mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
130 lines
3.9 KiB
130 lines
3.9 KiB
''' |
|
SVN and KNearest digit recognition. |
|
|
|
Sample loads a dataset of handwritten digits from 'digits.png'. |
|
Then it trains a SVN and KNearest classifiers on it and evaluates |
|
their accuracy. Moment-based image deskew is used to improve |
|
the recognition accuracy. |
|
|
|
Usage: |
|
digits.py |
|
''' |
|
|
|
import numpy as np |
|
import cv2 |
|
from multiprocessing.pool import ThreadPool |
|
from common import clock, mosaic |
|
|
|
SZ = 20 # size of each digit is SZ x SZ |
|
CLASS_N = 10 |
|
|
|
def load_digits(fn): |
|
print 'loading "%s" ...' % fn |
|
digits_img = cv2.imread(fn, 0) |
|
h, w = digits_img.shape |
|
digits = [np.hsplit(row, w/SZ) for row in np.vsplit(digits_img, h/SZ)] |
|
digits = np.array(digits).reshape(-1, SZ, SZ) |
|
labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N) |
|
return digits, labels |
|
|
|
def deskew(img): |
|
m = cv2.moments(img) |
|
if abs(m['mu02']) < 1e-2: |
|
return img.copy() |
|
skew = m['mu11']/m['mu02'] |
|
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]]) |
|
img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR) |
|
return img |
|
|
|
class StatModel(object): |
|
def load(self, fn): |
|
self.model.load(fn) |
|
def save(self, fn): |
|
self.model.save(fn) |
|
|
|
class KNearest(StatModel): |
|
def __init__(self, k = 3): |
|
self.k = k |
|
self.model = cv2.KNearest() |
|
|
|
def train(self, samples, responses): |
|
self.model = cv2.KNearest() |
|
self.model.train(samples, responses) |
|
|
|
def predict(self, samples): |
|
retval, results, neigh_resp, dists = self.model.find_nearest(samples, self.k) |
|
return results.ravel() |
|
|
|
class SVM(StatModel): |
|
def __init__(self, C = 1, gamma = 0.5): |
|
self.params = dict( kernel_type = cv2.SVM_RBF, |
|
svm_type = cv2.SVM_C_SVC, |
|
C = C, |
|
gamma = gamma ) |
|
self.model = cv2.SVM() |
|
|
|
def train(self, samples, responses): |
|
self.model = cv2.SVM() |
|
self.model.train(samples, responses, params = self.params) |
|
|
|
def predict(self, samples): |
|
return self.model.predict_all(samples).ravel() |
|
|
|
|
|
def evaluate_model(model, digits, samples, labels): |
|
resp = model.predict(samples) |
|
err = (labels != resp).mean() |
|
print 'error: %.2f %%' % (err*100) |
|
|
|
confusion = np.zeros((10, 10), np.int32) |
|
for i, j in zip(labels, resp): |
|
confusion[i, j] += 1 |
|
print 'confusion matrix:' |
|
print confusion |
|
print |
|
|
|
vis = [] |
|
for img, flag in zip(digits, resp == labels): |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
|
if not flag: |
|
img[...,:2] = 0 |
|
vis.append(img) |
|
return mosaic(25, vis) |
|
|
|
|
|
if __name__ == '__main__': |
|
print __doc__ |
|
|
|
digits, labels = load_digits('digits.png') |
|
|
|
print 'preprocessing...' |
|
# shuffle digits |
|
rand = np.random.RandomState(12345) |
|
shuffle = rand.permutation(len(digits)) |
|
digits, labels = digits[shuffle], labels[shuffle] |
|
|
|
digits2 = map(deskew, digits) |
|
samples = np.float32(digits2).reshape(-1, SZ*SZ) / 255.0 |
|
|
|
train_n = int(0.9*len(samples)) |
|
cv2.imshow('test set', mosaic(25, digits[train_n:])) |
|
digits_train, digits_test = np.split(digits2, [train_n]) |
|
samples_train, samples_test = np.split(samples, [train_n]) |
|
labels_train, labels_test = np.split(labels, [train_n]) |
|
|
|
|
|
print 'training KNearest...' |
|
model = KNearest(k=1) |
|
model.train(samples_train, labels_train) |
|
vis = evaluate_model(model, digits_test, samples_test, labels_test) |
|
cv2.imshow('KNearest test', vis) |
|
|
|
print 'training SVM...' |
|
model = SVM(C=4.66, gamma=0.08) |
|
model.train(samples_train, labels_train) |
|
vis = evaluate_model(model, digits_test, samples_test, labels_test) |
|
cv2.imshow('SVM test', vis) |
|
print 'saving SVM as "digits_svm.dat"...' |
|
model.save('digits_svm.dat') |
|
|
|
cv2.waitKey(0)
|
|
|