Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3977 lines
125 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include "opencv2/flann.hpp"
#include "chessboard.hpp"
#include "math.h"
//#define CV_DETECTORS_CHESSBOARD_DEBUG
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
#include <opencv2/highgui.hpp>
static cv::Mat debug_image;
#endif
using namespace std;
namespace cv {
namespace details {
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// magic numbers used for chessboard corner detection
/////////////////////////////////////////////////////////////////////////////
static const float CORNERS_SEARCH = 0.5F; // percentage of the edge length to the next corner used to find new corners
static const float MAX_ANGLE = float(48.0/180.0*CV_PI); // max angle between line segments supposed to be straight
static const float MIN_COS_ANGLE = float(std::cos(35.0/180*CV_PI)); // min cos angle between board edges
static const float MIN_RESPONSE_RATIO = 0.1F;
static const float ELLIPSE_WIDTH = 0.35F; // width of the search ellipse in percentage of its length
static const float RAD2DEG = float(180.0/CV_PI);
static const int MAX_SYMMETRY_ERRORS = 5; // maximal number of failures during point symmetry test (filtering out lines)
/////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
// some helper methods
static float calcSharpness(cv::InputArray _values,float rise_distance);
static bool isPointOnLine(cv::Point2f l1,cv::Point2f l2,cv::Point2f pt,float min_angle);
static int testPointSymmetry(const cv::Mat& mat,cv::Point2f pt,float dist,float max_error);
static float calcSubpixel(const float &x_l,const float &x,const float &x_r);
static float calcSubPos(const float &x_l,const float &x,const float &x_r);
static void polyfit(const Mat& src_x, const Mat& src_y, Mat& dst, int order);
static float calcSignedDistance(const cv::Vec2f &n,const cv::Point2f &a,const cv::Point2f &pt);
static void normalizePoints1D(cv::InputArray _points,cv::OutputArray _T,cv::OutputArray _new_points);
static cv::Mat findHomography1D(cv::InputArray _src,cv::InputArray _dst);
static cv::Mat normalizeVector(cv::InputArray _points);
cv::Mat normalizeVector(cv::InputArray _points)
{
cv::Mat points = _points.getMat();
if(points.cols > 1)
{
if(points.rows == 1)
points = points.reshape(points.channels(),points.cols);
else if(points.channels() == 1)
points = points.reshape(points.cols,points.rows);
else
CV_Error(Error::StsBadArg, "unsupported format");
}
return points;
}
float calcSharpness(cv::InputArray _values,float rise_distance)
{
CV_CheckTypeEQ(_values.type(),CV_8UC1, "values must be of the type CV_8UC1");
cv::Mat values = normalizeVector(_values);
if(values.empty())
return 0;
if(values.rows != 1 && values.cols != 1)
CV_Error(Error::StsBadArg, "values must be 1xn or nx1");
if(rise_distance <= 0.0 || rise_distance > 1.0)
CV_Error(Error::StsBadArg, "rise_distance must lie in th interval ]0..1]");
// find global min max
cv::Point min_loc,max_loc;
double min_val,max_val;
cv::minMaxLoc(values,&min_val,&max_val,&min_loc,&max_loc);
int max_pos = std::max(max_loc.x,max_loc.y);
int min_pos = std::max(min_loc.x,min_loc.y);
if(max_pos == min_pos)
return 0;
// calc new interval according to the rise distance
double delta = max_val-min_val;
double min_val2 = min_val+delta*0.5*(1.0-rise_distance);
double max_val2 = max_val-delta*0.5*(1.0-rise_distance);
// find new max starting at min pos
int dt = 1;
if(max_pos < min_pos)
dt= -1;
int max_pos2 = max_pos;
for(int i=min_pos+dt;i != max_pos;i+=dt)
{
uint8_t val = values.at<uint8_t>(i);
if(val >= max_val2)
{
max_pos2 = i;
break;
}
}
// find new min starting at max pos
int min_pos2 = min_pos;
for(int i=max_pos-dt;i != min_pos;i-=dt)
{
uint8_t val = values.at<uint8_t>(i);
if(val <= min_val2)
{
min_pos2 = i;
break;
}
}
// calc sub pixel max pos
double max_pos3 = max_pos2;
uint8_t val1 = values.at<uint8_t>(max_pos2-dt); // <= val2
uint8_t val2 = values.at<uint8_t>(max_pos2);
double m = (val2-val1)/dt;
if(m != 0)
max_pos3 = max_pos2+(max_val2-val2)/m;
// calc sub pixel min pos
double min_pos3 = min_pos2;
val1 = values.at<uint8_t>(min_pos2); // <= val2
val2 = values.at<uint8_t>(min_pos2+dt);
m = (val2-val1)/dt;
if(m != 0)
min_pos3 = min_pos2+(min_val2-val1)/m;
return float(fabs(max_pos3-min_pos3));
}
void normalizePoints1D(cv::InputArray _points,cv::OutputArray _T,cv::OutputArray _new_points)
{
cv::Mat points = _points.getMat();
if(points.cols > 1 && points.rows == 1)
points = points.reshape(1,points.cols);
CV_CheckChannelsEQ(points.channels(), 1, "points must have only one channel");
// calc centroid
double centroid= cv::mean(points)[0];
// shift origin to centroid
cv::Mat new_points = points-centroid;
// calc mean distance
double mean_dist = cv::mean(cv::abs(new_points))[0];
if(mean_dist<= DBL_EPSILON)
CV_Error(Error::StsBadArg, "all given points are identical");
double scale = 1.0/mean_dist;
// generate transformation
cv::Matx22d Tx(
scale, -scale*centroid,
0, 1
);
Mat(Tx, false).copyTo(_T);
// calc normalized points;
_new_points.create(points.rows,1,points.type());
new_points = _new_points.getMat();
switch(points.type())
{
case CV_32FC1:
for(int i=0;i < points.rows;++i)
{
cv::Vec2d p(points.at<float>(i), 1.0);
p = Tx*p;
new_points.at<float>(i) = float(p(0)/p(1));
}
break;
case CV_64FC1:
for(int i=0;i < points.rows;++i)
{
cv::Vec2d p(points.at<double>(i), 1.0);
p = Tx*p;
new_points.at<double>(i) = p(0)/p(1);
}
break;
default:
CV_Error(Error::StsUnsupportedFormat, "unsupported point type");
}
}
cv::Mat findHomography1D(cv::InputArray _src,cv::InputArray _dst)
{
// check inputs
cv::Mat src = _src.getMat();
cv::Mat dst = _dst.getMat();
if(src.cols > 1 && src.rows == 1)
src = src.reshape(1,src.cols);
if(dst.cols > 1 && dst.rows == 1)
dst = dst.reshape(1,dst.cols);
CV_CheckEQ(src.rows, dst.rows, "size mismatch");
CV_CheckChannelsEQ(src.channels(), 1, "data with only one channel are supported");
CV_CheckChannelsEQ(dst.channels(), 1, "data with only one channel are supported");
CV_CheckTypeEQ(src.type(), dst.type(), "src and dst must have the same type");
CV_Check(src.rows, src.rows >= 3,"at least three point pairs are needed");
// normalize points
cv::Mat src_T,dst_T, src_n,dst_n;
normalizePoints1D(src,src_T,src_n);
normalizePoints1D(dst,dst_T,dst_n);
int count = src_n.rows;
cv::Mat A = cv::Mat::zeros(count,3,CV_64FC1);
cv::Mat b = cv::Mat::zeros(count,1,CV_64FC1);
// fill A;b and perform singular value decomposition
// it is assumed that w is one for both coordinates
// h22 is kept to 1
switch(src_n.type())
{
case CV_32FC1:
for(int i=0;i<count;++i)
{
double s = src_n.at<float>(i);
double d = dst_n.at<float>(i);
A.at<double>(i,0) = s;
A.at<double>(i,1) = 1.0;
A.at<double>(i,2) = -s*d;
b.at<double>(i) = d;
}
break;
case CV_64FC1:
for(int i=0;i<count;++i)
{
double s = src_n.at<double>(i);
double d = dst_n.at<double>(i);
A.at<double>(i,0) = s;
A.at<double>(i,1) = 1.0;
A.at<double>(i,2) = -s*d;
b.at<double>(i) = d;
}
break;
default:
CV_Error(Error::StsUnsupportedFormat,"unsupported type");
}
cv::Mat u,d,vt;
cv::SVD::compute(A,d,u,vt);
cv::Mat b_ = u.t()*b;
cv::Mat y(b_.rows,1,CV_64FC1);
for(int i=0;i<b_.rows;++i)
y.at<double>(i) = b_.at<double>(i)/d.at<double>(i);
cv::Mat x = vt.t()*y;
cv::Matx22d H_(x.at<double>(0), x.at<double>(1), x.at<double>(2), 1.0);
// denormalize
Mat H = dst_T.inv()*Mat(H_, false)*src_T;
// enforce frobeniusnorm of one
double scale = cv::norm(H);
CV_Assert(fabs(scale) > DBL_EPSILON);
scale = 1.0 / scale;
return H*scale;
}
void polyfit(const Mat& src_x, const Mat& src_y, Mat& dst, int order)
{
int npoints = src_x.checkVector(1);
int nypoints = src_y.checkVector(1);
CV_Assert(npoints == nypoints && npoints >= order+1);
Mat_<double> srcX(src_x), srcY(src_y);
Mat_<double> A = Mat_<double>::ones(npoints,order + 1);
// build A matrix
for (int y = 0; y < npoints; ++y)
{
for (int x = 1; x < A.cols; ++x)
A.at<double>(y,x) = srcX.at<double>(y)*A.at<double>(y,x-1);
}
cv::Mat w;
solve(A,srcY.reshape(1, npoints),w,DECOMP_SVD);
w.convertTo(dst, ((src_x.depth() == CV_64F || src_y.depth() == CV_64F) ? CV_64F : CV_32F));
}
float calcSignedDistance(const cv::Vec2f &n,const cv::Point2f &a,const cv::Point2f &pt)
{
cv::Vec3f v1(n[0],n[1],0);
cv::Vec3f v2(pt.x-a.x,pt.y-a.y,0);
return v1.cross(v2)[2];
}
bool isPointOnLine(cv::Point2f l1,cv::Point2f l2,cv::Point2f pt,float min_angle)
{
cv::Vec2f vec1(l1-pt);
cv::Vec2f vec2(pt-l2);
if(vec1.dot(vec2) < min_angle*cv::norm(vec1)*cv::norm(vec2))
return false;
return true;
}
// returns how many tests fails out of 10
int testPointSymmetry(const cv::Mat &mat,cv::Point2f pt,float dist,float max_error)
{
cv::Rect image_rect(int(0.5*dist),int(0.5*dist),int(mat.cols-0.5*dist),int(mat.rows-0.5*dist));
cv::Size size(int(0.5*dist),int(0.5*dist));
int count = 0;
cv::Mat patch1,patch2;
cv::Point2f center1,center2;
for (int angle_i = 0; angle_i < 10; angle_i++)
{
double angle = angle_i * (CV_PI * 0.1);
cv::Point2f n(float(std::cos(angle)),float(-std::sin(angle)));
center1 = pt+dist*n;
if(!image_rect.contains(center1))
return false;
center2 = pt-dist*n;
if(!image_rect.contains(center2))
return false;
cv::getRectSubPix(mat,size,center1,patch1);
cv::getRectSubPix(mat,size,center2,patch2);
if(fabs(cv::mean(patch1)[0]-cv::mean(patch2)[0]) > max_error)
++count;
}
return count;
}
inline float calcSubpixel(const float &x_l,const float &x,const float &x_r)
{
// prevent zero values
if(x_l <= 0)
return 0;
if(x <= 0)
return 0;
if(x_r <= 0)
return 0;
const float l0 = float(std::log(x_l+1e-6));
const float l1 = float(std::log(x+1e-6));
const float l2 = float(std::log(x_r+1e-6));
float delta = l2-l1-l1+l0;
if(!delta) // this happens if all values are identical
return 0;
delta = (l0-l2)/(delta+delta);
return delta;
}
inline float calcSubPos(const float &x_l,const float &x,const float &x_r)
{
float val = 2.0F *(x_l-2.0F*x+x_r);
if(val == 0.0F)
return 0.0F;
val = (x_l-x_r)/val;
if(val > 1.0F)
return 1.0F;
if(val < -1.0F)
return -1.0F;
return val;
}
FastX::FastX(const Parameters &para)
{
reconfigure(para);
}
void FastX::reconfigure(const Parameters &para)
{
CV_Check(para.min_scale, para.min_scale >= 0 && para.min_scale <= para.max_scale, "invalid scale");
parameters = para;
}
// rotates the image around its center
void FastX::rotate(float angle,cv::InputArray img,cv::Size size,cv::OutputArray out)const
{
if(angle == 0)
{
img.copyTo(out);
return;
}
else
{
cv::Matx23d m = cv::getRotationMatrix2D(cv::Point2f(float(img.cols()*0.5),float(img.rows()*0.5)),float(angle/CV_PI*180),1);
m(0,2) += 0.5*(size.width-img.cols());
m(1,2) += 0.5*(size.height-img.rows());
cv::warpAffine(img,out,m,size);
}
}
void FastX::calcFeatureMap(const Mat &images,Mat& out)const
{
if(images.empty())
CV_Error(Error::StsBadArg,"no rotation images");
int type = images.type(), depth = CV_MAT_DEPTH(type);
CV_CheckType(type,depth == CV_8U,
"Only 8-bit grayscale or color images are supported");
if(!images.isContinuous())
CV_Error(Error::StsBadArg,"image must be continuous");
float signal,noise,rating;
int count1;
unsigned char val1,val2,val3;
const unsigned char* wrap_around;
const unsigned char* pend;
const unsigned char* pimages = images.data;
const int channels = images.channels();
if(channels < 4)
CV_Error(Error::StsBadArg,"images must have at least four channels");
// for each pixel
out = cv::Mat::zeros(images.rows,images.cols,CV_32FC1);
const float *pout_end = reinterpret_cast<const float*>(out.dataend);
for(float *pout=out.ptr<float>(0,0);pout != pout_end;++pout)
{
//reset values
rating = 0.0; count1 = 0;
noise = 255; signal = 0;
//calc rating
pend = pimages+channels;
val1 = *(pend-1); // wrap around (last value)
wrap_around = pimages++; // store for wrap around (first value)
val2 = *wrap_around; // first value
for(;pimages != pend;++pimages)
{
val3 = *pimages;
if(val1 <= val2)
{
if(val3 < val2) // maxima
{
if(signal < val2)
signal = val2;
++count1;
}
}
else if(val1 > val2 && val3 >= val2) // minima
{
if(noise > val2)
noise = val2;
++count1;
}
val1 = val2;
val2 = val3;
}
// wrap around
if(val1 <= val2) // maxima
{
if(*wrap_around < val2)
{
if(signal < val2)
signal = val2;
++count1;
}
}
else if(val1 > val2 && *wrap_around >= val2) // minima
{
if(noise > val2)
noise = val2;
++count1;
}
// store rating
if(count1 == parameters.branches)
{
rating = signal-noise;
*pout = rating*rating; //store rating in the feature map
}
}
}
std::vector<std::vector<float> > FastX::calcAngles(const std::vector<cv::Mat> &rotated_images,std::vector<cv::KeyPoint> &keypoints)const
{
// validate rotated_images
if(rotated_images.empty())
CV_Error(Error::StsBadArg,"no rotated images");
std::vector<cv::Mat>::const_iterator iter = rotated_images.begin();
for(;iter != rotated_images.end();++iter)
{
if(iter->empty())
CV_Error(Error::StsBadArg,"empty rotated images");
if(iter->channels() < 4)
CV_Error(Error::StsBadArg,"rotated images must have at least four channels");
}
// assuming all elements of the same channel
const int channels = rotated_images.front().channels();
const int channels_1 = channels-1;
const float resolution = float(CV_PI/channels);
const float scale = float(parameters.super_resolution)+1.0F;
// for each keypoint
std::vector<std::vector<float> > angles;
angles.resize(keypoints.size());
parallel_for_(Range(0,(int)keypoints.size()),[&](const Range& range)
{
float angle;
float val1,val2,val3,wrap_around;
const unsigned char *pimages1,*pimages2,*pimages3,*pimages4;
std::vector<cv::KeyPoint>::iterator pt_iter = keypoints.begin()+range.start;
std::vector<cv::KeyPoint>::iterator pt_end = keypoints.begin()+range.end;
for(int id=range.start ;pt_iter != pt_end;++pt_iter,++id)
{
int scale_id = pt_iter->octave - parameters.min_scale;
if(scale_id>= int(rotated_images.size()) ||scale_id < 0)
CV_Error(Error::StsBadArg,"no rotated image for requested keypoint octave");
const cv::Mat &s_rotated_images = rotated_images[scale_id];
float x2 = pt_iter->pt.x*scale;
float y2 = pt_iter->pt.y*scale;
int row = int(y2);
int col = int(x2);
x2 -= col;
y2 -= row;
float x1 = 1.0F-x2; float y1 = 1.0F-y2;
float a = x1*y1; float b = x2*y1; float c = x1*y2; float d = x2*y2;
pimages1 = s_rotated_images.ptr<unsigned char>(row,col);
pimages2 = s_rotated_images.ptr<unsigned char>(row,col+1);
pimages3 = s_rotated_images.ptr<unsigned char>(row+1,col);
pimages4 = s_rotated_images.ptr<unsigned char>(row+1,col+1);
std::vector<float> &angles_i = angles[id];
//calc rating
val1 = a**(pimages1+channels_1)+b**(pimages2+channels_1)+
c**(pimages3+channels_1)+d**(pimages4+channels_1); // wrap around (last value)
wrap_around = a**(pimages1++)+b**(pimages2++)+c**(pimages3++)+d**(pimages4++); // first value
val2 = wrap_around; // first value
for(int i=0;i<channels-1;++pimages1,++pimages2,++pimages3,++pimages4,++i)
{
val3 = a**(pimages1)+b**(pimages2)+c**(pimages3)+d**(pimages4);
if(val1 <= val2)
{
if(val3 < val2)
{
angle = float((calcSubPos(val1,val2,val3)+i)*resolution);
if(angle < 0)
angle += float(CV_PI);
else if(angle > CV_PI)
angle -= float(CV_PI);
angles_i.push_back(angle);
pt_iter->angle = 360.0F-angle*RAD2DEG;
}
}
else if(val1 > val2 && val3 >= val2)
{
angle = float((calcSubPos(val1,val2,val3)+i)*resolution);
if(angle < 0)
angle += float(CV_PI);
else if(angle > CV_PI)
angle -= float(CV_PI);
angles_i.push_back(-angle);
pt_iter->angle = 360.0F-angle*RAD2DEG;
}
val1 = val2;
val2 = val3;
}
// wrap around
if(val1 <= val2)
{
if(wrap_around< val2)
{
angle = float((calcSubPos(val1,val2,wrap_around)+channels-1)*resolution);
if(angle < 0)
angle += float(CV_PI);
else if(angle > CV_PI)
angle -= float(CV_PI);
angles_i.push_back(angle);
pt_iter->angle = 360.0F-angle*RAD2DEG;
}
}
else if(val1 > val2 && wrap_around >= val2)
{
angle = float((calcSubPos(val1,val2,wrap_around)+channels-1)*resolution);
if(angle < 0)
angle += float(CV_PI);
else if(angle > CV_PI)
angle -= float(CV_PI);
angles_i.push_back(-angle);
pt_iter->angle = 360.0F-angle*RAD2DEG;
}
}
});
return angles;
}
void FastX::findKeyPoints(const std::vector<cv::Mat> &feature_maps, std::vector<KeyPoint>& keypoints,const Mat& _mask) const
{
//TODO check that all feature_maps have the same size
int num_scales = parameters.max_scale-parameters.min_scale;
CV_CheckGE(int(feature_maps.size()), num_scales, "missing feature maps");
if (!_mask.empty())
{
CV_CheckTypeEQ(_mask.type(), CV_8UC1, "wrong mask type");
CV_CheckEQ(_mask.size(), feature_maps.front().size(),"wrong mask type or size");
}
keypoints.clear();
cv::Mat mask;
if(!_mask.empty())
mask = _mask;
else
mask = cv::Mat::ones(feature_maps.front().size(),CV_8UC1);
int super_res = int(parameters.super_resolution);
int super_scale = super_res+1;
float super_comp = 0.25F*super_res;
// for each scale
float strength = parameters.strength;
std::vector<int> windows;
cv::Point pt,pt2;
double min,max;
cv::Mat src;
for(int scale=parameters.max_scale;scale>=parameters.min_scale;--scale)
{
int window_size = (1 << (scale + super_res)) + 1;
float window_size2 = 0.5F*window_size;
float window_size4 = 0.25F*window_size;
int window_size2i = cvRound(window_size2);
const cv::Mat &feature_map = feature_maps[scale-parameters.min_scale];
int y = ((feature_map.rows)/window_size)-2;
int x = ((feature_map.cols)/window_size)-2;
for(int row=1;row<y;++row)
{
for(int col=1;col<x;++col)
{
Rect rect(col*window_size,row*window_size,window_size,window_size);
src = feature_map(rect);
cv::minMaxLoc(src,&min,&max,NULL,&pt);
if(min == max || max < strength)
continue;
cv::Point pos(pt.x+rect.x,pt.y+rect.y);
if(mask.at<unsigned char>(pos.y,pos.x) == 0)
continue;
Rect rect2(int(pos.x-window_size2),int(pos.y-window_size2),window_size,window_size);
src = feature_map(rect2);
cv::minMaxLoc(src,NULL,NULL,NULL,&pt2);
if(pos.x == pt2.x+rect2.x && pos.y == pt2.y+rect2.y)
{
// the point is the best one on the current scale
// check all larger scales if there is a stronger one
double max2;
int scale2= scale-1;
//parameters.min_scale;
for(;scale2>=parameters.min_scale;--scale2)
{
cv::minMaxLoc(feature_maps[scale2-parameters.min_scale](rect),NULL,&max2,NULL,NULL);
if(max2 > max)
break;
}
if(scale2<parameters.min_scale && pos.x+1 < feature_map.cols && pos.y+1 < feature_map.rows)
{
float sub_x = float(calcSubpixel(feature_map.at<float>(pos.y,pos.x-1),
feature_map.at<float>(pos.y,pos.x),
feature_map.at<float>(pos.y,pos.x+1)));
float sub_y = float(calcSubpixel(feature_map.at<float>(pos.y-1,pos.x),
feature_map.at<float>(pos.y,pos.x),
feature_map.at<float>(pos.y+1,pos.x)));
cv::KeyPoint kpt(sub_x+pos.x,sub_y+pos.y,float(window_size),0.F,float(max),scale);
int x2 = std::max(0,int(kpt.pt.x-window_size4));
int y2 = std::max(0,int(kpt.pt.y-window_size4));
int w = std::min(int(mask.cols-x2),window_size2i);
int h = std::min(int(mask.rows-y2),window_size2i);
mask(cv::Rect(x2,y2,w,h)) = 0.0;
if(super_scale != 1)
{
kpt.pt.x /= super_scale;
kpt.pt.y /= super_scale;
kpt.pt.x -= super_comp;
kpt.pt.y -= super_comp;
kpt.size /= super_scale;
}
keypoints.push_back(kpt);
}
}
}
}
}
}
void FastX::detectAndCompute(cv::InputArray image,cv::InputArray mask,std::vector<cv::KeyPoint>& keypoints,
cv::OutputArray _descriptors,bool useProvidedKeyPoints)
{
useProvidedKeyPoints = false;
detectImpl(image.getMat(),keypoints,mask.getMat());
if(!_descriptors.needed())
return;
// generate descriptors based on their position
_descriptors.create(int(keypoints.size()),2,CV_32FC1);
cv::Mat descriptors = _descriptors.getMat();
std::vector<cv::KeyPoint>::const_iterator iter = keypoints.begin();
for(int row=0;iter != keypoints.end();++iter,++row)
{
descriptors.at<float>(row,0) = iter->pt.x;
descriptors.at<float>(row,1) = iter->pt.y;
}
if(!useProvidedKeyPoints) // suppress compiler warning
return;
return;
}
void FastX::detectImpl(const cv::Mat& _gray_image,
std::vector<cv::Mat> &rotated_images,
std::vector<cv::Mat> &feature_maps,
const cv::Mat &_mask)const
{
if(!_mask.empty())
CV_Error(Error::StsBadSize, "Mask is not supported");
CV_CheckTypeEQ(_gray_image.type(), CV_8UC1, "Unsupported image type");
// up-sample if needed
cv::UMat gray_image;
const int super_res = int(parameters.super_resolution);
if(super_res)
cv::resize(_gray_image,gray_image,cv::Size(),2,2);
else
_gray_image.copyTo(gray_image);
//for each scale
const int num_scales = parameters.max_scale-parameters.min_scale+1;
const int diag = int(sqrt(gray_image.rows*gray_image.rows+gray_image.cols*gray_image.cols));
const cv::Size size(diag,diag);
const int num = int(0.5001*CV_PI/parameters.resolution);
rotated_images.resize(num_scales);
feature_maps.resize(num_scales);
parallel_for_(Range(parameters.min_scale,parameters.max_scale+1),[&](const Range& range){
for(int scale=range.start;scale < range.end;++scale)
{
// calc images
// for each angle step
int scale_id = scale-parameters.min_scale;
int scale_size = int(pow(2.0,scale+1+super_res));
int scale_size2 = int((scale_size/7)*2+1);
std::vector<cv::UMat> images;
images.resize(2*num);
cv::UMat rotated,filtered_h,filtered_v;
cv::boxFilter(gray_image,images[0],-1,cv::Size(scale_size,scale_size2));
cv::boxFilter(gray_image,images[num],-1,cv::Size(scale_size2,scale_size));
for(int i=1;i<num;++i)
{
float angle = parameters.resolution*i;
rotate(-angle,gray_image,size,rotated);
cv::boxFilter(rotated,filtered_h,-1,cv::Size(scale_size,scale_size2));
cv::boxFilter(rotated,filtered_v,-1,cv::Size(scale_size2,scale_size));
// rotate filtered images back
rotate(angle,filtered_h,gray_image.size(),images[i]);
rotate(angle,filtered_v,gray_image.size(),images[i+num]);
}
cv::merge(images,rotated_images[scale_id]);
// calc feature map
calcFeatureMap(rotated_images[scale_id],feature_maps[scale_id]);
// filter feature map to improve impulse responses
if(parameters.filter)
{
cv::Mat high,low;
cv::boxFilter(feature_maps[scale_id],low,-1,cv::Size(scale_size,scale_size));
int scale2 = int((scale_size/6))*2+1;
cv::boxFilter(feature_maps[scale_id],high,-1,cv::Size(scale2,scale2));
feature_maps[scale_id] = high-0.8*low;
}
}
});
}
void FastX::detectImpl(const cv::Mat& image,std::vector<cv::KeyPoint>& keypoints,std::vector<cv::Mat> &feature_maps,const cv::Mat &mask)const
{
std::vector<cv::Mat> rotated_images;
detectImpl(image,rotated_images,feature_maps,mask);
findKeyPoints(feature_maps,keypoints,mask);
}
void FastX::detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask)const
{
std::vector<cv::Mat> feature_maps;
detectImpl(image.getMat(),keypoints,feature_maps,mask.getMat());
}
void FastX::detectImpl(const Mat& src, std::vector<KeyPoint>& keypoints, const Mat& mask)const
{
std::vector<cv::Mat> feature_maps;
detectImpl(src,keypoints,feature_maps,mask);
}
Ellipse::Ellipse():
angle(0),
cosf(0),
sinf(0)
{
}
Ellipse::Ellipse(const cv::Point2f &_center, const cv::Size2f &_axes, float _angle):
center(_center),
axes(_axes),
angle(_angle),
cosf(std::cos(-_angle)),
sinf(std::sin(-_angle))
{
}
const cv::Size2f &Ellipse::getAxes()const
{
return axes;
}
cv::Point2f Ellipse::getCenter()const
{
return center;
}
void Ellipse::draw(cv::InputOutputArray img,const cv::Scalar &color)const
{
cv::ellipse(img,center,axes,360-angle/CV_PI*180,0,360,color);
}
bool Ellipse::contains(const cv::Point2f &pt)const
{
cv::Point2f ptc = pt-center;
float x = cosf*ptc.x+sinf*ptc.y;
float y = -sinf*ptc.x+cosf*ptc.y;
if(x*x/(axes.width*axes.width)+y*y/(axes.height*axes.height) <= 1.0)
return true;
return false;
}
// returns false if the angle from the line pt1-pt2 to the line pt3-pt4 is negative
static bool checkOrientation(const cv::Point2f &pt1,const cv::Point2f &pt2,
const cv::Point2f &pt3,const cv::Point2f &pt4)
{
cv::Point3f p1(pt2.x-pt1.x,pt2.y-pt1.y,0);
cv::Point3f p2(pt4.x-pt3.x,pt4.y-pt3.y,0);
return p1.cross(p2).z > 0;
}
static bool sortKeyPoint(const cv::KeyPoint &pt1,const cv::KeyPoint &pt2)
{
// used as comparison function for partial sort
// the keypoints with the best score should be first
return pt1.response > pt2.response;
}
cv::Mat Chessboard::getObjectPoints(const cv::Size &pattern_size,float cell_size)
{
cv::Mat result(pattern_size.width*pattern_size.height,1,CV_32FC3);
for(int row=0;row < pattern_size.height;++row)
{
for(int col=0;col< pattern_size.width;++col)
{
cv::Point3f &pt = *result.ptr<cv::Point3f>(row*pattern_size.width+col);
pt.x = cell_size*col;
pt.y = cell_size*row;
pt.z = 0;
}
}
return result;
}
bool Chessboard::Board::Cell::isInside(const cv::Point2f &pt)const
{
if(empty())
return false;
float l1 = (pt.x-top_left->x)*(bottom_left->y-top_left->y) - (bottom_left->x-top_left->x)*(pt.y-top_left->y);
float l2 = (pt.x-top_right->x)*(top_left->y-top_right->y) - (top_left->x-top_right->x)*(pt.y-top_right->y);
float l3 = (pt.x-bottom_left->x)*(top_right->y-bottom_left->y) - (top_right->x-bottom_left->x)*(pt.y-bottom_left->y);
if((l1>0 && l2>0 && l3>0) || (l1<0 && l2<0 && l3<0))
return true;
l1 = (pt.x-top_left->x)*(bottom_right->y-top_left->y) - (bottom_right->x-top_left->x)*(pt.y-top_left->y);
l2 = (pt.x-top_right->x)*(top_left->y-top_right->y) - (top_left->x-top_right->x)*(pt.y-top_right->y);
l3 = (pt.x-bottom_right->x)*(top_right->y-bottom_right->y) - (top_right->x-bottom_right->x)*(pt.y-bottom_right->y);
return (l1>0 && l2>0 && l3>0) || (l1<0 && l2<0 && l3<0);
}
bool Chessboard::Board::Cell::empty()const
{
// check if one of its corners has NaN
if(top_left->x != top_left->x || top_left->y != top_left->y)
return true;
if(top_right->x != top_right->x || top_right->y != top_right->y)
return true;
if(bottom_right->x != bottom_right->x || bottom_right->y != bottom_right->y)
return true;
if(bottom_left->x != bottom_left->x || bottom_left->y != bottom_left->y)
return true;
return false;
}
int Chessboard::Board::Cell::getRow()const
{
int row = 0;
Cell const* temp = this;
for(;temp->top;temp=temp->top,++row);
return row;
}
cv::Point2f Chessboard::Board::Cell::getCenter()const
{
if(empty())
CV_Error(Error::StsBadArg,"Cell is empty");
cv::Point2f center = *top_left+*top_right+*bottom_left+*bottom_right;
center.x /=4;
center.y /=4;
return center;
}
int Chessboard::Board::Cell::getCol()const
{
int col = 0;
Cell const* temp = this;
for(;temp->left;temp=temp->left,++col);
return col;
}
Chessboard::Board::Cell::Cell() :
top_left(NULL), top_right(NULL), bottom_right(NULL), bottom_left(NULL),
left(NULL), top(NULL), right(NULL), bottom(NULL),black(false),marker(false)
{}
Chessboard::Board::PointIter::PointIter(Cell *_cell,CornerIndex _corner_index):
corner_index(_corner_index),
cell(_cell)
{
}
Chessboard::Board::PointIter::PointIter(const PointIter &other)
{
this->operator=(other);
}
void Chessboard::Board::PointIter::operator=(const PointIter &other)
{
corner_index = other.corner_index;
cell = other.cell;
}
Chessboard::Board::Cell* Chessboard::Board::PointIter::getCell()
{
return cell;
}
bool Chessboard::Board::PointIter::valid()const
{
return cell != NULL;
}
bool Chessboard::Board::PointIter::isNaN()const
{
const cv::Point2f *pt = operator*();
if(pt->x != pt->x || pt->y != pt->y) // NaN check
return true;
return false;
}
bool Chessboard::Board::PointIter::checkCorner()const
{
if(!cell->empty())
return true;
// test all other cells
switch(corner_index)
{
case BOTTOM_LEFT:
if(cell->left)
{
if(!cell->left->empty())
return true;
if(cell->left->bottom && !cell->left->bottom->empty())
return true;
}
if(cell->bottom)
{
if(!cell->bottom->empty())
return true;
if(cell->bottom->left && !cell->bottom->left->empty())
return true;
}
break;
case TOP_LEFT:
if(cell->left)
{
if(!cell->left->empty())
return true;
if(cell->left->top && !cell->left->top->empty())
return true;
}
if(cell->top)
{
if(!cell->top->empty())
return true;
if(cell->top->left && !cell->top->left->empty())
return true;
}
break;
case TOP_RIGHT:
if(cell->right)
{
if(!cell->right->empty())
return true;
if(cell->right->top && !cell->right->top->empty())
return true;
}
if(cell->top)
{
if(!cell->top->empty())
return true;
if(cell->top->right && !cell->top->right->empty())
return true;
}
break;
case BOTTOM_RIGHT:
if(cell->right)
{
if(!cell->right->empty())
return true;
if(cell->right->bottom && !cell->right->bottom->empty())
return true;
}
if(cell->bottom)
{
if(!cell->bottom->empty())
return true;
if(cell->bottom->right && !cell->bottom->right->empty())
return true;
}
break;
default:
CV_Assert(false);
}
return false;
}
bool Chessboard::Board::PointIter::left(bool check_empty)
{
switch(corner_index)
{
case BOTTOM_LEFT:
if(cell->left && (!check_empty || !cell->left->empty()))
cell = cell->left;
else if(check_empty && cell->bottom && cell->bottom->left && !cell->bottom->left->empty())
{
cell = cell->bottom->left;
corner_index = TOP_LEFT;
}
else
return false;
break;
case TOP_LEFT:
if(cell->left && (!check_empty || !cell->left->empty()))
cell = cell->left;
else if(check_empty && cell->top && cell->top->left && !cell->top->left->empty())
{
cell = cell->top->left;
corner_index = BOTTOM_LEFT;
}
else
return false;
break;
case TOP_RIGHT:
corner_index = TOP_LEFT;
break;
case BOTTOM_RIGHT:
corner_index = BOTTOM_LEFT;
break;
default:
CV_Assert(false);
}
return true;
}
bool Chessboard::Board::PointIter::top(bool check_empty)
{
switch(corner_index)
{
case TOP_RIGHT:
if(cell->top && (!check_empty || !cell->top->empty()))
cell = cell->top;
else if(check_empty && cell->right && cell->right->top&& !cell->right->top->empty())
{
cell = cell->right->top;
corner_index = TOP_LEFT;
}
else
return false;
break;
case TOP_LEFT:
if(cell->top && (!check_empty || !cell->top->empty()))
cell = cell->top;
else if(check_empty && cell->left && cell->left->top&& !cell->left->top->empty())
{
cell = cell->left->top;
corner_index = TOP_RIGHT;
}
else
return false;
break;
case BOTTOM_LEFT:
corner_index = TOP_LEFT;
break;
case BOTTOM_RIGHT:
corner_index = TOP_RIGHT;
break;
default:
CV_Assert(false);
}
return true;
}
bool Chessboard::Board::PointIter::right(bool check_empty)
{
switch(corner_index)
{
case TOP_RIGHT:
if(cell->right && (!check_empty || !cell->right->empty()))
cell = cell->right;
else if(check_empty && cell->top && cell->top->right && !cell->top->right->empty())
{
cell = cell->top->right;
corner_index = BOTTOM_RIGHT;
}
else
return false;
break;
case BOTTOM_RIGHT:
if(cell->right && (!check_empty || !cell->right->empty()))
cell = cell->right;
else if(check_empty && cell->bottom && cell->bottom->right && !cell->bottom->right->empty())
{
cell = cell->bottom->right;
corner_index = TOP_RIGHT;
}
else
return false;
break;
case TOP_LEFT:
corner_index = TOP_RIGHT;
break;
case BOTTOM_LEFT:
corner_index = BOTTOM_RIGHT;
break;
default:
CV_Assert(false);
}
return true;
}
bool Chessboard::Board::PointIter::bottom(bool check_empty)
{
switch(corner_index)
{
case BOTTOM_LEFT:
if(cell->bottom && (!check_empty || !cell->bottom->empty()))
cell = cell->bottom;
else if(check_empty && cell->left && cell->left->bottom && !cell->left->bottom->empty())
{
cell = cell->left->bottom;
corner_index = BOTTOM_RIGHT;
}
else
return false;
break;
case BOTTOM_RIGHT:
if(cell->bottom && (!check_empty || !cell->bottom->empty()))
cell = cell->bottom;
else if(check_empty && cell->right && cell->right->bottom && !cell->right->bottom->empty())
{
cell = cell->right->bottom;
corner_index = BOTTOM_LEFT;
}
else
return false;
break;
case TOP_LEFT:
corner_index = BOTTOM_LEFT;
break;
case TOP_RIGHT:
corner_index = BOTTOM_RIGHT;
break;
default:
CV_Assert(false);
}
return true;
}
const cv::Point2f* Chessboard::Board::PointIter::operator*()const
{
switch(corner_index)
{
case TOP_LEFT:
return cell->top_left;
case TOP_RIGHT:
return cell->top_right;
case BOTTOM_RIGHT:
return cell->bottom_right;
case BOTTOM_LEFT:
return cell->bottom_left;
}
CV_Assert(false);
}
const cv::Point2f* Chessboard::Board::PointIter::operator->()const
{
return operator*();
}
cv::Point2f* Chessboard::Board::PointIter::operator*()
{
const cv::Point2f *pt = const_cast<const PointIter*>(this)->operator*();
return const_cast<cv::Point2f*>(pt);
}
cv::Point2f* Chessboard::Board::PointIter::operator->()
{
return operator*();
}
Chessboard::Board::Board(float _white_angle,float _black_angle):
top_left(NULL),
rows(0),
cols(0),
white_angle(_white_angle),
black_angle(_black_angle)
{
}
Chessboard::Board::Board(const Chessboard::Board &other):
top_left(NULL),
rows(0),
cols(0)
{
*this = other;
}
Chessboard::Board::Board(const cv::Size &size, const std::vector<cv::Point2f> &points,float _white_angle,float _black_angle):
top_left(NULL),
rows(0),
cols(0),
white_angle(_white_angle),
black_angle(_black_angle)
{
if(size.width*size.height != int(points.size()))
CV_Error(Error::StsBadArg,"size mismatch");
if(size.width < 3 || size.height < 3)
CV_Error(Error::StsBadArg,"at least 3 rows and cols are needed to initialize the board");
// init board with 3x3
// TODO write function speeding up the copying
cv::Mat data = cv::Mat(points).reshape(2,size.height);
cv::Mat temp;
data(cv::Rect(0,0,3,3)).copyTo(temp);
std::vector<cv::Point2f> ipoints = temp.reshape(2,1);
if(!init(ipoints))
return;
// add all cols if more than 3
for(int col=3 ; col< data.cols;++col)
{
data(cv::Rect(col,0,1,3)).copyTo(temp);
ipoints = temp.reshape(2,1);
addColumnRight(ipoints);
}
// add all rows if more than 3
for(int row=3; row < data.rows;++row)
{
data(cv::Rect(0,row,cols,1)).copyTo(temp);
ipoints = temp.reshape(2,1);
addRowBottom(ipoints);
}
}
Chessboard::Board::~Board()
{
clear();
}
void Chessboard::Board::setAngles(float white, float black)
{
white_angle = white;
black_angle = black;
}
float Chessboard::Board::getAngle()const
{
if(isEmpty())
CV_Error(Error::StsBadArg,"Board is empty");
if(colCount() < 3)
CV_Error(Error::StsBadArg,"Board is too small");
cv::Point2f delta = *(top_left->right->top_right)-*(top_left->top_left);
cv::Point3f pt(delta.x,delta.y,0);
float val;
if(fabs(pt.x) > fabs(pt.y))
{
cv::Point3f ptx(1,0,0);
val = float(ptx.dot(pt)/cv::norm(pt));
if(val < 0)
val = -std::acos(val);
else
val = std::acos(val);
}
else
{
cv::Point3f ptx(0,1,0);
val = float(ptx.dot(pt)/cv::norm(pt));
if(val < 0)
val = float(-std::acos(val)+CV_PI/2);
else
val = float(std::acos(val)+CV_PI/2);
}
return val;
}
bool Chessboard::Board::isHorizontal()const
{
double angle = getAngle();
if((angle < 0.25*CV_PI && angle > -0.25*CV_PI) || angle > 0.75*CV_PI || angle < -0.75*CV_PI)
return true;
return false;
}
cv::Mat Chessboard::Board::getObjectPoints(float cell_size)const
{
cv::Mat points = Chessboard::getObjectPoints(getSize(),cell_size);
// check for any offset due to a found marker
for(auto &&cell : cells)
{
if(cell->marker && !cell->black)
{
// apply offset
cv::Point3f offset(cell->getCol()*cell_size,cell->getRow()*cell_size,0);
for(int i =0;i < points.rows;++i)
points.at<cv::Point3f>(i) -= offset;
break;
}
}
return points;
}
std::vector<cv::Point2f> Chessboard::Board::getCellCenters()const
{
int icols = int(colCount());
int irows = int(rowCount());
if(icols < 3 || irows < 3)
CV_Error(Error::StsBadArg,"Chessboard must be at least consist of 3 rows and cols to calculate the cell centers");
std::vector<cv::Point2f> points;
cv::Matx33d H(estimateHomography(DUMMY_FIELD_SIZE));
cv::Vec3d pt1,pt2;
pt1[2] = 1;
for(int row = 0;row < irows;++row)
{
pt1[1] = (0.5+row)*DUMMY_FIELD_SIZE;
for(int col= 0;col< icols;++col)
{
pt1[0] = (0.5+col)*DUMMY_FIELD_SIZE;
pt2 = H*pt1;
points.push_back(cv::Point2f(float(pt2[0]/pt2[2]),float(pt2[1]/pt2[2])));
}
}
return points;
}
std::vector<cv::Mat> Chessboard::Board::getCells(float shrink_factor,bool bwhite,bool bblack) const
{
std::vector<cv::Mat> result;
int icols = int(colCount());
int irows = int(rowCount());
if(icols < 3 || irows < 3)
return result;
for(int row=0;row<irows-1;++row)
{
for(int col=0;col<icols-1;++col)
{
const Cell *cell = getCell(row,col);
if(!bwhite && !cell->black)
continue;
if(!bblack && cell->black)
continue;
cv::Mat points = cv::Mat(4,1,CV_32FC2);
points.at<cv::Point2f>(0) = *cell->top_left;
points.at<cv::Point2f>(1) = *cell->top_right;
points.at<cv::Point2f>(2) = *cell->bottom_right;
points.at<cv::Point2f>(3) = *cell->bottom_left;
if(shrink_factor != 1)
{
cv::Point2f center = *cell->top_left+*cell->top_right+*cell->bottom_left+*cell->bottom_right;
center.x /=4;
center.y /=4;
for(int i=0;i<4;++i)
{
auto &pt = points.at<cv::Point2f>(i);
pt = center+(pt-center)*shrink_factor;
}
}
result.push_back(points);
}
}
return result;
}
cv::Mat Chessboard::Board::warpImage(cv::InputArray image)const
{
cv::Mat H = estimateHomography();
cv::Mat mat;
cv::Size size = getSize();
size.width = (size.width+1)*DUMMY_FIELD_SIZE;
size.height= (size.height+1)*DUMMY_FIELD_SIZE;
cv::warpPerspective(image,mat,H.inv(),size);
return mat;
}
void Chessboard::Board::draw(cv::InputArray m,cv::OutputArray out,cv::InputArray _H)const
{
cv::Mat H = _H.getMat();
if(H.empty())
H = estimateHomography();
cv::Mat image = m.getMat().clone();
if(image.type() == CV_32FC1)
{
double maxVal,minVal;
cv::minMaxLoc(image, &minVal, &maxVal);
double scale = 255.0/(maxVal-minVal);
image.convertTo(image,CV_8UC1,scale,-scale*minVal);
cv::applyColorMap(image,image,cv::COLORMAP_JET);
}
// draw all points and search areas
std::vector<cv::Point2f> points = getCorners();
std::vector<cv::Point2f>::const_iterator iter1 = points.begin();
int icols = int(colCount());
int irows = int(rowCount());
int count=0;
for(int row=0;row<irows;++row)
{
for(int col=0;col<icols;++col,++iter1)
{
if(!H.empty() && iter1->x != iter1->x) // NaN check
{
// draw search ellipse
Ellipse ellipse = estimateSearchArea(H,row,col,0.4F);
ellipse.draw(image,cv::Scalar::all(200));
}
else
{
cv::circle(image,*iter1,4,cv::Scalar(count*20,count*20,count*20,255),-1);
++count;
}
}
}
// draw field colors
for(int row=0;row<irows-1;++row)
{
for(int col=0;col<icols-1;++col)
{
const Cell *cell = getCell(row,col);
cv::Point2f center = cell->getCenter();
int size = 4;
if(row==0&&col==0)
size=8;
if(row==0&&col==1)
size=7;
if(cell->marker)
{
if(cell->black)
cv::circle(image,center,2,cv::Scalar::all(0),-1);
else
{
cv::circle(image,center,2,cv::Scalar::all(255),-1);
// draw coordinate
if(col+1 < icols)
{
const Cell *cell2 = getCell(row,col+1);
cv::Point2f center2 = cell2->getCenter();
cv::line(image,center,center2,cv::Scalar::all(127),2);
}
if(row+1 < irows)
{
const Cell *cell2 = getCell(row+1,col);
cv::Point2f center2 = cell2->getCenter();
cv::line(image,center,center2,cv::Scalar::all(127),2);
}
}
}
else
{
if(cell->black)
cv::circle(image,center,size,cv::Scalar::all(255),-1);
else
cv::circle(image,center,size,cv::Scalar(0,0,10,255),-1);
}
}
}
out.create(image.rows,image.cols,image.type());
image.copyTo(out.getMat());
}
bool Chessboard::Board::estimatePose(const cv::Size2f &real_size,cv::InputArray _K,cv::OutputArray rvec,cv::OutputArray tvec)const
{
cv::Mat K = _K.getMat();
CV_CheckTypeEQ(K.type(), CV_64FC1, "wrong K type");
CV_CheckEQ(K.size(), Size(3, 3), "wrong K size");
if(isEmpty())
return false;
int icols = int(colCount());
int irows = int(rowCount());
float field_width = real_size.width/(icols+1);
float field_height= real_size.height/(irows+1);
// the center of the board is placed at (0,0,1)
int offset_x = int(-(icols-1)*field_width*0.5F);
int offset_y = int(-(irows-1)*field_width*0.5F);
std::vector<cv::Point2f> image_points;
std::vector<cv::Point3f> object_points;
std::vector<cv::Point2f> corners_temp = getCorners(true);
std::vector<cv::Point2f>::const_iterator iter = corners_temp.begin();
for(int row = 0;row < irows;++row)
{
for(int col= 0;col<icols;++col,++iter)
{
if(iter == corners_temp.end())
CV_Error(Error::StsInternal,"internal error");
if(iter->x != iter->x) // NaN check
continue;
image_points.push_back(*iter);
object_points.push_back(cv::Point3f(field_width*col-offset_x,field_height*row-offset_y,1.0));
}
}
return solvePnP(object_points,image_points,K,cv::Mat(),rvec,tvec);//,cv::SOLVEPNP_P3P);
}
float Chessboard::Board::getBlackAngle()const
{
return black_angle;
}
float Chessboard::Board::getWhiteAngle()const
{
return white_angle;
}
void Chessboard::Board::swap(Chessboard::Board &other)
{
corners.swap(other.corners);
cells.swap(other.cells);
std::swap(rows,other.rows);
std::swap(cols,other.cols);
std::swap(top_left,other.top_left);
std::swap(white_angle,other.white_angle);
std::swap(black_angle,other.black_angle);
}
Chessboard::Board& Chessboard::Board::operator=(const Chessboard::Board &other)
{
if(this == &other)
return *this;
clear();
rows = other.rows;
cols = other.cols;
white_angle = other.white_angle;
black_angle = other.black_angle;
cells.reserve(other.cells.size());
corners.reserve(other.corners.size());
//copy all points and generate mapping
std::map<cv::Point2f*,cv::Point2f*> point_point_mapping;
point_point_mapping[NULL] = NULL;
std::vector<cv::Point2f*>::const_iterator iter = other.corners.begin();
for(;iter != other.corners.end();++iter)
{
cv::Point2f *pt = new cv::Point2f(**iter);
point_point_mapping[*iter] = pt;
corners.push_back(pt);
}
//copy all cells using mapping
std::map<Cell*,Cell*> cell_cell_mapping;
std::vector<Cell*>::const_iterator iter2 = other.cells.begin();
for(;iter2 != other.cells.end();++iter2)
{
Cell *cell = new Cell;
cell->top_left = point_point_mapping[(*iter2)->top_left];
cell->top_right= point_point_mapping[(*iter2)->top_right];
cell->bottom_right= point_point_mapping[(*iter2)->bottom_right];
cell->bottom_left = point_point_mapping[(*iter2)->bottom_left];
cell->black = (*iter2)->black;
cell->marker = (*iter2)->marker;
cell_cell_mapping[*iter2] = cell;
cells.push_back(cell);
}
//set cell connections using mapping
cell_cell_mapping[NULL] = NULL;
iter2 = other.cells.begin();
std::vector<Cell*>::iterator iter3 = cells.begin();
for(;iter2 != other.cells.end();++iter2,++iter3)
{
(*iter3)->left = cell_cell_mapping[(*iter2)->left];
(*iter3)->top = cell_cell_mapping[(*iter2)->top];
(*iter3)->right = cell_cell_mapping[(*iter2)->right];
(*iter3)->bottom= cell_cell_mapping[(*iter2)->bottom];
}
top_left = cell_cell_mapping[other.top_left];
return *this;
}
bool Chessboard::Board::normalizeMarkerOrientation()
{
// use row by row fashion as cells must not be arranged correctly
Cell *pcell = NULL;
int trows = int(rowCount());
int tcols = int(colCount());
for(int row=0;row != trows && !pcell;++row)
{
for(int col=0;col != tcols;++col)
{
Cell* current_cell = getCell(row,col);
if(!current_cell->marker || !current_cell->right || !current_cell->right->marker)
continue;
if(current_cell->black)
{
if(current_cell->right->top && current_cell->right->top->marker)
{
rotateLeft();
rotateLeft();
pcell = current_cell->right;
break;
}
if(current_cell->right->bottom && current_cell->right->bottom->marker)
{
rotateLeft();
pcell = current_cell->right;
break;
}
}
else
{
if(current_cell->top && current_cell->top->marker)
{
rotateRight();
pcell = current_cell;
break;
}
if(current_cell->bottom && current_cell->bottom->marker)
{
// correct orientation
pcell = current_cell;
break;
}
}
}
}
if(pcell)
{
//check for ambiguity
if(rowCount()-pcell->bottom->getRow() > 2)
{
// std::cout << "FIX board " << pcell->bottom->getRow() << " " << rowCount();
flipVertical();
rotateRight();
}
return true;
}
return false;
}
void Chessboard::Board::normalizeOrientation(bool bblack)
{
// fix ordering
cv::Point2f y = getCorner(0,1)-getCorner(2,1);
cv::Point2f x = getCorner(1,2)-getCorner(1,0);
cv::Point3f y3d(y.x,y.y,0);
cv::Point3f x3d(x.x,x.y,0);
if(x3d.cross(y3d).z > 0)
flipHorizontal();
//normalize orientation so that first element is black or white
const Cell* cell = getCell(0,0);
if(cell->black != bblack && colCount()%2 != 0)
rotateLeft();
else if(cell->black != bblack && rowCount()%2 != 0)
{
rotateLeft();
rotateLeft();
}
//find closest point to top left image corner
//in case of symmetric checkerboard
if(colCount() == rowCount())
{
PointIter iter_top_right(top_left,TOP_RIGHT);
while(iter_top_right.right());
PointIter iter_bottom_right(iter_top_right);
while(iter_bottom_right.bottom());
PointIter iter_bottom_left(top_left,BOTTOM_LEFT);
while(iter_bottom_left.bottom());
// check if one of the cell is empty and do not normalize if so
if(top_left->empty() || iter_top_right.getCell()->empty() ||
iter_bottom_left.getCell()->empty() || iter_bottom_right.getCell()->empty())
return;
float d1 = top_left->top_left->dot(*top_left->top_left);
float d2 = (*iter_top_right)->dot(*(*iter_top_right));
float d3 = (*iter_bottom_left)->dot(*(*iter_bottom_left));
float d4 = (*iter_bottom_right)->dot(*(*iter_bottom_right));
if(d2 <= d1 && d2 <= d3 && d2 <= d4) // top left is top right
rotateLeft();
else if(d3 <= d1 && d3 <= d2 && d3 <= d4) // top left is bottom left
rotateRight();
else if(d4 <= d1 && d4 <= d2 && d4 <= d3) // top left is bottom right
{
rotateLeft();
rotateLeft();
}
}
}
void Chessboard::Board::rotateRight()
{
PointIter p_iter(top_left,BOTTOM_LEFT);
while(p_iter.bottom());
std::vector<Cell*>::iterator iter = cells.begin();
for(;iter != cells.end();++iter)
{
Cell *temp = (*iter)->bottom;
(*iter)->bottom = (*iter)->right;
(*iter)->right= (*iter)->top;
(*iter)->top= (*iter)->left;
(*iter)->left = temp;
cv::Point2f *ptemp = (*iter)->bottom_left;
(*iter)->bottom_left= (*iter)->bottom_right;
(*iter)->bottom_right= (*iter)->top_right;
(*iter)->top_right= (*iter)->top_left;
(*iter)->top_left= ptemp;
}
int temp = rows;
rows = cols;
cols = temp;
top_left = p_iter.getCell();
}
void Chessboard::Board::rotateLeft()
{
PointIter p_iter(top_left,TOP_RIGHT);
while(p_iter.right());
std::vector<Cell*>::iterator iter = cells.begin();
for(;iter != cells.end();++iter)
{
Cell *temp = (*iter)->top;
(*iter)->top = (*iter)->right;
(*iter)->right= (*iter)->bottom;
(*iter)->bottom= (*iter)->left;
(*iter)->left = temp;
cv::Point2f *ptemp = (*iter)->top_left;
(*iter)->top_left = (*iter)->top_right;
(*iter)->top_right= (*iter)->bottom_right;
(*iter)->bottom_right = (*iter)->bottom_left;
(*iter)->bottom_left = ptemp;
}
int temp = rows;
rows = cols;
cols = temp;
top_left = p_iter.getCell();
}
void Chessboard::Board::flipHorizontal()
{
PointIter p_iter(top_left,TOP_RIGHT);
while(p_iter.right());
std::vector<Cell*>::iterator iter = cells.begin();
for(;iter != cells.end();++iter)
{
Cell *temp = (*iter)->right;
(*iter)->right= (*iter)->left;
(*iter)->left = temp;
cv::Point2f *ptemp = (*iter)->top_left;
(*iter)->top_left = (*iter)->top_right;
(*iter)->top_right = ptemp;
ptemp = (*iter)->bottom_left;
(*iter)->bottom_left = (*iter)->bottom_right;
(*iter)->bottom_right = ptemp;
}
top_left = p_iter.getCell();
}
void Chessboard::Board::flipVertical()
{
PointIter p_iter(top_left,BOTTOM_LEFT);
while(p_iter.bottom());
std::vector<Cell*>::iterator iter = cells.begin();
for(;iter != cells.end();++iter)
{
Cell *temp = (*iter)->top;
(*iter)->top= (*iter)->bottom;
(*iter)->bottom = temp;
cv::Point2f *ptemp = (*iter)->top_left;
(*iter)->top_left = (*iter)->bottom_left;
(*iter)->bottom_left = ptemp;
ptemp = (*iter)->top_right;
(*iter)->top_right = (*iter)->bottom_right;
(*iter)->bottom_right = ptemp;
}
top_left = p_iter.getCell();
}
// returns the best found score
// if NaN is returned for a point no point at all was found
// if 0 is returned the point lies outside of the ellipse
float Chessboard::Board::findMaxPoint(cv::flann::Index &index,const cv::Mat &data,const Ellipse &ellipse,float white_angle,float black_angle,cv::Point2f &point)
{
// flann data type enriched with angles (third column)
CV_CheckType(data.type(), CV_32FC1, "type of flann data is not supported");
CV_CheckEQ(data.cols, 4, "4-cols flann data is expected");
std::vector<float> query,dists;
std::vector<int> indices;
query.resize(2);
point = ellipse.getCenter();
query[0] = point.x;
query[1] = point.y;
index.knnSearch(query,indices,dists,4,cv::flann::SearchParams(64));
std::vector<int>::const_iterator iter = indices.begin();
float best_score = -std::numeric_limits<float>::max();
point.x = std::numeric_limits<float>::quiet_NaN();
point.y = std::numeric_limits<float>::quiet_NaN();
for(;iter != indices.end();++iter)
{
const float *val = data.ptr<float>(*iter);
const float &response = *(val+3);
if(response < best_score)
continue;
const float &a0 = *(val+2);
float a1 = std::fabs(a0-white_angle);
float a2 = std::fabs(a0-black_angle);
if(a1 > CV_PI*0.5)
a1 = std::fabs(float(a1-CV_PI));
if(a2> CV_PI*0.5)
a2 = std::fabs(float(a2-CV_PI));
if(a1 < MAX_ANGLE || a2 < MAX_ANGLE )
{
cv::Point2f pt(val[0], val[1]);
if(point.x != point.x) // NaN check
point = pt;
if(best_score < response && ellipse.contains(pt))
{
best_score = response;
point = pt;
}
}
}
if(best_score == -std::numeric_limits<float>::max())
return 0;
else
return best_score;
}
void Chessboard::Board::clear()
{
top_left = NULL; rows = 0; cols = 0;
std::vector<Cell*>::iterator iter = cells.begin();
for(;iter != cells.end();++iter)
delete *iter;
cells.clear();
std::vector<cv::Point2f*>::iterator iter2 = corners.begin();
for(;iter2 != corners.end();++iter2)
delete *iter2;
corners.clear();
}
// p0 p1 p2
// p3 p4 p5
// p6 p7 p8
bool Chessboard::Board::init(const std::vector<cv::Point2f> points)
{
clear();
if(points.size() != 9)
CV_Error(Error::StsBadArg,"exact nine points are expected to initialize the board");
// generate cells
corners.resize(9);
for(int i=0;i < 9;++i)
corners[i] = new cv::Point2f(points[i]);
cells.resize(4);
for(int i=0;i<4;++i)
cells[i] = new Cell();
//cell 0
cells[0]->top_left = corners[0];
cells[0]->top_right = corners[1];
cells[0]->bottom_right = corners[4];
cells[0]->bottom_left = corners[3];
cells[0]->right = cells[1];
cells[0]->bottom = cells[2];
//cell 1
cells[1]->top_left = corners[1];
cells[1]->top_right = corners[2];
cells[1]->bottom_right = corners[5];
cells[1]->bottom_left = corners[4];
cells[1]->left = cells[0];
cells[1]->bottom = cells[3];
//cell 2
cells[2]->top_left = corners[3];
cells[2]->top_right = corners[4];
cells[2]->bottom_right = corners[7];
cells[2]->bottom_left = corners[6];
cells[2]->top = cells[0];
cells[2]->right = cells[3];
//cell 3
cells[3]->top_left = corners[4];
cells[3]->top_right = corners[5];
cells[3]->bottom_right = corners[8];
cells[3]->bottom_left = corners[7];
cells[3]->top = cells[1];
cells[3]->left= cells[2];
top_left = cells.front();
rows = 3;
cols = 3;
// set initial cell colors
Point2f pt1 = *(cells[0]->top_right)-*(cells[0]->bottom_left);
pt1 /= cv::norm(pt1);
cv::Point2f pt2(std::cos(white_angle),-std::sin(white_angle));
cv::Point2f pt3(std::cos(black_angle),-std::sin(black_angle));
if(fabs(pt1.dot(pt2)) < fabs(pt1.dot(pt3)))
{
cells[0]->black = false;
cells[1]->black = true;
cells[2]->black = true;
cells[3]->black = false;
}
else
{
cells[0]->black = true;
cells[1]->black = false;
cells[2]->black = false;
cells[3]->black = true;
}
return true;
}
//TODO magic number
bool Chessboard::Board::estimatePoint(const cv::Point2f &p0,const cv::Point2f &p1,const cv::Point2f &p2, cv::Point2f &p3)
{
// use cross ration to find new point
if(p0 == p1 || p0 == p2 || p1 == p2)
return false;
cv::Point2f p01 = p1-p0;
cv::Point2f p12 = p2-p1;
float a = float(cv::norm(p01));
float b = float(cv::norm(p12));
float t = (0.75F*a-0.25F*b);
if(t <= 0)
return false;
float c = 0.25F*b*(a+b)/t;
if(c < 0.1F)
return false;
p01 = p01/a;
p12 = p12/b;
// check angle between p01 and p12 < 25°
if(p01.dot(p12) < 0.9)
return false;
// calc mean
// p12 = (p01+p12)*0.5;
// p3 = p2+p12*c;
p3 = p2+p12*c;
// compensate radial distortion by fitting polynom
std::vector<double> x,y;
x.resize(3,0); y.resize(3,0);
x[1] = b;
x[2] = b+a;
y[2] = calcSignedDistance(-p12,p2,p0);
cv::Mat dst;
polyfit(cv::Mat(x),cv::Mat(y),dst,2);
double d = dst.at<double>(0)-dst.at<double>(1)*c+dst.at<double>(2)*c*c;
cv::Vec3f v1(p12.x,p12.y,0);
cv::Vec3f v2(0,0,1);
cv::Vec3f v3 = v1.cross(v2);
cv::Point2f n2(v3[0],v3[1]);
p3 += d*n2;
return true;
}
bool Chessboard::Board::estimatePoint(const cv::Point2f &p0,const cv::Point2f &p1,const cv::Point2f &p2, const cv::Point2f &p3, cv::Point2f &p4)
{
// use 1D homography to find fith point minimizing square error
if(p0 == p1 || p0 == p2 || p0 == p3 || p1 == p2 || p1 == p3 || p2 == p3 )
return false;
static const cv::Mat src = (cv::Mat_<double>(1,4) << 0,10,20,30);
cv::Point2f p01 = p1-p0;
cv::Point2f p02 = p2-p0;
cv::Point2f p03 = p3-p0;
float a = float(cv::norm(p01));
float b = float(cv::norm(p02));
float c = float(cv::norm(p03));
cv::Mat dst = (cv::Mat_<double>(1,4) << 0,a,b,c);
cv::Mat h = findHomography1D(src,dst);
float d = float((h.at<double>(0,0)*40+h.at<double>(0,1))/(h.at<double>(1,0)*40+h.at<double>(1,1)));
cv::Point2f p12 = p2-p1;
cv::Point2f p23 = p3-p2;
p01 = p01/a;
p12 = p12/cv::norm(p12);
p23 = p23/cv::norm(p23);
p4 = p3+(d-c)*p23;
// compensate radial distortion by fitting polynom
std::vector<double> x,y;
x.resize(4,0); y.resize(4,0);
x[1] = c-b;
x[2] = c-a;
x[3] = c;
y[2] = calcSignedDistance(-p23,p3,p1);
y[3] = calcSignedDistance(-p23,p3,p0);
polyfit(cv::Mat(x),cv::Mat(y),dst,2);
d = d-c;
double e = dst.at<double>(0)-dst.at<double>(1)*fabs(d)+dst.at<double>(2)*d*d;
cv::Vec3f v1(p23.x,p23.y,0);
cv::Vec3f v2(0,0,1);
cv::Vec3f v3 = v1.cross(v2);
cv::Point2f n2(v3[0],v3[1]);
p4 += e*n2;
return true;
}
// H is describing the transformation from dummy to reality
Ellipse Chessboard::Board::estimateSearchArea(cv::Mat _H,int row, int col,float p,int field_size)
{
cv::Matx31d point1,point2,center;
center(0) = (1+col)*field_size;
center(1) = (1+row)*field_size;
center(2) = 1.0;
point1(0) = center(0)-p*field_size;
point1(1) = center(1);
point1(2) = center(2);
point2(0) = center(0);
point2(1) = center(1)-p*field_size;
point2(2) = center(2);
cv::Matx33d H(_H);
point1 = H*point1;
point2 = H*point2;
center = H*center;
cv::Point2f pt(float(center(0)/center(2)),float(center(1)/center(2)));
cv::Point2f pt1(float(point1(0)/point1(2)),float(point1(1)/point1(2)));
cv::Point2f pt2(float(point2(0)/point2(2)),float(point2(1)/point2(2)));
cv::Point2f p01(pt1-pt);
cv::Point2f p02(pt2-pt);
float norm1 = float(cv::norm(p01));
float norm2 = float(cv::norm(p02));
float angle = float(std::acos(p01.dot(p02)/norm1/norm2));
cv::Size2f axes(norm1,norm2);
return Ellipse(pt,axes,angle);
}
bool Chessboard::Board::estimateSearchArea(const cv::Point2f &p1,const cv::Point2f &p2,const cv::Point2f &p3,float p,Ellipse &ellipse,const cv::Point2f *p0)
{
cv::Point2f p4,n;
if(p0)
{
// use 1D homography
if(!estimatePoint(*p0,p1,p2,p3,p4))
return false;
n = p4-*p0;
}
else
{
// use cross ratio
if(!estimatePoint(p1,p2,p3,p4))
return false;
n = p4-p1;
}
float norm = float(cv::norm(n));
n = n/norm;
float angle = std::acos(n.x);
if(n.y > 0)
angle = float(2.0F*CV_PI-angle);
n = p4-p3;
norm = float(cv::norm(n));
double delta = std::max(3.0F,p*norm);
ellipse = Ellipse(p4,cv::Size(int(delta),int(std::max(2.0,delta*ELLIPSE_WIDTH))),angle);
return true;
}
bool Chessboard::Board::checkRowColumn(const std::vector<cv::Point2f> &points)
{
if(points.size() < 4)
{
if(points.size() == 3)
return true;
else
return false;
}
std::vector<cv::Point2f>::const_iterator iter = points.begin();
std::vector<cv::Point2f>::const_iterator iter2 = iter+1;
std::vector<cv::Point2f>::const_iterator iter3 = iter2+1;
std::vector<cv::Point2f>::const_iterator iter4 = iter3+1;
Ellipse ellipse;
if(!estimateSearchArea(*iter4,*iter3,*iter2,CORNERS_SEARCH*3,ellipse))
return false;
if(!ellipse.contains(*iter))
return false;
std::vector<cv::Point2f>::const_iterator iter5 = iter4+1;
for(;iter5 != points.end();++iter5)
{
if(!estimateSearchArea(*iter2,*iter3,*iter4,CORNERS_SEARCH,ellipse,&(*iter)))
return false;
if(!ellipse.contains(*iter5))
return false;
iter = iter2;
iter2 = iter3;
iter3 = iter4;
iter4 = iter5;
}
return true;
}
cv::Point2f &Chessboard::Board::getCorner(int _row,int _col)
{
int _rows = int(rowCount());
int _cols = int(colCount());
if(_row >= _rows || _col >= _cols)
CV_Error(Error::StsBadArg,"out of bound");
if(_row == 0)
{
PointIter iter(top_left,TOP_LEFT);
int count = 0;
do
{
if(count == _col)
return *(*iter);
++count;
}while(iter.right());
}
else
{
Cell *row_start = top_left;
int count = 1;
do
{
if(count == _row)
{
PointIter iter(row_start,BOTTOM_LEFT);
int count2 = 0;
do
{
if(count2 == _col)
return *(*iter);
++count2;
}while(iter.right());
}
++count;
row_start = row_start->bottom;
}while(_row);
}
CV_Error(Error::StsInternal,"cannot find corner");
// return *top_left->top_left; // never reached
}
bool Chessboard::Board::isCellBlack(int row,int col)const
{
return getCell(row,col)->black;
}
bool Chessboard::Board::hasCellMarker(int row,int col)
{
return getCell(row,col)->marker;
}
int Chessboard::Board::detectMarkers(cv::InputArray image)
{
cv::Mat img = image.getMat();
CV_CheckTypeEQ(img.type(), CV_8UC1, "Unsupported source type");
if(img.empty())
CV_Error(Error::StsBadArg,"image is empty");
if(isEmpty())
CV_Error(Error::StsBadArg,"board is is empty");
// get undistorted board
cv::Mat board_image = warpImage(image);
cv::Mat mask = cv::Mat::zeros(DUMMY_FIELD_SIZE,DUMMY_FIELD_SIZE,CV_8UC1);
cv::circle(mask,cv::Point(DUMMY_FIELD_SIZE/2,DUMMY_FIELD_SIZE/2),DUMMY_FIELD_SIZE/7,cv::Scalar::all(255),-1);
int signal_size = cv::countNonZero(mask);
CV_Assert(signal_size > 0);
cv::Mat mask2 = cv::Mat::zeros(DUMMY_FIELD_SIZE,DUMMY_FIELD_SIZE,CV_8UC1);
cv::circle(mask2,cv::Point(DUMMY_FIELD_SIZE/2,DUMMY_FIELD_SIZE/2),DUMMY_FIELD_SIZE/2,cv::Scalar::all(255),-1);
cv::circle(mask2,cv::Point(DUMMY_FIELD_SIZE/2,DUMMY_FIELD_SIZE/2),DUMMY_FIELD_SIZE/5,cv::Scalar::all(0),-1);
int noise_size = cv::countNonZero(mask2);
CV_Assert(noise_size > 0);
std::vector<cv::Point2f> dst,src;
dst.push_back(cv::Point2f(0.0F,0.0F));
dst.push_back(cv::Point2f(float(DUMMY_FIELD_SIZE),0.0F));
dst.push_back(cv::Point2f(float(DUMMY_FIELD_SIZE),float(DUMMY_FIELD_SIZE)));
dst.push_back(cv::Point2f(0.0F,float(DUMMY_FIELD_SIZE)));
src.resize(4);
// check each field
int icols = int(colCount()-1);
int irows = int(rowCount()-1);
int count = 0;
cv::Mat temp;
for(int y=1;y<irows;++y)
{
for(int x=1;x<icols;++x)
{
Cell *cell = getCell(y,x);
// calculate homography for each field to avoid issues with
// distorted images
src[0] = *cell->top_left;
src[1] = *cell->top_right;
src[2] = *cell->bottom_right;
src[3] = *cell->bottom_left;
cv::Mat H = findHomography(src,dst,LMEDS);
cv::Mat field;
cv::warpPerspective(image,field,H,cv::Size(DUMMY_FIELD_SIZE,DUMMY_FIELD_SIZE));
// calc signal and noise value
cv::bitwise_and(field,mask,temp);
double signal = cv::sum(temp)[0]/signal_size;
cv::bitwise_and(field,mask2,temp);
double noise= cv::sum(temp)[0]/noise_size;
// calc refrence value
Cell *cell2 = getCell(y,abs(x-1));
src[0] = *cell2->top_left;
src[1] = *cell2->top_right;
src[2] = *cell2->bottom_right;
src[3] = *cell2->bottom_left;
H = findHomography(src,dst,LMEDS);
cv::warpPerspective(image,field,H,cv::Size(DUMMY_FIELD_SIZE,DUMMY_FIELD_SIZE));
cv::bitwise_and(field,mask2,temp);
double reference = cv::sum(temp)[0]/noise_size;
// check if marker is present
if(cell->black)
cell->marker = signal-noise > (reference-noise)*0.5;
else
cell->marker = noise-signal > (noise-reference)*0.5;
if(cell->marker)
count++;
// std::cout << x << "/" << y << " signal " << signal << " noise " << noise << " reference " << reference << " has marker " << int(cell->marker) << std::endl;
}
}
return count;
}
bool Chessboard::Board::isCellEmpty(int row,int col)
{
return getCell(row,col)->empty();
}
Chessboard::Board::Cell* Chessboard::Board::getCell(int row,int col)
{
const Cell *cell = const_cast<const Board*>(this)->getCell(row,col);
return const_cast<Cell*>(cell);
}
const Chessboard::Board::Cell* Chessboard::Board::getCell(int row,int col)const
{
if(row > rows-1 || row < 0 || col > cols-1 || col < 0)
CV_Error(Error::StsBadArg,"out of bound");
PointIter p_iter(top_left,BOTTOM_RIGHT);
for(int i=0; i< row; p_iter.bottom(),++i);
for(int i=0; i< col; p_iter.right(),++i);
return p_iter.getCell();
}
bool Chessboard::Board::isEmpty()const
{
return cells.empty();
}
size_t Chessboard::Board::colCount()const
{
return cols;
}
size_t Chessboard::Board::rowCount()const
{
return rows;
}
cv::Size Chessboard::Board::getSize()const
{
return cv::Size(int(colCount()),int(rowCount()));
}
void Chessboard::Board::drawEllipses(const std::vector<Ellipse> &ellipses)
{
// currently there is no global image find way to store global image
// without polluting namespace
if(ellipses.empty())
return; //avoid compiler warning
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
cv::Mat img;
draw(debug_image,img);
std::vector<Ellipse>::const_iterator iter = ellipses.begin();
for(;iter != ellipses.end();++iter)
iter->draw(img);
cv::imshow("chessboard",img);
cv::waitKey(-1);
#endif
}
// TODO also delete points
bool Chessboard::Board::shrinkLeft()
{
if(colCount() < 4)
return false;
// unlink cells on the left side and delete them
top_left = top_left->right;
PointIter iter(top_left,BOTTOM_RIGHT);
do
{
auto cell = iter.getCell();
auto citer = std::find(cells.begin(),cells.end(),cell->left);
delete cell->left;
cell->left= NULL;
cells.erase(citer);
}
while(iter.bottom());
--cols;
return true;
}
bool Chessboard::Board::shrinkRight()
{
if(colCount() < 4)
return false;
// unlink cells on the left side and delete them
PointIter iter(top_left,BOTTOM_RIGHT);
while(iter.right());
iter.left();
iter.left();
do
{
auto cell = iter.getCell();
auto citer = std::find(cells.begin(),cells.end(),cell->right);
delete cell->right;
cell->right= NULL;
cells.erase(citer);
}
while(iter.bottom());
--cols;
return true;
}
bool Chessboard::Board::shrinkTop()
{
if(rowCount() < 4)
return false;
// unlink cells on the left side and delete them
top_left = top_left->bottom;
PointIter iter(top_left,BOTTOM_RIGHT);
do
{
auto cell = iter.getCell();
auto citer = std::find(cells.begin(),cells.end(),cell->top);
delete cell->top;
cell->top= NULL;
cells.erase(citer);
}
while(iter.right());
--rows;
return true;
}
bool Chessboard::Board::shrinkBottom()
{
if(rowCount() < 4)
return false;
// unlink cells on the left side and delete them
PointIter iter(top_left,BOTTOM_RIGHT);
while(iter.bottom());
iter.top();
iter.top();
do
{
auto cell = iter.getCell();
auto citer = std::find(cells.begin(),cells.end(),cell->bottom);
delete cell->bottom;
cell->bottom= NULL;
cells.erase(citer);
}
while(iter.right());
--rows;
return true;
}
void Chessboard::Board::growLeft()
{
if(isEmpty())
CV_Error(Error::StsInternal,"Board is empty");
PointIter iter(top_left,TOP_LEFT);
std::vector<cv::Point2f> points;
cv::Point2f pt;
do
{
PointIter iter2(iter);
cv::Point2f *p0 = *iter2;
iter2.right();
cv::Point2f *p1 = *iter2;
iter2.right();
cv::Point2f *p2 = *iter2;
if(iter2.right())
estimatePoint(**iter2,*p2,*p1,*p0,pt);
else
estimatePoint(*p2,*p1,*p0,pt);
points.push_back(pt);
}
while(iter.bottom());
addColumnLeft(points);
}
bool Chessboard::Board::growLeft(const cv::Mat &map,cv::flann::Index &flann_index)
{
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
std::vector<Ellipse> ellipses;
#endif
if(isEmpty())
CV_Error(Error::StsInternal,"growLeft: Board is empty");
PointIter iter(top_left,TOP_LEFT);
std::vector<cv::Point2f> points;
int count = 0;
Ellipse ellipse;
cv::Point2f pt;
do
{
PointIter iter2(iter);
cv::Point2f *p0 = *iter2;
iter2.right();
cv::Point2f *p1 = *iter2;
iter2.right();
cv::Point2f *p2 = *iter2;
cv::Point2f *p3 = NULL;
if(iter2.right())
p3 = *iter2;
if(!estimateSearchArea(*p2,*p1,*p0,CORNERS_SEARCH,ellipse,p3))
return false;
float result = findMaxPoint(flann_index,map,ellipse,white_angle,black_angle,pt);
if(pt == *p0)
{
++count;
points.push_back(ellipse.getCenter());
if(points.back().x < 0 || points.back().y <0)
return false;
}
else if(result != 0)
{
points.push_back(pt);
if(result < 0)
++count;
}
else
{
++count;
if(pt.x != pt.x) // NaN check
points.push_back(ellipse.getCenter());
else
points.push_back(pt);
}
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
ellipses.push_back(ellipse);
#endif
}
while(iter.bottom());
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
drawEllipses(ellipses);
#endif
if(points.size()-count <= 2)
return false;
if(count > points.size()*0.5 || !checkRowColumn(points))
return false;
addColumnLeft(points);
return true;
}
void Chessboard::Board::growTop()
{
if(isEmpty())
CV_Error(Error::StsInternal,"Board is empty");
PointIter iter(top_left,TOP_LEFT);
std::vector<cv::Point2f> points;
cv::Point2f pt;
do
{
PointIter iter2(iter);
cv::Point2f *p0 = *iter2;
iter2.bottom();
cv::Point2f *p1 = *iter2;
iter2.bottom();
cv::Point2f *p2 = *iter2;
if(iter2.bottom())
estimatePoint(**iter2,*p2,*p1,*p0,pt);
else
estimatePoint(*p2,*p1,*p0,pt);
points.push_back(pt);
}
while(iter.right());
addRowTop(points);
}
bool Chessboard::Board::growTop(const cv::Mat &map,cv::flann::Index &flann_index)
{
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
std::vector<Ellipse> ellipses;
#endif
if(isEmpty())
CV_Error(Error::StsInternal,"Board is empty");
PointIter iter(top_left,TOP_LEFT);
std::vector<cv::Point2f> points;
int count = 0;
Ellipse ellipse;
cv::Point2f pt;
do
{
PointIter iter2(iter);
cv::Point2f *p0 = *iter2;
iter2.bottom();
cv::Point2f *p1 = *iter2;
iter2.bottom();
cv::Point2f *p2 = *iter2;
cv::Point2f *p3 = NULL;
if(iter2.bottom())
p3 = *iter2;
if(!estimateSearchArea(*p2,*p1,*p0,CORNERS_SEARCH,ellipse,p3))
return false;
float result = findMaxPoint(flann_index,map,ellipse,white_angle,black_angle,pt);
if(pt == *p0)
{
++count;
points.push_back(ellipse.getCenter());
if(points.back().x < 0 || points.back().y <0)
return false;
}
else if(result != 0)
{
points.push_back(pt);
if(result < 0)
++count;
}
else
{
++count;
if(pt.x != pt.x) // NaN check
points.push_back(ellipse.getCenter());
else
points.push_back(pt);
}
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
ellipses.push_back(ellipse);
#endif
}
while(iter.right());
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
drawEllipses(ellipses);
#endif
if(count > points.size()*0.5 || !checkRowColumn(points))
return false;
addRowTop(points);
return true;
}
void Chessboard::Board::growRight()
{
if(isEmpty())
CV_Error(Error::StsInternal,"Board is empty");
PointIter iter(top_left,TOP_RIGHT);
while(iter.right());
std::vector<cv::Point2f> points;
cv::Point2f pt;
do
{
PointIter iter2(iter);
cv::Point2f *p0 = *iter2;
iter2.left();
cv::Point2f *p1 = *iter2;
iter2.left();
cv::Point2f *p2 = *iter2;
if(iter2.left())
estimatePoint(**iter2,*p2,*p1,*p0,pt);
else
estimatePoint(*p2,*p1,*p0,pt);
points.push_back(pt);
}
while(iter.bottom());
addColumnRight(points);
}
bool Chessboard::Board::growRight(const cv::Mat &map,cv::flann::Index &flann_index)
{
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
std::vector<Ellipse> ellipses;
#endif
if(isEmpty())
CV_Error(Error::StsInternal,"Board is empty");
PointIter iter(top_left,TOP_RIGHT);
while(iter.right());
std::vector<cv::Point2f> points;
cv::Point2f pt;
Ellipse ellipse;
int count = 0;
do
{
PointIter iter2(iter);
cv::Point2f *p0 = *iter2;
iter2.left();
cv::Point2f *p1 = *iter2;
iter2.left();
cv::Point2f *p2 = *iter2;
cv::Point2f *p3 = NULL;
if(iter2.left())
p3 = *iter2;
if(!estimateSearchArea(*p2,*p1,*p0,CORNERS_SEARCH,ellipse,p3))
return false;
float result = findMaxPoint(flann_index,map,ellipse,white_angle,black_angle,pt);
if(pt == *p0)
{
++count;
points.push_back(ellipse.getCenter());
if(points.back().x < 0 || points.back().y <0)
return false;
}
else if(result != 0)
{
points.push_back(pt);
if(result < 0)
++count;
}
else
{
++count;
if(pt.x != pt.x) // NaN check
points.push_back(ellipse.getCenter());
else
points.push_back(pt);
}
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
ellipses.push_back(ellipse);
#endif
}
while(iter.bottom());
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
drawEllipses(ellipses);
#endif
if(count > points.size()*0.5 || !checkRowColumn(points))
return false;
addColumnRight(points);
return true;
}
void Chessboard::Board::growBottom()
{
if(isEmpty())
CV_Error(Error::StsInternal,"Board is empty");
PointIter iter(top_left,BOTTOM_LEFT);
while(iter.bottom());
std::vector<cv::Point2f> points;
cv::Point2f pt;
do
{
PointIter iter2(iter);
cv::Point2f *p0 = *iter2;
iter2.top();
cv::Point2f *p1 = *iter2;
iter2.top();
cv::Point2f *p2 = *iter2;
if(iter2.top())
estimatePoint(**iter2,*p2,*p1,*p0,pt);
else
estimatePoint(*p2,*p1,*p0,pt);
points.push_back(pt);
}
while(iter.right());
addRowBottom(points);
}
bool Chessboard::Board::growBottom(const cv::Mat &map,cv::flann::Index &flann_index)
{
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
std::vector<Ellipse> ellipses;
#endif
if(isEmpty())
CV_Error(Error::StsInternal,"Board is empty");
PointIter iter(top_left,BOTTOM_LEFT);
while(iter.bottom());
std::vector<cv::Point2f> points;
cv::Point2f pt;
Ellipse ellipse;
int count = 0;
do
{
PointIter iter2(iter);
cv::Point2f *p0 = *iter2;
iter2.top();
cv::Point2f *p1 = *iter2;
iter2.top();
cv::Point2f *p2 = *iter2;
cv::Point2f *p3 = NULL;
if(iter2.top())
p3 = *iter2;
if(!estimateSearchArea(*p2,*p1,*p0,CORNERS_SEARCH,ellipse,p3))
return false;
float result = findMaxPoint(flann_index,map,ellipse,white_angle,black_angle,pt);
if(pt == *p0)
{
++count;
points.push_back(ellipse.getCenter());
if(points.back().x < 0 || points.back().y <0)
return false;
}
else if(result != 0)
{
points.push_back(pt);
if(result < 0)
++count;
}
else
{
++count;
if(pt.x != pt.x) // NaN check
points.push_back(ellipse.getCenter());
else
points.push_back(pt);
}
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
ellipses.push_back(ellipse);
#endif
}
while(iter.right());
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
drawEllipses(ellipses);
#endif
if(count > points.size()*0.5 || !checkRowColumn(points))
return false;
addRowBottom(points);
return true;
}
void Chessboard::Board::addColumnLeft(const std::vector<cv::Point2f> &points)
{
if(points.empty() || points.size() != rowCount())
CV_Error(Error::StsBadArg,"wrong number of points");
int offset = int(cells.size());
cells.resize(offset+points.size()-1);
for(int i = offset;i < (int) cells.size();++i)
cells[i] = new Cell();
corners.push_back(new cv::Point2f(points.front()));
Cell *cell = top_left;
std::vector<cv::Point2f>::const_iterator iter = points.begin()+1;
for(int pos=offset;iter != points.end();++iter,cell = cell->bottom,++pos)
{
cell->left = cells[pos];
cells[pos]->black = !cell->black;
if(pos != offset)
cells[pos]->top = cells[pos-1];
cells[pos]->right = cell;
if(pos +1 < (int)cells.size())
cells[pos]->bottom= cells[pos+1];
cells[pos]->top_left = corners.back();
corners.push_back(new cv::Point2f(*iter));
cells[pos]->bottom_left = corners.back();
cells[pos]->top_right=cell->top_left;
cells[pos]->bottom_right=cell->bottom_left;
}
top_left = cells[offset];
++cols;
}
void Chessboard::Board::addRowTop(const std::vector<cv::Point2f> &points)
{
if(points.empty() || points.size() != colCount())
CV_Error(Error::StsBadArg,"wrong number of points");
int offset = int(cells.size());
cells.resize(offset+points.size()-1);
for(int i = offset;i < (int) cells.size();++i)
cells[i] = new Cell();
corners.push_back(new cv::Point2f(points.front()));
Cell *cell = top_left;
std::vector<cv::Point2f>::const_iterator iter = points.begin()+1;
for(int pos=offset;iter != points.end();++iter,cell = cell->right,++pos)
{
cell->top = cells[pos];
cells[pos]->black = !cell->black;
if(pos != offset)
cells[pos]->left= cells[pos-1];
cells[pos]->bottom= cell;
if(pos +1 <(int) cells.size())
cells[pos]->right= cells[pos+1];
cells[pos]->top_left = corners.back();
corners.push_back(new cv::Point2f(*iter));
cells[pos]->top_right = corners.back();
cells[pos]->bottom_left = cell->top_left;
cells[pos]->bottom_right = cell->top_right;
}
top_left = cells[offset];
++rows;
}
void Chessboard::Board::addColumnRight(const std::vector<cv::Point2f> &points)
{
if(points.empty() || points.size() != rowCount())
CV_Error(Error::StsBadArg,"wrong number of points");
int offset = int(cells.size());
cells.resize(offset+points.size()-1);
for(int i = offset;i < (int) cells.size();++i)
cells[i] = new Cell();
corners.push_back(new cv::Point2f(points.front()));
Cell *cell = top_left;
for(;cell->right;cell = cell->right);
std::vector<cv::Point2f>::const_iterator iter = points.begin()+1;
for(int pos=offset;iter != points.end();++iter,cell = cell->bottom,++pos)
{
cell->right = cells[pos];
cells[pos]->black = !cell->black;
if(pos != offset)
cells[pos]->top= cells[pos-1];
cells[pos]->left = cell;
if(pos +1 <(int) cells.size())
cells[pos]->bottom= cells[pos+1];
cells[pos]->top_right = corners.back();
corners.push_back(new cv::Point2f(*iter));
cells[pos]->bottom_right = corners.back();
cells[pos]->top_left =cell->top_right;
cells[pos]->bottom_left =cell->bottom_right;
}
++cols;
}
void Chessboard::Board::addRowBottom(const std::vector<cv::Point2f> &points)
{
if(points.empty() || points.size() != colCount())
CV_Error(Error::StsBadArg,"wrong number of points");
int offset = int(cells.size());
cells.resize(offset+points.size()-1);
for(int i = offset;i < (int) cells.size();++i)
cells[i] = new Cell();
corners.push_back(new cv::Point2f(points.front()));
Cell *cell = top_left;
for(;cell->bottom;cell = cell->bottom);
std::vector<cv::Point2f>::const_iterator iter = points.begin()+1;
for(int pos=offset;iter != points.end();++iter,cell = cell->right,++pos)
{
cell->bottom = cells[pos];
cells[pos]->black = !cell->black;
if(pos != offset)
cells[pos]->left = cells[pos-1];
cells[pos]->top = cell;
if(pos +1 < (int)cells.size())
cells[pos]->right= cells[pos+1];
cells[pos]->bottom_left = corners.back();
corners.push_back(new cv::Point2f(*iter));
cells[pos]->bottom_right = corners.back();
cells[pos]->top_left = cell->bottom_left;
cells[pos]->top_right = cell->bottom_right;
}
++rows;
}
bool Chessboard::Board::checkUnique()const
{
std::vector<cv::Point2f> points = getCorners(false);
std::vector<cv::Point2f>::const_iterator iter = points.begin();
for(;iter != points.end();++iter)
{
std::vector<cv::Point2f>::const_iterator iter2 = iter+1;
for(;iter2 != points.end();++iter2)
{
if(*iter == *iter2)
return false;
}
}
return true;
}
int Chessboard::Board::validateCorners(const cv::Mat &data,cv::flann::Index &flann_index,const cv::Mat &h,float min_response)
{
// TODO check input
if(isEmpty() || h.empty())
return 0;
int count = 0; int icol = 0;
// first row
PointIter iter(top_left,TOP_LEFT);
cv::Point2f point;
do
{
if((*iter)->x == (*iter)->x)
++count;
else
{
Ellipse ellipse = estimateSearchArea(h,0,icol,0.4F);
float result = findMaxPoint(flann_index,data,ellipse,white_angle,black_angle,point);
if(fabs(result) >= min_response)
{
++count;
**iter = point;
}
}
++icol;
}while(iter.right());
// all other rows
int irow = 1;
Cell *row = top_left;
do
{
PointIter iter2(row,BOTTOM_LEFT);
icol = 0;
do
{
if((*iter2)->x == (*iter2)->x)
++count;
else
{
Ellipse ellipse = estimateSearchArea(h,irow,icol,0.4F);
if(min_response <= findMaxPoint(flann_index,data,ellipse,white_angle,black_angle,point))
{
++count;
**iter2 = point;
}
}
++icol;
}while(iter2.right());
row = row->bottom;
++irow;
}while(row);
// check that there are no points with the same coordinate
std::vector<cv::Point2f> points = getCorners(false);
std::vector<cv::Point2f>::const_iterator iter1 = points.begin();
for(;iter1 != points.end();++iter1)
{
// we do not have to check for NaN because of getCorners(false)
std::vector<cv::Point2f>::const_iterator iter2 = iter1+1;
for(;iter2 != points.end();++iter2)
if(*iter1 == *iter2)
return -1; // one corner is there twice -> not valid configuration
}
return count;
}
bool Chessboard::Board::validateContour()const
{
std::vector<cv::Point2f> contour = getContour();
if(contour.size() != 4)
{
return false;
}
cv::Point2f n1 = contour[1]-contour[0];
cv::Point2f n2 = contour[2]-contour[1];
cv::Point2f n3 = contour[3]-contour[2];
cv::Point2f n4 = contour[0]-contour[3];
n1 = n1/cv::norm(n1);
n2 = n2/cv::norm(n2);
n3 = n3/cv::norm(n3);
n4 = n4/cv::norm(n4);
// a > b => cos(a) < cos(b)
if(fabs(n1.dot(n2)) > MIN_COS_ANGLE||
fabs(n2.dot(n3)) > MIN_COS_ANGLE||
fabs(n3.dot(n4)) > MIN_COS_ANGLE||
fabs(n4.dot(n1)) > MIN_COS_ANGLE)
return false;
return true;
}
std::vector<cv::Point2f> Chessboard::Board::getContour()const
{
std::vector<cv::Point2f> points;
if(isEmpty())
return points;
//find start cell part of the contour
Cell* start_cell = NULL;
PointIter iter(top_left,TOP_LEFT);
do
{
PointIter iter2(iter);
do
{
if(!iter2.getCell()->empty())
{
start_cell = iter2.getCell();
iter = iter2;
break;
}
}while(iter2.right());
}while(!start_cell && iter.bottom());
if(start_cell == NULL)
return points;
// trace contour
const cv::Point2f *start_pt = *iter;
int mode = 2; int last = -1;
do
{
PointIter current_iter(iter);
switch(mode)
{
case 1: // top
if(iter.top(true))
{
if(last != 1)
points.push_back(**current_iter);
mode = 4;
last = 1;
break;
}
/* fallthrough */
case 2: // right
if(iter.right(true))
{
if(last != 2)
points.push_back(**current_iter);
mode = 1;
last = 2;
break;
}
/* fallthrough */
case 3: // bottom
if(iter.bottom(true))
{
if(last != 3)
points.push_back(**current_iter);
mode = 2;
last = 3;
break;
}
/* fallthrough */
case 4: // left
if(iter.left(true))
{
if(last != 4)
points.push_back(**current_iter);
mode = 3;
last = 4;
break;
}
mode = 1;
break;
default:
CV_Error(Error::StsInternal,"cannot retrieve contour");
}
}while(*iter != start_pt);
return points;
}
void Chessboard::Board::maskImage(cv::InputOutputArray img,const cv::Scalar &color)const
{
Chessboard::Board temp(*this);
temp.growLeft();
temp.growRight();
temp.growTop();
temp.growBottom();
cv::Mat contour;
cv::Mat(temp.getContour()).convertTo(contour,CV_32S);
std::vector<cv::Mat> contours;
contours.push_back(contour);
cv::drawContours(img,contours,0,color,-1);
}
cv::Mat Chessboard::Board::estimateHomography(cv::Rect rect,int field_size)const
{
int _rows = int(rowCount());
int _cols = int(colCount());
if(_rows < 3 || _cols < 3)
return cv::Mat();
if(rect.width <= 0)
rect.width= _cols;
if(rect.height <= 0)
rect.height= _rows;
int col_end = std::min(rect.x+rect.width,_cols);
int row_end = std::min(rect.y+rect.height,_rows);
std::vector<cv::Point2f> points = getCorners(true);
// build src and dst
std::vector<cv::Point2f> src,dst;
for(int row =rect.y;row < row_end;++row)
{
for(int col=rect.x;col <col_end;++col)
{
const cv::Point2f &pt = points[row*_rows+col];
if(pt.x != pt.x) // NaN check
continue;
src.push_back(cv::Point2f(float(field_size)*(col+1),float(field_size)*(row+1)));
dst.push_back(pt);
}
}
if(dst.size() < 4)
return cv::Mat();
return findHomography(src, dst,LMEDS);
}
cv::Mat Chessboard::Board::estimateHomography(int field_size)const
{
int _rows = int(rowCount());
int _cols = int(colCount());
if(_rows < 3 || _cols < 3)
return cv::Mat();
std::vector<cv::Point2f> src,dst;
std::vector<cv::Point2f> points = getCorners(true);
std::vector<cv::Point2f>::const_iterator iter = points.begin();
for(int row =0;row < _rows;++row)
{
for(int col=0;col <_cols;++col,++iter)
{
const cv::Point2f &pt = *iter;
if(pt.x == pt.x)
{
src.push_back(cv::Point2f(float(field_size)*(col+1),float(field_size)*(row+1)));
dst.push_back(pt);
}
}
}
if(dst.size() < 4)
return cv::Mat();
return findHomography(src, dst);
}
bool Chessboard::Board::findNextPoint(cv::flann::Index &index,const cv::Mat &data,
const cv::Point2f &pt1,const cv::Point2f &pt2, const cv::Point2f &pt3,
float white_angle,float black_angle,float min_response,cv::Point2f &point)
{
Ellipse ellipse;
if(!estimateSearchArea(pt1,pt2,pt3,0.4F,ellipse))
return false;
if(min_response > fabs(findMaxPoint(index,data,ellipse,white_angle,black_angle,point)))
return false;
return true;
}
int Chessboard::Board::grow(const cv::Mat &map,cv::flann::Index &flann_index)
{
if(isEmpty())
CV_Error(Error::StsInternal,"Board is empty");
bool bleft = true;
bool btop = true;
bool bright = true;
bool bbottom= true;
int count = 0;
do
{
if(btop)
{
btop= growTop(map,flann_index);
if(btop)
{
++count;
continue;
}
}
if(bbottom)
{
bbottom= growBottom(map,flann_index);
if(bbottom)
{
++count;
continue;
}
}
// grow to the left
if(bleft)
{
bleft = growLeft(map,flann_index);
if(bleft)
{
++count;
continue;
}
}
if(bright)
{
bright= growRight(map,flann_index);
if(bright)
{
++count;
continue;
}
}
}while(bleft || btop || bright || bbottom );
return count;
}
std::map<int,int> Chessboard::Board::getMapping()const
{
std::map<int,int> map;
std::vector<cv::Point2f> points = getCorners();
std::vector<cv::Point2f>::iterator iter = points.begin();
for(int idx1=0,idx2=0;iter != points.end();++iter,++idx1)
{
if(iter->x != iter->x) // NaN check
continue;
map[idx1] = idx2++;
}
return map;
}
std::vector<cv::Point2f> Chessboard::Board::getCorners(bool ball)const
{
std::vector<cv::Point2f> points;
if(isEmpty())
return points;
// first row
PointIter iter(top_left,TOP_LEFT);
do
{
if(ball || !iter.isNaN())
points.push_back(*(*iter));
}while(iter.right());
// all other rows
Cell *row = top_left;
do
{
PointIter iter2(row,BOTTOM_LEFT);
do
{
if(ball || !iter2.isNaN())
points.push_back(*(*iter2));
}while(iter2.right());
row = row->bottom;
}while(row);
return points;
}
std::vector<cv::KeyPoint> Chessboard::Board::getKeyPoints(bool ball)const
{
std::vector<cv::KeyPoint> keypoints;
std::vector<cv::Point2f> points = getCorners(ball);
std::vector<cv::Point2f>::const_iterator iter = points.begin();
for(;iter != points.end();++iter)
keypoints.push_back(cv::KeyPoint(iter->x,iter->y,1));
return keypoints;
}
cv::Scalar Chessboard::Board::calcEdgeSharpness(cv::InputArray _img,float rise_distance,bool vertical,cv::OutputArray _sharpness)
{
cv::Mat img = _img.getMat();
if(img.empty())
CV_Error(Error::StsBadArg,"image is empty");
if(img.type() != CV_8UC1)
CV_Error(Error::StsBadArg,"image type is not supported. Expect CV_8UC1");
int tcols = int(colCount());
int trows = int(rowCount());
std::vector<cv::Point2f> centers = getCellCenters();
if(int(centers.size()) != trows*tcols)
CV_Error(Error::StsInternal,"internal error - size mismatch");
// build horizontal lines
std::vector<std::pair<cv::Point2f,cv::Point2f> > pairs;
if(vertical)
{
for(int row = 1;row < trows-1;++row)
{
std::vector<cv::Point2f>::const_iterator iter1 = centers.begin()+row*tcols;
std::vector<cv::Point2f>::const_iterator iter2 = iter1+1;
for(int col= 0;col< tcols-1;++col,++iter1,++iter2)
pairs.push_back(std::make_pair(*iter1,*iter2));
}
}
else
{
// build vertical lines
for(int col = 1;col< tcols-1;++col)
{
// avoid using iterators to not trigger out of range
int i1 = col;
int i2 = i1 + tcols;
for (int row = 0; row < trows - 1; ++row, i1 += tcols, i2 += tcols)
{
pairs.push_back(std::make_pair(centers[i1], centers[i2]));
}
}
}
// calc edge response for each line
cv::Rect rect(0,0,img.cols,img.rows);
std::vector<std::pair<cv::Point2f,cv::Point2f> >::const_iterator iter = pairs.begin();
int count = 0;
float sharpness = 0;
float max_val= 0;
float min_val= 0;
double dmin,dmax;
cv::Mat data = cv::Mat::zeros(int(pairs.size()),5,CV_32FC1);
for(;iter != pairs.end();++iter)
{
// get values from the image
if(!rect.contains(iter->first) || !rect.contains(iter->second))
continue;
int delta = int(cv::norm(iter->second-iter->first));
if(delta < 10)
continue;
float dx = (iter->second.x-iter->first.x)/delta;
float dy = (iter->second.y-iter->first.y)/delta;
std::vector<uint8_t> values;
cv::Mat patch;
for(int i=0;i<delta;++i)
{
int count2 = 0;
float value = 0;
cv::Point2f p0(iter->first.x+dx*i,iter->first.y+dy*i);
for(int num=-1;num < 2;++num)
{
cv::Point2f p1(p0.x+dy*num,p0.y-dx*num);
if(!rect.contains(p1))
continue;
cv::getRectSubPix(img,cv::Size(1,1),p1,patch);
value += patch.at<uint8_t>(0,0);
++count2;
}
values.push_back(count2 > 0 ? uint8_t(value/count2) : 0);
}
float val = calcSharpness(values,rise_distance);
sharpness += val;
cv::minMaxLoc(values,&dmin,&dmax);
max_val+= float(dmax);
min_val += float(dmin);
data.at<float>(count,0) = iter->first.x+(iter->second.x-iter->first.x)/2;
data.at<float>(count,1) = iter->first.y+(iter->second.y-iter->first.y)/2;
data.at<float>(count,2) = val;
data.at<float>(count,3) = float(dmin);
data.at<float>(count,4) = float(dmax);
count +=1;
}
if(count == 0)
{
std::cout <<"calcEdgeSharpness: checkerboard too small for calculation." << std::endl;
return cv::Scalar::all(9999);
}
sharpness = sharpness/float(count);
max_val = max_val/float(count);
min_val = min_val/float(count);
if(_sharpness.needed())
data.copyTo(_sharpness);
return cv::Scalar(sharpness,min_val,max_val);
}
Chessboard::Chessboard(const Parameters &para)
{
reconfigure(para);
}
void Chessboard::reconfigure(const Parameters &config)
{
parameters = config;
}
Chessboard::Parameters Chessboard::getPara()const
{
return parameters;
}
Chessboard::~Chessboard()
{
}
void Chessboard::findKeyPoints(const cv::Mat& image, std::vector<KeyPoint>& keypoints,std::vector<cv::Mat> &feature_maps,
std::vector<std::vector<float> > &angles ,const cv::Mat& mask)const
{
keypoints.clear();
angles.clear();
vector<KeyPoint> keypoints_temp;
FastX::Parameters para;
para.branches = 2; // this is always the case for checssboard corners
para.strength = 150; // minimal threshold
para.resolution = float(CV_PI*0.25); // this gives the best results taking interpolation into account
para.filter = 1;
para.super_resolution = parameters.super_resolution;
para.min_scale = parameters.min_scale;
para.max_scale = parameters.max_scale;
FastX detector(para);
std::vector<cv::Mat> rotated_images;
detector.detectImpl(image,rotated_images,feature_maps,mask);
//calculate seed chessboard corners
detector.findKeyPoints(feature_maps,keypoints_temp,mask);
//sort points and limit number
int max_seeds = std::min((int)keypoints_temp.size(),parameters.max_points);
if(max_seeds < 9)
return;
std::partial_sort(keypoints_temp.begin(),keypoints_temp.begin()+max_seeds-1,
keypoints_temp.end(),sortKeyPoint);
keypoints_temp.resize(max_seeds);
std::vector<std::vector<float> > angles_temp = detector.calcAngles(rotated_images,keypoints_temp);
// filter out keypoints which are not symmetric
std::vector<KeyPoint>::iterator iter1 = keypoints_temp.begin();
std::vector<std::vector<float> >::const_iterator iter2 = angles_temp.begin();
for(;iter1 != keypoints_temp.end();++iter1,++iter2)
{
cv::KeyPoint &pt = *iter1;
const std::vector<float> &angles_i3 = *iter2;
if(angles_i3.size() != 2)// || pt.response < noise)
continue;
int result = testPointSymmetry(image,pt.pt,pt.size*0.7F,std::max(10.0F,sqrt(pt.response)+0.5F*pt.size));
if(result > MAX_SYMMETRY_ERRORS)
continue;
else if(result > 3)
pt.response = - pt.response;
angles.push_back(angles_i3);
keypoints.push_back(pt);
}
}
cv::Mat Chessboard::buildData(const std::vector<KeyPoint>& keypoints)const
{
cv::Mat data(int(keypoints.size()),4,CV_32FC1); // x + y + angle + strength
std::vector<cv::KeyPoint>::const_iterator iter = keypoints.begin();
float *val = reinterpret_cast<float*>(data.data);
for(;iter != keypoints.end();++iter)
{
(*val++) = iter->pt.x;
(*val++) = iter->pt.y;
(*val++) = float(2.0*CV_PI-iter->angle/180.0*CV_PI);
(*val++) = iter->response;
}
return data;
}
std::vector<cv::KeyPoint> Chessboard::getInitialPoints(cv::flann::Index &flann_index,const cv::Mat &data,const cv::KeyPoint &center,float white_angle,float black_angle,float min_response)const
{
CV_CheckTypeEQ(data.type(), CV_32FC1, "Unsupported source type");
if(data.cols != 4)
CV_Error(Error::StsBadArg,"wrong data format");
std::vector<float> query,dists;
std::vector<int> indices;
query.resize(2); query[0] = center.pt.x; query[1] = center.pt.y;
flann_index.knnSearch(query,indices,dists,21,cv::flann::SearchParams(32));
// collect all points having a similar angle and response
std::vector<cv::KeyPoint> points;
std::vector<int>::const_iterator ids_iter = indices.begin()+1; // first point is center
points.push_back(center);
for(;ids_iter != indices.end();++ids_iter)
{
// TODO do more angle tests
// test only one angle against the stored one
const float &response = data.at<float>(*ids_iter,3);
if(fabs(response) < min_response)
continue;
const float &angle = data.at<float>(*ids_iter,2);
float angle_temp = fabs(angle-white_angle);
if(angle_temp > CV_PI*0.5)
angle_temp = float(fabs(angle_temp-CV_PI));
if(angle_temp > MAX_ANGLE)
{
angle_temp = fabs(angle-black_angle);
if(angle_temp > CV_PI*0.5)
angle_temp = float(fabs(angle_temp-CV_PI));
if(angle_temp >MAX_ANGLE)
continue;
}
points.push_back(cv::KeyPoint(data.at<float>(*ids_iter,0),data.at<float>(*ids_iter,1),center.size,angle,response));
}
return points;
}
Chessboard::BState Chessboard::generateBoards(cv::flann::Index &flann_index,const cv::Mat &data,
const cv::KeyPoint &center,float white_angle,float black_angle,float min_response,const cv::Mat& img,
std::vector<Chessboard::Board> &boards)const
{
// collect all points having a similar angle
std::vector<cv::KeyPoint> kpoints= getInitialPoints(flann_index,data,center,white_angle,black_angle,min_response);
if(kpoints.size() < 5)
return MISSING_POINTS;
if(!img.empty())
{
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
cv::Mat out;
cv::drawKeypoints(img,kpoints,out,cv::Scalar(0,0,255,255),4);
std::vector<cv::KeyPoint> temp;
temp.push_back(kpoints.front());
cv::drawKeypoints(out,temp,out,cv::Scalar(0,255,0,255),4);
cv::imshow("chessboard",out);
cv::waitKey(-1);
#endif
}
// use angles to filter out points
std::vector<cv::KeyPoint> points;
cv::Vec2f n1(std::cos(white_angle),-std::sin(white_angle));
cv::Vec2f n2(std::cos(black_angle),-std::sin(black_angle));
std::vector<cv::KeyPoint>::const_iterator iter1 = kpoints.begin()+1; // first point is center
for(;iter1 != kpoints.end();++iter1)
{
// calc angle
cv::Vec2f vec(iter1->pt-center.pt);
vec = vec/cv::norm(vec);
if(fabs(vec.dot(n1)) < 0.96 && fabs(vec.dot(n2)) < 0.96) //check that angle is bigger than 15°
points.push_back(*iter1);
}
// generate pairs those connection goes through the center
std::vector<std::pair<cv::KeyPoint,cv::KeyPoint> > pairs;
iter1 = points.begin();
for(;iter1 != points.end();++iter1)
{
std::vector<cv::KeyPoint>::const_iterator iter2 = iter1+1;
for(;iter2 != points.end();++iter2)
{
if(isPointOnLine(iter1->pt,iter2->pt,center.pt,0.97F))
{
if(cv::norm(iter1->pt) < cv::norm(iter2->pt))
pairs.push_back(std::make_pair(*iter1,*iter2));
else
pairs.push_back(std::make_pair(*iter2,*iter1));
}
}
}
// generate all possible combinations consisting of two pairs
if(pairs.size() < 2)
return MISSING_PAIRS;
std::vector<std::pair<cv::KeyPoint,cv::KeyPoint> >::iterator iter_pair1 = pairs.begin();
BState best_state = MISSING_PAIRS;
for(;iter_pair1 != pairs.end();++iter_pair1)
{
cv::Point2f p1 = iter_pair1->second.pt-iter_pair1->first.pt;
p1 = p1/cv::norm(p1);
std::vector<std::pair<cv::KeyPoint,cv::KeyPoint> >::iterator iter_pair2 = iter_pair1+1;
for(;iter_pair2 != pairs.end();++iter_pair2)
{
cv::Point2f p2 = iter_pair2->second.pt-iter_pair2->first.pt;
p2 = p2/cv::norm(p2);
if(p2.dot(p1) > 0.95)
{
if(best_state < WRONG_PAIR_ANGLE)
best_state = WRONG_PAIR_ANGLE;
}
else
{
// check orientations
if(checkOrientation(iter_pair1->first.pt,iter_pair1->second.pt,iter_pair2->first.pt,iter_pair2->second.pt))
std::swap(iter_pair2->first,iter_pair2->second);
// minimal case
std::vector<cv::Point2f> board_points;
board_points.resize(9,cv::Point2f(std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::quiet_NaN()));
board_points[1] = iter_pair2->first.pt;
board_points[3] = iter_pair1->first.pt;
board_points[4] = center.pt;
board_points[5] = iter_pair1->second.pt;
board_points[7] = iter_pair2->second.pt;
boards.push_back(Board(cv::Size(3,3),board_points,white_angle,black_angle));
Board &board = boards.back();
if(board.isEmpty())
{
if(best_state < WRONG_CONFIGURATION)
best_state = WRONG_CONFIGURATION;
boards.pop_back(); // MAKE SURE board is no longer used !!!!
continue;
}
best_state = FOUND_BOARD;
}
}
}
return best_state;
}
void Chessboard::detectImpl(const Mat& image, vector<KeyPoint>& keypoints,std::vector<Mat> &feature_maps,const Mat& mask)const
{
keypoints.clear();
Board board = detectImpl(image,feature_maps,mask);
keypoints = board.getKeyPoints();
return;
}
Chessboard::Board Chessboard::detectImpl(const Mat& gray,std::vector<cv::Mat> &feature_maps,const Mat& mask)const
{
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
debug_image = gray;
#endif
CV_CheckTypeEQ(gray.type(),CV_8UC1, "Unsupported image type");
cv::Size chessboard_size2(parameters.chessboard_size.height,parameters.chessboard_size.width);
std::vector<KeyPoint> keypoints_seed;
std::vector<std::vector<float> > angles;
findKeyPoints(gray,keypoints_seed,feature_maps,angles,mask);
if(int(keypoints_seed.size()) < parameters.chessboard_size.width * parameters.chessboard_size.height)
return Chessboard::Board();
// check how many points are likely a checkerboard corner
float response = fabs(keypoints_seed.front().response*MIN_RESPONSE_RATIO);
std::vector<KeyPoint>::const_iterator seed_iter = keypoints_seed.begin();
int count = 0;
int inum = chessboard_size2.width*chessboard_size2.height;
for(;seed_iter != keypoints_seed.end() && count < inum;++seed_iter,++count)
{
// points are sorted based on response
if(fabs(seed_iter->response) < response)
{
seed_iter = keypoints_seed.end();
return Chessboard::Board();
}
}
// just add dummy points or flann will fail during knnSearch
if(keypoints_seed.size() < 21)
keypoints_seed.resize(21, cv::KeyPoint(-99999.0F,-99999.0F,0.0F,0.0F,0.0F));
//build kd tree
cv::Mat data = buildData(keypoints_seed);
cv::Mat flann_data(data.rows,2,CV_32FC1);
data(cv::Rect(0,0,2,data.rows)).copyTo(flann_data);
cv::flann::Index flann_index(flann_data,cv::flann::KDTreeIndexParams(1),cvflann::FLANN_DIST_EUCLIDEAN);
// for each point
std::vector<std::vector<float> >::const_iterator angles_iter = angles.begin();
std::vector<cv::KeyPoint>::const_iterator points_iter = keypoints_seed.begin();
cv::Rect bounding_box(5,5,gray.cols-10,gray.rows-10);
int max_tests = std::min(parameters.max_tests,int(keypoints_seed.size()));
for(count=0;count < max_tests;++angles_iter,++points_iter,++count)
{
// regard current point as center point
// which must have two angles!!! (this was already checked)
float min_response = points_iter->response*MIN_RESPONSE_RATIO;
if(min_response <= 0)
{
if(max_tests+1 < int(keypoints_seed.size()))
++max_tests;
continue;
}
const std::vector<float> &angles_i = *angles_iter;
float white_angle = fabs(angles_i.front()); // angle is negative if black --> clockwise
float black_angle = fabs(angles_i.back()); // angle is negative if black --> clockwise
if(angles_i.front() < 0) // ensure white angle is first
swap(white_angle,black_angle);
std::vector<Board> boards;
generateBoards(flann_index, data,*points_iter,white_angle,black_angle,min_response,gray,boards);
parallel_for_(Range(0,(int)boards.size()),[&](const Range& range){
for(int i=range.start;i <range.end;++i)
{
auto iter_boards = boards.begin()+i;
cv::Mat h = iter_boards->estimateHomography();
int size = iter_boards->validateCorners(data,flann_index,h,min_response);
if(size != 9 || !iter_boards->validateContour())
{
iter_boards->clear();
continue;
}
//grow based on kd-tree
iter_boards->grow(data,flann_index);
if(!iter_boards->checkUnique())
{
iter_boards->clear();
continue;
}
// check bounding box
std::vector<cv::Point2f> contour = iter_boards->getContour();
std::vector<cv::Point2f>::const_iterator iter = contour.begin();
for(;iter != contour.end();++iter)
{
if(!bounding_box.contains(*iter))
break;
}
if(iter != contour.end())
{
iter_boards->clear();
continue;
}
if(iter_boards->getSize() == parameters.chessboard_size ||
iter_boards->getSize() == chessboard_size2)
{
iter_boards->normalizeOrientation(false);
if(iter_boards->getSize() != parameters.chessboard_size)
{
if(iter_boards->isCellBlack(0,0) == iter_boards->isCellBlack(0,int(iter_boards->colCount())-1))
iter_boards->rotateLeft();
else
iter_boards->rotateRight();
}
#ifdef CV_DETECTORS_CHESSBOARD_DEBUG
cv::Mat img;
iter_boards->draw(debug_image,img);
cv::imshow("chessboard",img);
cv::waitKey(-1);
#endif
}
else
{
if(iter_boards->getSize().width < chessboard_size2.width || iter_boards->getSize().height < chessboard_size2.height)
iter_boards->clear();
else if(!parameters.larger)
iter_boards->clear();
else
{
// try to optimize board
while(true)
{
Board temp(*iter_boards);
temp.shrinkRight();
temp.shrinkLeft();
temp.shrinkRight();
temp.shrinkLeft();
temp.growTop(data,flann_index);
temp.growBottom(data,flann_index);
temp.grow(data,flann_index);
if(temp.rowCount()*temp.colCount() > iter_boards->rowCount()*iter_boards->colCount())
{
*iter_boards = temp;
continue;
}
temp = (*iter_boards);
temp = (*iter_boards);
temp.shrinkTop();
temp.shrinkBottom();
temp.shrinkTop();
temp.shrinkBottom();
temp.growLeft(data,flann_index);
temp.growRight(data,flann_index);
temp.grow(data,flann_index);
if(temp.rowCount()*temp.colCount() > iter_boards->rowCount()*iter_boards->colCount())
{
*iter_boards = temp;
continue;
}
break;
}
}
}
// check for markers
if(!iter_boards->isEmpty() && parameters.marker)
{
auto icount = iter_boards->detectMarkers(gray);
if(3 != icount || !iter_boards->normalizeMarkerOrientation())
iter_boards->clear();
}
}
});
// check if a good board was found
// check if a good board was found and return largest one
const Board *best_board = NULL;
for(const auto &board : boards)
{
if(!board.isEmpty())
{
if(!best_board || best_board->rowCount() * best_board->colCount() < board.colCount()*board.rowCount())
best_board = &board;
}
}
if(best_board)
return *best_board;
}
return Chessboard::Board();
}
void Chessboard::detectAndCompute(cv::InputArray image,cv::InputArray mask,std::vector<cv::KeyPoint>& keypoints,
cv::OutputArray descriptors,bool useProvidedKeyPoints)
{
descriptors.clear();
useProvidedKeyPoints=false;
std::vector<cv::Mat> maps;
detectImpl(image.getMat(),keypoints,maps,mask.getMat());
if(!useProvidedKeyPoints) // suppress compiler warning
return;
return;
}
void Chessboard::detectImpl(const Mat& image, vector<KeyPoint>& keypoints,const Mat& mask)const
{
std::vector<cv::Mat> maps;
detectImpl(image,keypoints,maps,mask);
}
void Chessboard::detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask)const
{
detectImpl(image.getMat(),keypoints,mask.getMat());
}
}} // end namespace details
// public API
bool cv::findChessboardCornersSB(InputArray image_, Size pattern_size,
OutputArray corners_, int flags, OutputArray meta_)
{
CV_INSTRUMENT_REGION();
int type = image_.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
CV_CheckType(type, depth == CV_8U && (cn == 1 || cn == 3),
"Only 8-bit grayscale or color images are supported");
if(pattern_size.width <= 2 || pattern_size.height <= 2)
{
CV_Error(Error::StsOutOfRange, "Both width and height of the pattern should have bigger than 2");
}
if (!corners_.needed())
CV_Error(Error::StsNullPtr, "Null pointer to corners");
Mat img;
if (image_.channels() != 1)
cvtColor(image_, img, COLOR_BGR2GRAY);
else
img = image_.getMat();
details::Chessboard::Parameters para;
para.chessboard_size = pattern_size;
para.min_scale = 2;
para.max_scale = 4;
para.max_tests = 30;
para.max_points = std::max(100,pattern_size.width*pattern_size.height*2);
para.super_resolution = false;
// setup search based on flags
if(flags & CALIB_CB_NORMALIZE_IMAGE)
{
Mat tmp;
cv::equalizeHist(img, tmp);
swap(img, tmp);
flags ^= CALIB_CB_NORMALIZE_IMAGE;
}
if(flags & CALIB_CB_EXHAUSTIVE)
{
para.max_tests = 100;
para.max_points = std::max(1000,pattern_size.width*pattern_size.height*2);
flags ^= CALIB_CB_EXHAUSTIVE;
}
if(flags & CALIB_CB_ACCURACY)
{
para.super_resolution = true;
flags ^= CALIB_CB_ACCURACY;
}
if(flags & CALIB_CB_LARGER)
{
para.larger = true;
flags ^= CALIB_CB_LARGER;
}
if(flags & CALIB_CB_MARKER)
{
para.marker = true;
para.max_points *= 4;
flags ^= CALIB_CB_MARKER;
}
if(flags)
CV_Error(Error::StsOutOfRange, cv::format("Invalid remaining flags %d", (int)flags));
std::vector<cv::KeyPoint> corners;
details::Chessboard detector(para);
std::vector<cv::Mat> maps;
details::Chessboard::Board board = detector.detectImpl(img,maps,cv::Mat());
corners = board.getKeyPoints();
if(corners.empty())
{
corners_.release();
if(meta_.needed())
meta_.release();
return false;
}
std::vector<cv::Point2f> points;
KeyPoint::convert(corners,points);
Mat(points).copyTo(corners_);
// export meta data
if(meta_.needed())
{
meta_.create(int(board.rowCount()),int(board.colCount()),CV_8UC1);
cv::Mat meta = meta_.getMat();
meta.setTo(cv::Scalar::all(0));
for(int row =0;row < meta.rows-1;++row)
{
for(int col=0;col< meta.cols-1;++col)
{
if(board.isCellBlack(row,col))
{
if(board.hasCellMarker(row,col))
meta.at<uint8_t>(row,col) = 3;
else
meta.at<uint8_t>(row,col) = 1;
}
else
{
if(board.hasCellMarker(row,col))
meta.at<uint8_t>(row,col) = 4; // origin
else
meta.at<uint8_t>(row,col) = 2;
}
}
}
}
return true;
}
// public API
cv::Scalar cv::estimateChessboardSharpness(InputArray image_, Size patternSize, InputArray corners_,
float rise_distance,bool vertical, cv::OutputArray sharpness)
{
CV_INSTRUMENT_REGION();
int type = image_.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
CV_CheckType(type, depth == CV_8U && (cn == 1 || cn == 3),
"Only 8-bit grayscale or color images are supported");
if(patternSize.width <= 2 || patternSize.height <= 2)
CV_Error(Error::StsOutOfRange, "Both width and height of the pattern should have bigger than 2");
cv::Mat corners = details::normalizeVector(corners_);
std::vector<cv::Point2f> points;
corners.reshape(2,corners.rows).convertTo(points,CV_32FC2);
if(int(points.size()) != patternSize.width * patternSize.height)
CV_Error(Error::StsBadArg, "Size mismatch between patternSize and number of provided corners.");
Mat img;
if (image_.channels() != 1)
cvtColor(image_, img, COLOR_BGR2GRAY);
else
img = image_.getMat();
details::Chessboard::Board board(patternSize,points);
return board.calcEdgeSharpness(img,rise_distance,vertical,sharpness);
}