mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
171 lines
4.7 KiB
171 lines
4.7 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace testUtil |
|
{ |
|
|
|
cv::RNG rng(/*std::time(0)*/0); |
|
|
|
const float sigma = 1.f; |
|
const float pointsMaxX = 500.f; |
|
const float pointsMaxY = 500.f; |
|
const int testRun = 5000; |
|
|
|
void generatePoints(cv::Mat points); |
|
void addNoise(cv::Mat points); |
|
|
|
cv::Mat generateTransform(const cv::videostab::MotionModel model); |
|
|
|
double performTest(const cv::videostab::MotionModel model, int size); |
|
|
|
} |
|
|
|
void testUtil::generatePoints(cv::Mat points) |
|
{ |
|
CV_Assert(!points.empty()); |
|
for(int i = 0; i < points.cols; ++i) |
|
{ |
|
points.at<float>(0, i) = rng.uniform(0.f, pointsMaxX); |
|
points.at<float>(1, i) = rng.uniform(0.f, pointsMaxY); |
|
points.at<float>(2, i) = 1.f; |
|
} |
|
} |
|
|
|
void testUtil::addNoise(cv::Mat points) |
|
{ |
|
CV_Assert(!points.empty()); |
|
for(int i = 0; i < points.cols; i++) |
|
{ |
|
points.at<float>(0, i) += static_cast<float>(rng.gaussian(sigma)); |
|
points.at<float>(1, i) += static_cast<float>(rng.gaussian(sigma)); |
|
|
|
} |
|
} |
|
|
|
|
|
cv::Mat testUtil::generateTransform(const cv::videostab::MotionModel model) |
|
{ |
|
/*----------Params----------*/ |
|
const float minAngle = 0.f, maxAngle = static_cast<float>(CV_PI); |
|
const float minScale = 0.5f, maxScale = 2.f; |
|
const float maxTranslation = 100.f; |
|
const float affineCoeff = 3.f; |
|
/*----------Params----------*/ |
|
|
|
cv::Mat transform = cv::Mat::eye(3, 3, CV_32F); |
|
|
|
if(model != cv::videostab::MM_ROTATION) |
|
{ |
|
transform.at<float>(0,2) = rng.uniform(-maxTranslation, maxTranslation); |
|
transform.at<float>(1,2) = rng.uniform(-maxTranslation, maxTranslation); |
|
} |
|
|
|
if(model != cv::videostab::MM_AFFINE) |
|
{ |
|
|
|
if(model != cv::videostab::MM_TRANSLATION_AND_SCALE && |
|
model != cv::videostab::MM_TRANSLATION) |
|
{ |
|
const float angle = rng.uniform(minAngle, maxAngle); |
|
|
|
transform.at<float>(1,1) = transform.at<float>(0,0) = std::cos(angle); |
|
transform.at<float>(0,1) = std::sin(angle); |
|
transform.at<float>(1,0) = -transform.at<float>(0,1); |
|
|
|
} |
|
|
|
if(model == cv::videostab::MM_TRANSLATION_AND_SCALE || |
|
model == cv::videostab::MM_SIMILARITY) |
|
{ |
|
const float scale = rng.uniform(minScale, maxScale); |
|
|
|
transform.at<float>(0,0) *= scale; |
|
transform.at<float>(1,1) *= scale; |
|
|
|
} |
|
|
|
} |
|
else |
|
{ |
|
transform.at<float>(0,0) = rng.uniform(-affineCoeff, affineCoeff); |
|
transform.at<float>(0,1) = rng.uniform(-affineCoeff, affineCoeff); |
|
transform.at<float>(1,0) = rng.uniform(-affineCoeff, affineCoeff); |
|
transform.at<float>(1,1) = rng.uniform(-affineCoeff, affineCoeff); |
|
} |
|
|
|
return transform; |
|
} |
|
|
|
|
|
double testUtil::performTest(const cv::videostab::MotionModel model, int size) |
|
{ |
|
cv::Ptr<cv::videostab::MotionEstimatorRansacL2> estimator = cv::makePtr<cv::videostab::MotionEstimatorRansacL2>(model); |
|
|
|
estimator->setRansacParams(cv::videostab::RansacParams(size, 3.f*testUtil::sigma /*3 sigma rule*/, 0.5f, 0.5f)); |
|
|
|
double disparity = 0.; |
|
|
|
for(int attempt = 0; attempt < testUtil::testRun; attempt++) |
|
{ |
|
const cv::Mat transform = testUtil::generateTransform(model); |
|
|
|
const int pointsNumber = testUtil::rng.uniform(10, 100); |
|
|
|
cv::Mat points(3, pointsNumber, CV_32F); |
|
|
|
testUtil::generatePoints(points); |
|
|
|
cv::Mat transformedPoints = transform * points; |
|
|
|
testUtil::addNoise(transformedPoints); |
|
|
|
const cv::Mat src = points.rowRange(0,2).t(); |
|
const cv::Mat dst = transformedPoints.rowRange(0,2).t(); |
|
|
|
bool isOK = false; |
|
const cv::Mat estTransform = estimator->estimate(src.reshape(2), dst.reshape(2), &isOK); |
|
|
|
CV_Assert(isOK); |
|
const cv::Mat testPoints = estTransform * points; |
|
|
|
const double norm = cv::norm(testPoints, transformedPoints, cv::NORM_INF); |
|
|
|
disparity = std::max(disparity, norm); |
|
} |
|
|
|
return disparity; |
|
|
|
} |
|
|
|
TEST(Regression, MM_TRANSLATION) |
|
{ |
|
EXPECT_LT(testUtil::performTest(cv::videostab::MM_TRANSLATION, 2), 7.f); |
|
} |
|
|
|
TEST(Regression, MM_TRANSLATION_AND_SCALE) |
|
{ |
|
EXPECT_LT(testUtil::performTest(cv::videostab::MM_TRANSLATION_AND_SCALE, 3), 7.f); |
|
} |
|
|
|
TEST(Regression, MM_ROTATION) |
|
{ |
|
EXPECT_LT(testUtil::performTest(cv::videostab::MM_ROTATION, 2), 7.f); |
|
} |
|
|
|
TEST(Regression, MM_RIGID) |
|
{ |
|
EXPECT_LT(testUtil::performTest(cv::videostab::MM_RIGID, 3), 7.f); |
|
} |
|
|
|
TEST(Regression, MM_SIMILARITY) |
|
{ |
|
EXPECT_LT(testUtil::performTest(cv::videostab::MM_SIMILARITY, 4), 7.f); |
|
} |
|
|
|
TEST(Regression, MM_AFFINE) |
|
{ |
|
EXPECT_LT(testUtil::performTest(cv::videostab::MM_AFFINE, 6), 9.f); |
|
}
|
|
|