Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

167 lines
5.1 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#ifndef __OPENCV_DNN_IE_NGRAPH_HPP__
#define __OPENCV_DNN_IE_NGRAPH_HPP__
#include "op_inf_engine.hpp"
#ifdef HAVE_DNN_NGRAPH
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4245)
#pragma warning(disable : 4268)
#endif
#include <ngraph/ngraph.hpp>
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // HAVE_DNN_NGRAPH
namespace cv { namespace dnn {
#ifdef HAVE_DNN_NGRAPH
class InfEngineNgraphNode;
class InfEngineNgraphNet
{
public:
InfEngineNgraphNet(detail::NetImplBase& netImpl);
InfEngineNgraphNet(detail::NetImplBase& netImpl, InferenceEngine::CNNNetwork& net);
void addOutput(const Ptr<InfEngineNgraphNode>& node);
bool isInitialized();
void init(Target targetId);
void forward(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers, bool isAsync);
void initPlugin(InferenceEngine::CNNNetwork& net);
ngraph::ParameterVector setInputs(const std::vector<cv::Mat>& inputs, const std::vector<std::string>& names);
void addBlobs(const std::vector<cv::Ptr<BackendWrapper> >& ptrs);
void createNet(Target targetId);
void setNodePtr(std::shared_ptr<ngraph::Node>* ptr);
void reset();
//private:
detail::NetImplBase& netImpl_;
void release();
int getNumComponents();
void dfs(std::shared_ptr<ngraph::Node>& node, std::vector<std::shared_ptr<ngraph::Node>>& comp,
std::unordered_map<std::string, bool>& used);
ngraph::ParameterVector inputs_vec;
std::shared_ptr<ngraph::Function> ngraph_function;
std::vector<std::vector<std::shared_ptr<ngraph::Node>>> components;
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>* > all_nodes;
InferenceEngine::ExecutableNetwork netExec;
InferenceEngine::BlobMap allBlobs;
std::string device_name;
bool isInit = false;
struct NgraphReqWrapper
{
NgraphReqWrapper() : isReady(true) {}
void makePromises(const std::vector<Ptr<BackendWrapper> >& outs);
InferenceEngine::InferRequest req;
std::vector<cv::AsyncPromise> outProms;
std::vector<std::string> outsNames;
bool isReady;
};
std::vector<Ptr<NgraphReqWrapper> > infRequests;
InferenceEngine::CNNNetwork cnn;
bool hasNetOwner;
std::unordered_map<std::string, Ptr<InfEngineNgraphNode> > requestedOutputs;
std::map<std::string, InferenceEngine::TensorDesc> outputsDesc;
};
class InfEngineNgraphNode : public BackendNode
{
public:
InfEngineNgraphNode(const std::vector<Ptr<BackendNode> >& nodes, Ptr<Layer>& layer,
std::vector<Mat*>& inputs, std::vector<Mat>& outputs,
std::vector<Mat>& internals);
InfEngineNgraphNode(std::shared_ptr<ngraph::Node>&& _node);
InfEngineNgraphNode(const std::shared_ptr<ngraph::Node>& _node);
void setName(const std::string& name);
// Inference Engine network object that allows to obtain the outputs of this layer.
std::shared_ptr<ngraph::Node> node;
Ptr<InfEngineNgraphNet> net;
Ptr<dnn::Layer> cvLayer;
};
class NgraphBackendWrapper : public BackendWrapper
{
public:
NgraphBackendWrapper(int targetId, const Mat& m);
NgraphBackendWrapper(Ptr<BackendWrapper> wrapper);
~NgraphBackendWrapper();
static Ptr<BackendWrapper> create(Ptr<BackendWrapper> wrapper);
virtual void copyToHost() CV_OVERRIDE;
virtual void setHostDirty() CV_OVERRIDE;
Mat* host;
InferenceEngine::DataPtr dataPtr;
InferenceEngine::Blob::Ptr blob;
AsyncArray futureMat;
};
InferenceEngine::DataPtr ngraphDataNode(const Ptr<BackendWrapper>& ptr);
InferenceEngine::DataPtr ngraphDataOutputNode(
const Ptr<BackendWrapper>& ptr,
const InferenceEngine::TensorDesc& description,
const std::string name);
// This is a fake class to run networks from Model Optimizer. Objects of that
// class simulate responses of layers are imported by OpenCV and supported by
// Inference Engine. The main difference is that they do not perform forward pass.
class NgraphBackendLayer : public Layer
{
public:
NgraphBackendLayer(const InferenceEngine::CNNNetwork &t_net_) : t_net(t_net_) {};
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE;
virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs,
OutputArrayOfArrays internals) CV_OVERRIDE;
virtual bool supportBackend(int backendId) CV_OVERRIDE;
private:
InferenceEngine::CNNNetwork t_net;
};
#endif // HAVE_DNN_NGRAPH
void forwardNgraph(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
Ptr<BackendNode>& node, bool isAsync);
}} // namespace cv::dnn
#endif // __OPENCV_DNN_IE_NGRAPH_HPP__