mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
6.1 KiB
186 lines
6.1 KiB
''' |
|
MOSSE tracking sample |
|
|
|
This sample implements correlation-based tracking approach, described in [1]. |
|
|
|
Usage: |
|
mosse.py [--pause] [<video source>] |
|
|
|
--pause - Start with playback paused at the first video frame. |
|
Useful for tracking target selection. |
|
|
|
Draw rectangles around objects with a mouse to track them. |
|
|
|
Keys: |
|
SPACE - pause video |
|
c - clear targets |
|
|
|
[1] David S. Bolme et al. "Visual Object Tracking using Adaptive Correlation Filters" |
|
http://www.cs.colostate.edu/~bolme/publications/Bolme2010Tracking.pdf |
|
''' |
|
|
|
import numpy as np |
|
import cv2 |
|
from common import draw_str, RectSelector |
|
import video |
|
|
|
def rnd_warp(a): |
|
h, w = a.shape[:2] |
|
T = np.zeros((2, 3)) |
|
coef = 0.2 |
|
ang = (np.random.rand()-0.5)*coef |
|
c, s = np.cos(ang), np.sin(ang) |
|
T[:2, :2] = [[c,-s], [s, c]] |
|
T[:2, :2] += (np.random.rand(2, 2) - 0.5)*coef |
|
c = (w/2, h/2) |
|
T[:,2] = c - np.dot(T[:2, :2], c) |
|
return cv2.warpAffine(a, T, (w, h), borderMode = cv2.BORDER_REFLECT) |
|
|
|
def divSpec(A, B): |
|
Ar, Ai = A[...,0], A[...,1] |
|
Br, Bi = B[...,0], B[...,1] |
|
C = (Ar+1j*Ai)/(Br+1j*Bi) |
|
C = np.dstack([np.real(C), np.imag(C)]).copy() |
|
return C |
|
|
|
eps = 1e-5 |
|
|
|
class MOSSE: |
|
def __init__(self, frame, rect): |
|
x1, y1, x2, y2 = rect |
|
w, h = map(cv2.getOptimalDFTSize, [x2-x1, y2-y1]) |
|
x1, y1 = (x1+x2-w)//2, (y1+y2-h)//2 |
|
self.pos = x, y = x1+0.5*(w-1), y1+0.5*(h-1) |
|
self.size = w, h |
|
img = cv2.getRectSubPix(frame, (w, h), (x, y)) |
|
|
|
self.win = cv2.createHanningWindow((w, h), cv2.CV_32F) |
|
g = np.zeros((h, w), np.float32) |
|
g[h//2, w//2] = 1 |
|
g = cv2.GaussianBlur(g, (-1, -1), 2.0) |
|
g /= g.max() |
|
|
|
self.G = cv2.dft(g, flags=cv2.DFT_COMPLEX_OUTPUT) |
|
self.H1 = np.zeros_like(self.G) |
|
self.H2 = np.zeros_like(self.G) |
|
for i in xrange(128): |
|
a = self.preprocess(rnd_warp(img)) |
|
A = cv2.dft(a, flags=cv2.DFT_COMPLEX_OUTPUT) |
|
self.H1 += cv2.mulSpectrums(self.G, A, 0, conjB=True) |
|
self.H2 += cv2.mulSpectrums( A, A, 0, conjB=True) |
|
self.update_kernel() |
|
self.update(frame) |
|
|
|
def update(self, frame, rate = 0.125): |
|
(x, y), (w, h) = self.pos, self.size |
|
self.last_img = img = cv2.getRectSubPix(frame, (w, h), (x, y)) |
|
img = self.preprocess(img) |
|
self.last_resp, (dx, dy), self.psr = self.correlate(img) |
|
self.good = self.psr > 8.0 |
|
if not self.good: |
|
return |
|
|
|
self.pos = x+dx, y+dy |
|
self.last_img = img = cv2.getRectSubPix(frame, (w, h), self.pos) |
|
img = self.preprocess(img) |
|
|
|
A = cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT) |
|
H1 = cv2.mulSpectrums(self.G, A, 0, conjB=True) |
|
H2 = cv2.mulSpectrums( A, A, 0, conjB=True) |
|
self.H1 = self.H1 * (1.0-rate) + H1 * rate |
|
self.H2 = self.H2 * (1.0-rate) + H2 * rate |
|
self.update_kernel() |
|
|
|
@property |
|
def state_vis(self): |
|
f = cv2.idft(self.H, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT ) |
|
h, w = f.shape |
|
f = np.roll(f, -h//2, 0) |
|
f = np.roll(f, -w//2, 1) |
|
kernel = np.uint8( (f-f.min()) / f.ptp()*255 ) |
|
resp = self.last_resp |
|
resp = np.uint8(np.clip(resp/resp.max(), 0, 1)*255) |
|
vis = np.hstack([self.last_img, kernel, resp]) |
|
return vis |
|
|
|
def draw_state(self, vis): |
|
(x, y), (w, h) = self.pos, self.size |
|
x1, y1, x2, y2 = int(x-0.5*w), int(y-0.5*h), int(x+0.5*w), int(y+0.5*h) |
|
cv2.rectangle(vis, (x1, y1), (x2, y2), (0, 0, 255)) |
|
if self.good: |
|
cv2.circle(vis, (int(x), int(y)), 2, (0, 0, 255), -1) |
|
else: |
|
cv2.line(vis, (x1, y1), (x2, y2), (0, 0, 255)) |
|
cv2.line(vis, (x2, y1), (x1, y2), (0, 0, 255)) |
|
draw_str(vis, (x1, y2+16), 'PSR: %.2f' % self.psr) |
|
|
|
def preprocess(self, img): |
|
img = np.log(np.float32(img)+1.0) |
|
img = (img-img.mean()) / (img.std()+eps) |
|
return img*self.win |
|
|
|
def correlate(self, img): |
|
C = cv2.mulSpectrums(cv2.dft(img, flags=cv2.DFT_COMPLEX_OUTPUT), self.H, 0, conjB=True) |
|
resp = cv2.idft(C, flags=cv2.DFT_SCALE | cv2.DFT_REAL_OUTPUT) |
|
h, w = resp.shape |
|
_, mval, _, (mx, my) = cv2.minMaxLoc(resp) |
|
side_resp = resp.copy() |
|
cv2.rectangle(side_resp, (mx-5, my-5), (mx+5, my+5), 0, -1) |
|
smean, sstd = side_resp.mean(), side_resp.std() |
|
psr = (mval-smean) / (sstd+eps) |
|
return resp, (mx-w//2, my-h//2), psr |
|
|
|
def update_kernel(self): |
|
self.H = divSpec(self.H1, self.H2) |
|
self.H[...,1] *= -1 |
|
|
|
class App: |
|
def __init__(self, video_src, paused = False): |
|
self.cap = video.create_capture(video_src) |
|
_, self.frame = self.cap.read() |
|
cv2.imshow('frame', self.frame) |
|
self.rect_sel = RectSelector('frame', self.onrect) |
|
self.trackers = [] |
|
self.paused = paused |
|
|
|
def onrect(self, rect): |
|
frame_gray = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY) |
|
tracker = MOSSE(frame_gray, rect) |
|
self.trackers.append(tracker) |
|
|
|
def run(self): |
|
while True: |
|
if not self.paused: |
|
ret, self.frame = self.cap.read() |
|
if not ret: |
|
break |
|
frame_gray = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY) |
|
for tracker in self.trackers: |
|
tracker.update(frame_gray) |
|
|
|
vis = self.frame.copy() |
|
for tracker in self.trackers: |
|
tracker.draw_state(vis) |
|
if len(self.trackers) > 0: |
|
cv2.imshow('tracker state', self.trackers[-1].state_vis) |
|
self.rect_sel.draw(vis) |
|
|
|
cv2.imshow('frame', vis) |
|
ch = cv2.waitKey(10) |
|
if ch == 27: |
|
break |
|
if ch == ord(' '): |
|
self.paused = not self.paused |
|
if ch == ord('c'): |
|
self.trackers = [] |
|
|
|
|
|
if __name__ == '__main__': |
|
print __doc__ |
|
import sys, getopt |
|
opts, args = getopt.getopt(sys.argv[1:], '', ['pause']) |
|
opts = dict(opts) |
|
try: video_src = args[0] |
|
except: video_src = '0' |
|
|
|
App(video_src, paused = '--pause' in opts).run()
|
|
|