mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
331 lines
13 KiB
331 lines
13 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "test_chessboardgenerator.hpp" |
|
|
|
namespace cv { |
|
|
|
ChessBoardGenerator::ChessBoardGenerator(const Size& _patternSize) : sensorWidth(32), sensorHeight(24), |
|
squareEdgePointsNum(200), min_cos(std::sqrt(3.f)*0.5f), cov(0.5), |
|
patternSize(_patternSize), rendererResolutionMultiplier(4), tvec(Mat::zeros(1, 3, CV_32F)) |
|
{ |
|
rvec.create(3, 1, CV_32F); |
|
Rodrigues(Mat::eye(3, 3, CV_32F), rvec); |
|
} |
|
|
|
void ChessBoardGenerator::generateEdge(const Point3f& p1, const Point3f& p2, vector<Point3f>& out) const |
|
{ |
|
Point3f step = (p2 - p1) * (1.f/squareEdgePointsNum); |
|
for(size_t n = 0; n < squareEdgePointsNum; ++n) |
|
out.push_back( p1 + step * (float)n); |
|
} |
|
|
|
Size ChessBoardGenerator::cornersSize() const |
|
{ |
|
return Size(patternSize.width-1, patternSize.height-1); |
|
} |
|
|
|
struct Mult |
|
{ |
|
float m; |
|
Mult(int mult) : m((float)mult) {} |
|
Point2f operator()(const Point2f& p)const { return p * m; } |
|
}; |
|
|
|
void ChessBoardGenerator::generateBasis(Point3f& pb1, Point3f& pb2) const |
|
{ |
|
RNG& rng = theRNG(); |
|
|
|
Vec3f n; |
|
for(;;) |
|
{ |
|
n[0] = rng.uniform(-1.f, 1.f); |
|
n[1] = rng.uniform(-1.f, 1.f); |
|
n[2] = rng.uniform(0.0f, 1.f); |
|
float len = (float)norm(n); |
|
if (len < 1e-3) |
|
continue; |
|
n[0]/=len; |
|
n[1]/=len; |
|
n[2]/=len; |
|
|
|
if (n[2] > min_cos) |
|
break; |
|
} |
|
|
|
Vec3f n_temp = n; n_temp[0] += 100; |
|
Vec3f b1 = n.cross(n_temp); |
|
Vec3f b2 = n.cross(b1); |
|
float len_b1 = (float)norm(b1); |
|
float len_b2 = (float)norm(b2); |
|
|
|
pb1 = Point3f(b1[0]/len_b1, b1[1]/len_b1, b1[2]/len_b1); |
|
pb2 = Point3f(b2[0]/len_b1, b2[1]/len_b2, b2[2]/len_b2); |
|
} |
|
|
|
|
|
Mat ChessBoardGenerator::generateChessBoard(const Mat& bg, const Mat& camMat, const Mat& distCoeffs, |
|
const Point3f& zero, const Point3f& pb1, const Point3f& pb2, |
|
float sqWidth, float sqHeight, const vector<Point3f>& whole, |
|
vector<Point2f>& corners) const |
|
{ |
|
vector< vector<Point> > squares_black; |
|
for(int i = 0; i < patternSize.width; ++i) |
|
for(int j = 0; j < patternSize.height; ++j) |
|
if ( (i % 2 == 0 && j % 2 == 0) || (i % 2 != 0 && j % 2 != 0) ) |
|
{ |
|
vector<Point3f> pts_square3d; |
|
vector<Point2f> pts_square2d; |
|
|
|
Point3f p1 = zero + (i + 0) * sqWidth * pb1 + (j + 0) * sqHeight * pb2; |
|
Point3f p2 = zero + (i + 1) * sqWidth * pb1 + (j + 0) * sqHeight * pb2; |
|
Point3f p3 = zero + (i + 1) * sqWidth * pb1 + (j + 1) * sqHeight * pb2; |
|
Point3f p4 = zero + (i + 0) * sqWidth * pb1 + (j + 1) * sqHeight * pb2; |
|
generateEdge(p1, p2, pts_square3d); |
|
generateEdge(p2, p3, pts_square3d); |
|
generateEdge(p3, p4, pts_square3d); |
|
generateEdge(p4, p1, pts_square3d); |
|
|
|
projectPoints(pts_square3d, rvec, tvec, camMat, distCoeffs, pts_square2d); |
|
squares_black.resize(squares_black.size() + 1); |
|
vector<Point2f> temp; |
|
approxPolyDP(pts_square2d, temp, 1.0, true); |
|
transform(temp.begin(), temp.end(), back_inserter(squares_black.back()), Mult(rendererResolutionMultiplier)); |
|
} |
|
|
|
/* calculate corners */ |
|
corners3d.clear(); |
|
for(int j = 0; j < patternSize.height - 1; ++j) |
|
for(int i = 0; i < patternSize.width - 1; ++i) |
|
corners3d.push_back(zero + (i + 1) * sqWidth * pb1 + (j + 1) * sqHeight * pb2); |
|
corners.clear(); |
|
projectPoints(corners3d, rvec, tvec, camMat, distCoeffs, corners); |
|
|
|
vector<Point3f> whole3d; |
|
vector<Point2f> whole2d; |
|
generateEdge(whole[0], whole[1], whole3d); |
|
generateEdge(whole[1], whole[2], whole3d); |
|
generateEdge(whole[2], whole[3], whole3d); |
|
generateEdge(whole[3], whole[0], whole3d); |
|
projectPoints(whole3d, rvec, tvec, camMat, distCoeffs, whole2d); |
|
vector<Point2f> temp_whole2d; |
|
approxPolyDP(whole2d, temp_whole2d, 1.0, true); |
|
|
|
vector< vector<Point > > whole_contour(1); |
|
transform(temp_whole2d.begin(), temp_whole2d.end(), |
|
back_inserter(whole_contour.front()), Mult(rendererResolutionMultiplier)); |
|
|
|
Mat result; |
|
if (rendererResolutionMultiplier == 1) |
|
{ |
|
result = bg.clone(); |
|
drawContours(result, whole_contour, -1, Scalar::all(255), FILLED, LINE_AA); |
|
drawContours(result, squares_black, -1, Scalar::all(0), FILLED, LINE_AA); |
|
} |
|
else |
|
{ |
|
Mat tmp; |
|
resize(bg, tmp, bg.size() * rendererResolutionMultiplier, 0, 0, INTER_LINEAR_EXACT); |
|
drawContours(tmp, whole_contour, -1, Scalar::all(255), FILLED, LINE_AA); |
|
drawContours(tmp, squares_black, -1, Scalar::all(0), FILLED, LINE_AA); |
|
resize(tmp, result, bg.size(), 0, 0, INTER_AREA); |
|
} |
|
|
|
return result; |
|
} |
|
|
|
Mat ChessBoardGenerator::operator ()(const Mat& bg, const Mat& camMat, const Mat& distCoeffs, vector<Point2f>& corners) const |
|
{ |
|
cov = std::min(cov, 0.8); |
|
double fovx, fovy, focalLen; |
|
Point2d principalPoint; |
|
double aspect; |
|
calibrationMatrixValues( camMat, bg.size(), sensorWidth, sensorHeight, |
|
fovx, fovy, focalLen, principalPoint, aspect); |
|
|
|
RNG& rng = theRNG(); |
|
|
|
float d1 = static_cast<float>(rng.uniform(0.1, 10.0)); |
|
float ah = static_cast<float>(rng.uniform(-fovx/2 * cov, fovx/2 * cov) * CV_PI / 180); |
|
float av = static_cast<float>(rng.uniform(-fovy/2 * cov, fovy/2 * cov) * CV_PI / 180); |
|
|
|
Point3f p; |
|
p.z = std::cos(ah) * d1; |
|
p.x = std::sin(ah) * d1; |
|
p.y = p.z * std::tan(av); |
|
|
|
Point3f pb1, pb2; |
|
generateBasis(pb1, pb2); |
|
|
|
float cbHalfWidth = static_cast<float>(norm(p) * std::sin( std::min(fovx, fovy) * 0.5 * CV_PI / 180)); |
|
float cbHalfHeight = cbHalfWidth * patternSize.height / patternSize.width; |
|
|
|
float cbHalfWidthEx = cbHalfWidth * ( patternSize.width + 1) / patternSize.width; |
|
float cbHalfHeightEx = cbHalfHeight * (patternSize.height + 1) / patternSize.height; |
|
|
|
vector<Point3f> pts3d(4); |
|
vector<Point2f> pts2d(4); |
|
for(;;) |
|
{ |
|
pts3d[0] = p + pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2; |
|
pts3d[1] = p + pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2; |
|
pts3d[2] = p - pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2; |
|
pts3d[3] = p - pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2; |
|
|
|
/* can remake with better perf */ |
|
projectPoints(pts3d, rvec, tvec, camMat, distCoeffs, pts2d); |
|
|
|
bool inrect1 = pts2d[0].x < bg.cols && pts2d[0].y < bg.rows && pts2d[0].x > 0 && pts2d[0].y > 0; |
|
bool inrect2 = pts2d[1].x < bg.cols && pts2d[1].y < bg.rows && pts2d[1].x > 0 && pts2d[1].y > 0; |
|
bool inrect3 = pts2d[2].x < bg.cols && pts2d[2].y < bg.rows && pts2d[2].x > 0 && pts2d[2].y > 0; |
|
bool inrect4 = pts2d[3].x < bg.cols && pts2d[3].y < bg.rows && pts2d[3].x > 0 && pts2d[3].y > 0; |
|
|
|
if (inrect1 && inrect2 && inrect3 && inrect4) |
|
break; |
|
|
|
cbHalfWidth*=0.8f; |
|
cbHalfHeight = cbHalfWidth * patternSize.height / patternSize.width; |
|
|
|
cbHalfWidthEx = cbHalfWidth * ( patternSize.width + 1) / patternSize.width; |
|
cbHalfHeightEx = cbHalfHeight * (patternSize.height + 1) / patternSize.height; |
|
} |
|
|
|
Point3f zero = p - pb1 * cbHalfWidth - cbHalfHeight * pb2; |
|
float sqWidth = 2 * cbHalfWidth/patternSize.width; |
|
float sqHeight = 2 * cbHalfHeight/patternSize.height; |
|
|
|
return generateChessBoard(bg, camMat, distCoeffs, zero, pb1, pb2, sqWidth, sqHeight, pts3d, corners); |
|
} |
|
|
|
|
|
Mat ChessBoardGenerator::operator ()(const Mat& bg, const Mat& camMat, const Mat& distCoeffs, |
|
const Size2f& squareSize, vector<Point2f>& corners) const |
|
{ |
|
cov = std::min(cov, 0.8); |
|
double fovx, fovy, focalLen; |
|
Point2d principalPoint; |
|
double aspect; |
|
calibrationMatrixValues( camMat, bg.size(), sensorWidth, sensorHeight, |
|
fovx, fovy, focalLen, principalPoint, aspect); |
|
|
|
RNG& rng = theRNG(); |
|
|
|
float d1 = static_cast<float>(rng.uniform(0.1, 10.0)); |
|
float ah = static_cast<float>(rng.uniform(-fovx/2 * cov, fovx/2 * cov) * CV_PI / 180); |
|
float av = static_cast<float>(rng.uniform(-fovy/2 * cov, fovy/2 * cov) * CV_PI / 180); |
|
|
|
Point3f p; |
|
p.z = std::cos(ah) * d1; |
|
p.x = std::sin(ah) * d1; |
|
p.y = p.z * std::tan(av); |
|
|
|
Point3f pb1, pb2; |
|
generateBasis(pb1, pb2); |
|
|
|
float cbHalfWidth = squareSize.width * patternSize.width * 0.5f; |
|
float cbHalfHeight = squareSize.height * patternSize.height * 0.5f; |
|
|
|
float cbHalfWidthEx = cbHalfWidth * ( patternSize.width + 1) / patternSize.width; |
|
float cbHalfHeightEx = cbHalfHeight * (patternSize.height + 1) / patternSize.height; |
|
|
|
vector<Point3f> pts3d(4); |
|
vector<Point2f> pts2d(4); |
|
for(;;) |
|
{ |
|
pts3d[0] = p + pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2; |
|
pts3d[1] = p + pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2; |
|
pts3d[2] = p - pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2; |
|
pts3d[3] = p - pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2; |
|
|
|
/* can remake with better perf */ |
|
projectPoints(pts3d, rvec, tvec, camMat, distCoeffs, pts2d); |
|
|
|
bool inrect1 = pts2d[0].x < bg.cols && pts2d[0].y < bg.rows && pts2d[0].x > 0 && pts2d[0].y > 0; |
|
bool inrect2 = pts2d[1].x < bg.cols && pts2d[1].y < bg.rows && pts2d[1].x > 0 && pts2d[1].y > 0; |
|
bool inrect3 = pts2d[2].x < bg.cols && pts2d[2].y < bg.rows && pts2d[2].x > 0 && pts2d[2].y > 0; |
|
bool inrect4 = pts2d[3].x < bg.cols && pts2d[3].y < bg.rows && pts2d[3].x > 0 && pts2d[3].y > 0; |
|
|
|
if ( inrect1 && inrect2 && inrect3 && inrect4) |
|
break; |
|
|
|
p.z *= 1.1f; |
|
} |
|
|
|
Point3f zero = p - pb1 * cbHalfWidth - cbHalfHeight * pb2; |
|
|
|
return generateChessBoard(bg, camMat, distCoeffs, zero, pb1, pb2, |
|
squareSize.width, squareSize.height, pts3d, corners); |
|
} |
|
|
|
Mat ChessBoardGenerator::operator ()(const Mat& bg, const Mat& camMat, const Mat& distCoeffs, |
|
const Size2f& squareSize, const Point3f& pos, vector<Point2f>& corners) const |
|
{ |
|
cov = std::min(cov, 0.8); |
|
Point3f p = pos; |
|
Point3f pb1, pb2; |
|
generateBasis(pb1, pb2); |
|
|
|
float cbHalfWidth = squareSize.width * patternSize.width * 0.5f; |
|
float cbHalfHeight = squareSize.height * patternSize.height * 0.5f; |
|
|
|
float cbHalfWidthEx = cbHalfWidth * ( patternSize.width + 1) / patternSize.width; |
|
float cbHalfHeightEx = cbHalfHeight * (patternSize.height + 1) / patternSize.height; |
|
|
|
vector<Point3f> pts3d(4); |
|
vector<Point2f> pts2d(4); |
|
|
|
pts3d[0] = p + pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2; |
|
pts3d[1] = p + pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2; |
|
pts3d[2] = p - pb1 * cbHalfWidthEx - cbHalfHeightEx * pb2; |
|
pts3d[3] = p - pb1 * cbHalfWidthEx + cbHalfHeightEx * pb2; |
|
|
|
/* can remake with better perf */ |
|
projectPoints(pts3d, rvec, tvec, camMat, distCoeffs, pts2d); |
|
|
|
Point3f zero = p - pb1 * cbHalfWidth - cbHalfHeight * pb2; |
|
|
|
return generateChessBoard(bg, camMat, distCoeffs, zero, pb1, pb2, |
|
squareSize.width, squareSize.height, pts3d, corners); |
|
} |
|
|
|
} // namespace
|
|
|