripeStart;
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize, scaleptr += planeSize )
{
int i = 0;
#if CV_SIMD128
v_float32x4 z = v_setzero_f32();
for( ; i <= len - 16; i += 16 )
{
v_float32x4 x0 = v_load(srcptr + i);
v_float32x4 x1 = v_load(srcptr + i + 4);
v_float32x4 x2 = v_load(srcptr + i + 8);
v_float32x4 x3 = v_load(srcptr + i + 12);
v_float32x4 s0 = v_load(scaleptr + i);
v_float32x4 s1 = v_load(scaleptr + i + 4);
v_float32x4 s2 = v_load(scaleptr + i + 8);
v_float32x4 s3 = v_load(scaleptr + i + 12);
x0 = v_select(v_ge(x0, z), x0, v_mul(x0, s0));
x1 = v_select(v_ge(x1, z), x1, v_mul(x1, s1));
x2 = v_select(v_ge(x2, z), x2, v_mul(x2, s2));
x3 = v_select(v_ge(x3, z), x3, v_mul(x3, s3));
v_store(dstptr + i, x0);
v_store(dstptr + i + 4, x1);
v_store(dstptr + i + 8, x2);
v_store(dstptr + i + 12, x3);
}
#endif
for( ; i < len; i++ )
{
float x = srcptr[i];
float s = scaleptr[i];
dstptr[i] = x >= 0.f ? x : s*x;
}
}
}
#ifdef HAVE_DNN_NGRAPH
std::shared_ptr<ov::Node> initNgraphAPI(const ov::Output<ov::Node>& node)
{
auto shape = getShape<size_t>(scale);
auto slope = std::make_shared<ov::op::v0::Constant>(ov::element::f32, shape, scale.ptr<float>());
return std::make_shared<ov::op::v0::PRelu>(node, slope);
}
#endif // HAVE_DNN_NGRAPH
};
struct SignFunctor : public BaseDefaultFunctor<SignFunctor>
{
typedef SignLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return x > 0.f ? 1.f : (x < 0.f ? -1.f : 0.f);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::SignOp>(target, stream);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const SignFunctor::BaseDefaultFunctor<SignFunctor>::ocl_kernel_name = "SignForward";
struct ShrinkFunctor : public BaseDefaultFunctor<ShrinkFunctor>
{
typedef ShrinkLayer Layer;
float bias;
float lambd;
explicit ShrinkFunctor(float bias_ = 0.0f, float lambd_ = 0.5f) : bias(bias_), lambd(lambd_) {}
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return x > lambd ? x - bias : (x < -lambd ? x + bias : 0.f);
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::ShrinkOp>(target, stream, bias, lambd);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const ShrinkFunctor::BaseDefaultFunctor<ShrinkFunctor>::ocl_kernel_name = "ShrinkForward";
struct ReciprocalFunctor : public BaseDefaultFunctor<ReciprocalFunctor>
{
typedef ReciprocalLayer Layer;
bool supportBackend(int backendId, int)
{
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_CUDA;
}
inline float calculate(float x) const
{
return 1.f/x;
}
#ifdef HAVE_CUDA
Ptr<BackendNode> initCUDA(int target, csl::Stream stream)
{
return make_cuda_node<cuda4dnn::ReciprocalOp>(target, stream);
}
#endif
int64 getFLOPSPerElement() const { return 1; }
};
template<>
const char* const ReciprocalFunctor::BaseDefaultFunctor<ReciprocalFunctor>::ocl_kernel_name = "ReciprocalForward";
Ptr<ReLULayer> ReLULayer::create(const LayerParams& params)
{
float negativeSlope = params.get<float>("negative_slope", 0.f);
Ptr<ReLULayer> l(new ElementWiseLayer<ReLUFunctor>(ReLUFunctor(negativeSlope)));
l->setParamsFrom(params);
l->negativeSlope = negativeSlope;
return l;
}
Ptr<ReLU6Layer> ReLU6Layer::create(const LayerParams& params)
{
float minValue = params.get<float>("min_value", 0.0f);
float maxValue = params.get<float>("max_value", 6.0f);
Ptr<ReLU6Layer> l(new ElementWiseLayer<ReLU6Functor>(ReLU6Functor(minValue, maxValue)));
l->setParamsFrom(params);
l->minValue = minValue;
l->maxValue = maxValue;
return l;
}
Ptr<GeluLayer> GeluLayer::create(const LayerParams& params)
{
Ptr<GeluLayer> l(new ElementWiseLayer<GeluFunctor>(GeluFunctor()));
l->setParamsFrom(params);
return l;
}
Ptr<GeluApproximationLayer> GeluApproximationLayer::create(const LayerParams& params)
{
Ptr<GeluApproximationLayer> l(new ElementWiseLayer<GeluApproximationFunctor>(GeluApproximationFunctor()));
l->setParamsFrom(params);
return l;
}
Ptr<TanHLayer> TanHLayer::create(const LayerParams& params)
{
Ptr<TanHLayer> l(new ElementWiseLayer<TanHFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<SwishLayer> SwishLayer::create(const LayerParams& params)
{
Ptr<SwishLayer> l(new ElementWiseLayer<SwishFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<MishLayer> MishLayer::create(const LayerParams& params)
{
Ptr<MishLayer> l(new ElementWiseLayer<MishFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<SigmoidLayer> SigmoidLayer::create(const LayerParams& params)
{
Ptr<SigmoidLayer> l(new ElementWiseLayer<SigmoidFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<ELULayer> ELULayer::create(const LayerParams& params)
{
float alpha = params.get<float>("alpha", 1.0f);
Ptr<ELULayer> l(new ElementWiseLayer<ELUFunctor>(ELUFunctor(alpha)));
l->setParamsFrom(params);
l->alpha = alpha;
return l;
}
Ptr<AbsLayer> AbsLayer::create(const LayerParams& params)
{
Ptr<AbsLayer> l(new ElementWiseLayer<AbsValFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<BNLLLayer> BNLLLayer::create(const LayerParams& params)
{
Ptr<BNLLLayer> l(new ElementWiseLayer<BNLLFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<CeilLayer> CeilLayer::create(const LayerParams& params)
{
Ptr<CeilLayer> l(new ElementWiseLayer<CeilFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<FloorLayer> FloorLayer::create(const LayerParams& params)
{
Ptr<FloorLayer> l(new ElementWiseLayer<FloorFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<LogLayer> LogLayer::create(const LayerParams& params)
{
Ptr<LogLayer> l(new ElementWiseLayer<LogFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<RoundLayer> RoundLayer::create(const LayerParams& params)
{
Ptr<RoundLayer> l(new ElementWiseLayer<RoundFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<SqrtLayer> SqrtLayer::create(const LayerParams& params)
{
Ptr<SqrtLayer> l(new ElementWiseLayer<SqrtFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<NotLayer> NotLayer::create(const LayerParams& params)
{
Ptr<NotLayer> l(new ElementWiseLayer<NotFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<AcosLayer> AcosLayer::create(const LayerParams& params)
{
Ptr<AcosLayer> l(new ElementWiseLayer<AcosFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<AcoshLayer> AcoshLayer::create(const LayerParams& params)
{
Ptr<AcoshLayer> l(new ElementWiseLayer<AcoshFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<AsinLayer> AsinLayer::create(const LayerParams& params)
{
Ptr<AsinLayer> l(new ElementWiseLayer<AsinFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<AsinhLayer> AsinhLayer::create(const LayerParams& params)
{
Ptr<AsinhLayer> l(new ElementWiseLayer<AsinhFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<AtanLayer> AtanLayer::create(const LayerParams& params)
{
Ptr<AtanLayer> l(new ElementWiseLayer<AtanFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<AtanhLayer> AtanhLayer::create(const LayerParams& params)
{
Ptr<AtanhLayer> l(new ElementWiseLayer<AtanhFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<CosLayer> CosLayer::create(const LayerParams& params)
{
Ptr<CosLayer> l(new ElementWiseLayer<CosFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<CoshLayer> CoshLayer::create(const LayerParams& params)
{
Ptr<CoshLayer> l(new ElementWiseLayer<CoshFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<ErfLayer> ErfLayer::create(const LayerParams& params)
{
Ptr<ErfLayer> l(new ElementWiseLayer<ErfFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<HardSwishLayer> HardSwishLayer::create(const LayerParams& params)
{
Ptr<HardSwishLayer> l(new ElementWiseLayer<HardSwishFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<SinLayer> SinLayer::create(const LayerParams& params)
{
Ptr<SinLayer> l(new ElementWiseLayer<SinFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<SinhLayer> SinhLayer::create(const LayerParams& params)
{
Ptr<SinhLayer> l(new ElementWiseLayer<SinhFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<SoftplusLayer> SoftplusLayer::create(const LayerParams& params)
{
Ptr<SoftplusLayer> l(new ElementWiseLayer<SoftplusFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<SoftsignLayer> SoftsignLayer::create(const LayerParams& params)
{
Ptr<SoftsignLayer> l(new ElementWiseLayer<SoftsignFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<TanLayer> TanLayer::create(const LayerParams& params)
{
Ptr<TanLayer> l(new ElementWiseLayer<TanFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<CeluLayer> CeluLayer::create(const LayerParams& params)
{
float alpha = params.get<float>("alpha", 1.f);
Ptr<CeluLayer> l(new ElementWiseLayer<CeluFunctor>(CeluFunctor(alpha)));
l->setParamsFrom(params);
l->alpha = alpha;
return l;
}
Ptr<HardSigmoidLayer> HardSigmoidLayer::create(const LayerParams& params)
{
float alpha = params.get<float>("alpha", 0.2f);
float beta = params.get<float>("beta", 0.5f);
Ptr<HardSigmoidLayer> l(new ElementWiseLayer<HardSigmoidFunctor>(HardSigmoidFunctor(alpha, beta)));
l->setParamsFrom(params);
l->alpha = alpha;
l->beta = beta;
return l;
}
Ptr<SeluLayer> SeluLayer::create(const LayerParams& params)
{
float alpha = params.get<float>("alpha", 1.67326319217681884765625f);
float gamma = params.get<float>("gamma", 1.05070102214813232421875f);
Ptr<SeluLayer> l(new ElementWiseLayer<SeluFunctor>(SeluFunctor(alpha, gamma)));
l->setParamsFrom(params);
l->alpha = alpha;
l->gamma = gamma;
return l;
}
Ptr<ThresholdedReluLayer> ThresholdedReluLayer::create(const LayerParams& params)
{
float alpha = params.get<float>("alpha", 1.f);
Ptr<ThresholdedReluLayer> l(new ElementWiseLayer<ThresholdedReluFunctor>(ThresholdedReluFunctor(alpha)));
l->setParamsFrom(params);
l->alpha = alpha;
return l;
}
Ptr<PowerLayer> PowerLayer::create(const LayerParams& params)
{
float power = params.get<float>("power", 1.0f);
float scale = params.get<float>("scale", 1.0f);
float shift = params.get<float>("shift", 0.0f);
Ptr<PowerLayer> l(new ElementWiseLayer<PowerFunctor>(PowerFunctor(power, scale, shift)));
l->setParamsFrom(params);
l->power = power;
l->scale = scale;
l->shift = shift;
return l;
}
Ptr<ExpLayer> ExpLayer::create(const LayerParams& params)
{
float base = params.get<float>("base", -1.0f);
float scale = params.get<float>("scale", 1.0f);
float shift = params.get<float>("shift", 0.0f);
Ptr<ExpLayer> l(new ElementWiseLayer<ExpFunctor>(ExpFunctor(base, scale, shift)));
l->setParamsFrom(params);
l->base = base;
l->scale = scale;
l->shift = shift;
return l;
}
Ptr<Layer> ChannelsPReLULayer::create(const LayerParams& params)
{
CV_Assert(params.blobs.size() == 1);
Mat scale = params.blobs[0];
float slope = *scale.ptr<float>();
if (scale.total() == 1 || countNonZero(scale != slope) == 0)
{
LayerParams reluParams = params;
reluParams.set("negative_slope", slope);
return ReLULayer::create(reluParams);
}
Ptr<Layer> l;
// Check first two dimensions of scale (batch, channels)
MatShape scaleShape = shape(scale);
if (std::count_if(scaleShape.begin(), scaleShape.end(), [](int d){ return d != 1;}) > 1)
{
l = new ElementWiseLayer<PReLUFunctor>(PReLUFunctor(scale));
}
else
{
l = new ElementWiseLayer<ChannelsPReLUFunctor>(ChannelsPReLUFunctor(scale));
}
l->setParamsFrom(params);
return l;
}
Ptr<SignLayer> SignLayer::create(const LayerParams& params)
{
Ptr<SignLayer> l(new ElementWiseLayer<SignFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<ReciprocalLayer> ReciprocalLayer::create(const LayerParams& params)
{
Ptr<ReciprocalLayer> l(new ElementWiseLayer<ReciprocalFunctor>());
l->setParamsFrom(params);
return l;
}
Ptr<ShrinkLayer> ShrinkLayer::create(const LayerParams& params)
{
float bias = params.get<float>("bias", 0.f);
float lambd = params.get<float>("lambd", 0.5f);
Ptr<ShrinkLayer> l(new ElementWiseLayer<ShrinkFunctor>(ShrinkFunctor(bias, lambd)));
l->setParamsFrom(params);
l->bias = bias;
l->lambd = lambd;
return l;
}
}
}