mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
574 lines
21 KiB
574 lines
21 KiB
// Copyright 2022 Google Inc. All Rights Reserved. |
|
// |
|
// Use of this source code is governed by a BSD-style license |
|
// that can be found in the COPYING file in the root of the source |
|
// tree. An additional intellectual property rights grant can be found |
|
// in the file PATENTS. All contributing project authors may |
|
// be found in the AUTHORS file in the root of the source tree. |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// Sharp RGB to YUV conversion. |
|
// |
|
// Author: Skal (pascal.massimino@gmail.com) |
|
|
|
#include "sharpyuv/sharpyuv.h" |
|
|
|
#include <assert.h> |
|
#include <limits.h> |
|
#include <stddef.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
#include "src/webp/types.h" |
|
#include "sharpyuv/sharpyuv_cpu.h" |
|
#include "sharpyuv/sharpyuv_dsp.h" |
|
#include "sharpyuv/sharpyuv_gamma.h" |
|
|
|
//------------------------------------------------------------------------------ |
|
|
|
int SharpYuvGetVersion(void) { |
|
return SHARPYUV_VERSION; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Sharp RGB->YUV conversion |
|
|
|
static const int kNumIterations = 4; |
|
|
|
#define YUV_FIX 16 // fixed-point precision for RGB->YUV |
|
static const int kYuvHalf = 1 << (YUV_FIX - 1); |
|
|
|
// Max bit depth so that intermediate calculations fit in 16 bits. |
|
static const int kMaxBitDepth = 14; |
|
|
|
// Returns the precision shift to use based on the input rgb_bit_depth. |
|
static int GetPrecisionShift(int rgb_bit_depth) { |
|
// Try to add 2 bits of precision if it fits in kMaxBitDepth. Otherwise remove |
|
// bits if needed. |
|
return ((rgb_bit_depth + 2) <= kMaxBitDepth) ? 2 |
|
: (kMaxBitDepth - rgb_bit_depth); |
|
} |
|
|
|
typedef int16_t fixed_t; // signed type with extra precision for UV |
|
typedef uint16_t fixed_y_t; // unsigned type with extra precision for W |
|
|
|
//------------------------------------------------------------------------------ |
|
|
|
static uint8_t clip_8b(fixed_t v) { |
|
return (!(v & ~0xff)) ? (uint8_t)v : (v < 0) ? 0u : 255u; |
|
} |
|
|
|
static uint16_t clip(fixed_t v, int max) { |
|
return (v < 0) ? 0 : (v > max) ? max : (uint16_t)v; |
|
} |
|
|
|
static fixed_y_t clip_bit_depth(int y, int bit_depth) { |
|
const int max = (1 << bit_depth) - 1; |
|
return (!(y & ~max)) ? (fixed_y_t)y : (y < 0) ? 0 : max; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
|
|
static int RGBToGray(int64_t r, int64_t g, int64_t b) { |
|
const int64_t luma = 13933 * r + 46871 * g + 4732 * b + kYuvHalf; |
|
return (int)(luma >> YUV_FIX); |
|
} |
|
|
|
static uint32_t ScaleDown(uint16_t a, uint16_t b, uint16_t c, uint16_t d, |
|
int rgb_bit_depth, |
|
SharpYuvTransferFunctionType transfer_type) { |
|
const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth); |
|
const uint32_t A = SharpYuvGammaToLinear(a, bit_depth, transfer_type); |
|
const uint32_t B = SharpYuvGammaToLinear(b, bit_depth, transfer_type); |
|
const uint32_t C = SharpYuvGammaToLinear(c, bit_depth, transfer_type); |
|
const uint32_t D = SharpYuvGammaToLinear(d, bit_depth, transfer_type); |
|
return SharpYuvLinearToGamma((A + B + C + D + 2) >> 2, bit_depth, |
|
transfer_type); |
|
} |
|
|
|
static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int w, |
|
int rgb_bit_depth, |
|
SharpYuvTransferFunctionType transfer_type) { |
|
const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth); |
|
int i = 0; |
|
do { |
|
const uint32_t R = |
|
SharpYuvGammaToLinear(src[0 * w + i], bit_depth, transfer_type); |
|
const uint32_t G = |
|
SharpYuvGammaToLinear(src[1 * w + i], bit_depth, transfer_type); |
|
const uint32_t B = |
|
SharpYuvGammaToLinear(src[2 * w + i], bit_depth, transfer_type); |
|
const uint32_t Y = RGBToGray(R, G, B); |
|
dst[i] = (fixed_y_t)SharpYuvLinearToGamma(Y, bit_depth, transfer_type); |
|
} while (++i < w); |
|
} |
|
|
|
static void UpdateChroma(const fixed_y_t* src1, const fixed_y_t* src2, |
|
fixed_t* dst, int uv_w, int rgb_bit_depth, |
|
SharpYuvTransferFunctionType transfer_type) { |
|
int i = 0; |
|
do { |
|
const int r = |
|
ScaleDown(src1[0 * uv_w + 0], src1[0 * uv_w + 1], src2[0 * uv_w + 0], |
|
src2[0 * uv_w + 1], rgb_bit_depth, transfer_type); |
|
const int g = |
|
ScaleDown(src1[2 * uv_w + 0], src1[2 * uv_w + 1], src2[2 * uv_w + 0], |
|
src2[2 * uv_w + 1], rgb_bit_depth, transfer_type); |
|
const int b = |
|
ScaleDown(src1[4 * uv_w + 0], src1[4 * uv_w + 1], src2[4 * uv_w + 0], |
|
src2[4 * uv_w + 1], rgb_bit_depth, transfer_type); |
|
const int W = RGBToGray(r, g, b); |
|
dst[0 * uv_w] = (fixed_t)(r - W); |
|
dst[1 * uv_w] = (fixed_t)(g - W); |
|
dst[2 * uv_w] = (fixed_t)(b - W); |
|
dst += 1; |
|
src1 += 2; |
|
src2 += 2; |
|
} while (++i < uv_w); |
|
} |
|
|
|
static void StoreGray(const fixed_y_t* rgb, fixed_y_t* y, int w) { |
|
int i = 0; |
|
assert(w > 0); |
|
do { |
|
y[i] = RGBToGray(rgb[0 * w + i], rgb[1 * w + i], rgb[2 * w + i]); |
|
} while (++i < w); |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
|
|
static WEBP_INLINE fixed_y_t Filter2(int A, int B, int W0, int bit_depth) { |
|
const int v0 = (A * 3 + B + 2) >> 2; |
|
return clip_bit_depth(v0 + W0, bit_depth); |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
|
|
static WEBP_INLINE int Shift(int v, int shift) { |
|
return (shift >= 0) ? (v << shift) : (v >> -shift); |
|
} |
|
|
|
static void ImportOneRow(const uint8_t* const r_ptr, |
|
const uint8_t* const g_ptr, |
|
const uint8_t* const b_ptr, |
|
int rgb_step, |
|
int rgb_bit_depth, |
|
int pic_width, |
|
fixed_y_t* const dst) { |
|
// Convert the rgb_step from a number of bytes to a number of uint8_t or |
|
// uint16_t values depending the bit depth. |
|
const int step = (rgb_bit_depth > 8) ? rgb_step / 2 : rgb_step; |
|
int i = 0; |
|
const int w = (pic_width + 1) & ~1; |
|
do { |
|
const int off = i * step; |
|
const int shift = GetPrecisionShift(rgb_bit_depth); |
|
if (rgb_bit_depth == 8) { |
|
dst[i + 0 * w] = Shift(r_ptr[off], shift); |
|
dst[i + 1 * w] = Shift(g_ptr[off], shift); |
|
dst[i + 2 * w] = Shift(b_ptr[off], shift); |
|
} else { |
|
dst[i + 0 * w] = Shift(((uint16_t*)r_ptr)[off], shift); |
|
dst[i + 1 * w] = Shift(((uint16_t*)g_ptr)[off], shift); |
|
dst[i + 2 * w] = Shift(((uint16_t*)b_ptr)[off], shift); |
|
} |
|
} while (++i < pic_width); |
|
if (pic_width & 1) { // replicate rightmost pixel |
|
dst[pic_width + 0 * w] = dst[pic_width + 0 * w - 1]; |
|
dst[pic_width + 1 * w] = dst[pic_width + 1 * w - 1]; |
|
dst[pic_width + 2 * w] = dst[pic_width + 2 * w - 1]; |
|
} |
|
} |
|
|
|
static void InterpolateTwoRows(const fixed_y_t* const best_y, |
|
const fixed_t* prev_uv, |
|
const fixed_t* cur_uv, |
|
const fixed_t* next_uv, |
|
int w, |
|
fixed_y_t* out1, |
|
fixed_y_t* out2, |
|
int rgb_bit_depth) { |
|
const int uv_w = w >> 1; |
|
const int len = (w - 1) >> 1; // length to filter |
|
int k = 3; |
|
const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth); |
|
while (k-- > 0) { // process each R/G/B segments in turn |
|
// special boundary case for i==0 |
|
out1[0] = Filter2(cur_uv[0], prev_uv[0], best_y[0], bit_depth); |
|
out2[0] = Filter2(cur_uv[0], next_uv[0], best_y[w], bit_depth); |
|
|
|
SharpYuvFilterRow(cur_uv, prev_uv, len, best_y + 0 + 1, out1 + 1, |
|
bit_depth); |
|
SharpYuvFilterRow(cur_uv, next_uv, len, best_y + w + 1, out2 + 1, |
|
bit_depth); |
|
|
|
// special boundary case for i == w - 1 when w is even |
|
if (!(w & 1)) { |
|
out1[w - 1] = Filter2(cur_uv[uv_w - 1], prev_uv[uv_w - 1], |
|
best_y[w - 1 + 0], bit_depth); |
|
out2[w - 1] = Filter2(cur_uv[uv_w - 1], next_uv[uv_w - 1], |
|
best_y[w - 1 + w], bit_depth); |
|
} |
|
out1 += w; |
|
out2 += w; |
|
prev_uv += uv_w; |
|
cur_uv += uv_w; |
|
next_uv += uv_w; |
|
} |
|
} |
|
|
|
static WEBP_INLINE int RGBToYUVComponent(int r, int g, int b, |
|
const int coeffs[4], int sfix) { |
|
const int srounder = 1 << (YUV_FIX + sfix - 1); |
|
const int luma = coeffs[0] * r + coeffs[1] * g + coeffs[2] * b + |
|
coeffs[3] + srounder; |
|
return (luma >> (YUV_FIX + sfix)); |
|
} |
|
|
|
static int ConvertWRGBToYUV(const fixed_y_t* best_y, const fixed_t* best_uv, |
|
uint8_t* y_ptr, int y_stride, uint8_t* u_ptr, |
|
int u_stride, uint8_t* v_ptr, int v_stride, |
|
int rgb_bit_depth, |
|
int yuv_bit_depth, int width, int height, |
|
const SharpYuvConversionMatrix* yuv_matrix) { |
|
int i, j; |
|
const fixed_t* const best_uv_base = best_uv; |
|
const int w = (width + 1) & ~1; |
|
const int h = (height + 1) & ~1; |
|
const int uv_w = w >> 1; |
|
const int uv_h = h >> 1; |
|
const int sfix = GetPrecisionShift(rgb_bit_depth); |
|
const int yuv_max = (1 << yuv_bit_depth) - 1; |
|
|
|
best_uv = best_uv_base; |
|
j = 0; |
|
do { |
|
i = 0; |
|
do { |
|
const int off = (i >> 1); |
|
const int W = best_y[i]; |
|
const int r = best_uv[off + 0 * uv_w] + W; |
|
const int g = best_uv[off + 1 * uv_w] + W; |
|
const int b = best_uv[off + 2 * uv_w] + W; |
|
const int y = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_y, sfix); |
|
if (yuv_bit_depth <= 8) { |
|
y_ptr[i] = clip_8b(y); |
|
} else { |
|
((uint16_t*)y_ptr)[i] = clip(y, yuv_max); |
|
} |
|
} while (++i < width); |
|
best_y += w; |
|
best_uv += (j & 1) * 3 * uv_w; |
|
y_ptr += y_stride; |
|
} while (++j < height); |
|
|
|
best_uv = best_uv_base; |
|
j = 0; |
|
do { |
|
i = 0; |
|
do { |
|
// Note r, g and b values here are off by W, but a constant offset on all |
|
// 3 components doesn't change the value of u and v with a YCbCr matrix. |
|
const int r = best_uv[i + 0 * uv_w]; |
|
const int g = best_uv[i + 1 * uv_w]; |
|
const int b = best_uv[i + 2 * uv_w]; |
|
const int u = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_u, sfix); |
|
const int v = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_v, sfix); |
|
if (yuv_bit_depth <= 8) { |
|
u_ptr[i] = clip_8b(u); |
|
v_ptr[i] = clip_8b(v); |
|
} else { |
|
((uint16_t*)u_ptr)[i] = clip(u, yuv_max); |
|
((uint16_t*)v_ptr)[i] = clip(v, yuv_max); |
|
} |
|
} while (++i < uv_w); |
|
best_uv += 3 * uv_w; |
|
u_ptr += u_stride; |
|
v_ptr += v_stride; |
|
} while (++j < uv_h); |
|
return 1; |
|
} |
|
|
|
//------------------------------------------------------------------------------ |
|
// Main function |
|
|
|
static void* SafeMalloc(uint64_t nmemb, size_t size) { |
|
const uint64_t total_size = nmemb * (uint64_t)size; |
|
if (total_size != (size_t)total_size) return NULL; |
|
return malloc((size_t)total_size); |
|
} |
|
|
|
#define SAFE_ALLOC(W, H, T) ((T*)SafeMalloc((uint64_t)(W) * (H), sizeof(T))) |
|
|
|
static int DoSharpArgbToYuv(const uint8_t* r_ptr, const uint8_t* g_ptr, |
|
const uint8_t* b_ptr, int rgb_step, int rgb_stride, |
|
int rgb_bit_depth, uint8_t* y_ptr, int y_stride, |
|
uint8_t* u_ptr, int u_stride, uint8_t* v_ptr, |
|
int v_stride, int yuv_bit_depth, int width, |
|
int height, |
|
const SharpYuvConversionMatrix* yuv_matrix, |
|
SharpYuvTransferFunctionType transfer_type) { |
|
// we expand the right/bottom border if needed |
|
const int w = (width + 1) & ~1; |
|
const int h = (height + 1) & ~1; |
|
const int uv_w = w >> 1; |
|
const int uv_h = h >> 1; |
|
const int y_bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth); |
|
uint64_t prev_diff_y_sum = ~0; |
|
int j, iter; |
|
|
|
// TODO(skal): allocate one big memory chunk. But for now, it's easier |
|
// for valgrind debugging to have several chunks. |
|
fixed_y_t* const tmp_buffer = SAFE_ALLOC(w * 3, 2, fixed_y_t); // scratch |
|
fixed_y_t* const best_y_base = SAFE_ALLOC(w, h, fixed_y_t); |
|
fixed_y_t* const target_y_base = SAFE_ALLOC(w, h, fixed_y_t); |
|
fixed_y_t* const best_rgb_y = SAFE_ALLOC(w, 2, fixed_y_t); |
|
fixed_t* const best_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); |
|
fixed_t* const target_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t); |
|
fixed_t* const best_rgb_uv = SAFE_ALLOC(uv_w * 3, 1, fixed_t); |
|
fixed_y_t* best_y = best_y_base; |
|
fixed_y_t* target_y = target_y_base; |
|
fixed_t* best_uv = best_uv_base; |
|
fixed_t* target_uv = target_uv_base; |
|
const uint64_t diff_y_threshold = (uint64_t)(3.0 * w * h); |
|
int ok; |
|
assert(w > 0); |
|
assert(h > 0); |
|
|
|
if (best_y_base == NULL || best_uv_base == NULL || |
|
target_y_base == NULL || target_uv_base == NULL || |
|
best_rgb_y == NULL || best_rgb_uv == NULL || |
|
tmp_buffer == NULL) { |
|
ok = 0; |
|
goto End; |
|
} |
|
|
|
// Import RGB samples to W/RGB representation. |
|
for (j = 0; j < height; j += 2) { |
|
const int is_last_row = (j == height - 1); |
|
fixed_y_t* const src1 = tmp_buffer + 0 * w; |
|
fixed_y_t* const src2 = tmp_buffer + 3 * w; |
|
|
|
// prepare two rows of input |
|
ImportOneRow(r_ptr, g_ptr, b_ptr, rgb_step, rgb_bit_depth, width, |
|
src1); |
|
if (!is_last_row) { |
|
ImportOneRow(r_ptr + rgb_stride, g_ptr + rgb_stride, b_ptr + rgb_stride, |
|
rgb_step, rgb_bit_depth, width, src2); |
|
} else { |
|
memcpy(src2, src1, 3 * w * sizeof(*src2)); |
|
} |
|
StoreGray(src1, best_y + 0, w); |
|
StoreGray(src2, best_y + w, w); |
|
|
|
UpdateW(src1, target_y, w, rgb_bit_depth, transfer_type); |
|
UpdateW(src2, target_y + w, w, rgb_bit_depth, transfer_type); |
|
UpdateChroma(src1, src2, target_uv, uv_w, rgb_bit_depth, transfer_type); |
|
memcpy(best_uv, target_uv, 3 * uv_w * sizeof(*best_uv)); |
|
best_y += 2 * w; |
|
best_uv += 3 * uv_w; |
|
target_y += 2 * w; |
|
target_uv += 3 * uv_w; |
|
r_ptr += 2 * rgb_stride; |
|
g_ptr += 2 * rgb_stride; |
|
b_ptr += 2 * rgb_stride; |
|
} |
|
|
|
// Iterate and resolve clipping conflicts. |
|
for (iter = 0; iter < kNumIterations; ++iter) { |
|
const fixed_t* cur_uv = best_uv_base; |
|
const fixed_t* prev_uv = best_uv_base; |
|
uint64_t diff_y_sum = 0; |
|
|
|
best_y = best_y_base; |
|
best_uv = best_uv_base; |
|
target_y = target_y_base; |
|
target_uv = target_uv_base; |
|
j = 0; |
|
do { |
|
fixed_y_t* const src1 = tmp_buffer + 0 * w; |
|
fixed_y_t* const src2 = tmp_buffer + 3 * w; |
|
{ |
|
const fixed_t* const next_uv = cur_uv + ((j < h - 2) ? 3 * uv_w : 0); |
|
InterpolateTwoRows(best_y, prev_uv, cur_uv, next_uv, w, |
|
src1, src2, rgb_bit_depth); |
|
prev_uv = cur_uv; |
|
cur_uv = next_uv; |
|
} |
|
|
|
UpdateW(src1, best_rgb_y + 0 * w, w, rgb_bit_depth, transfer_type); |
|
UpdateW(src2, best_rgb_y + 1 * w, w, rgb_bit_depth, transfer_type); |
|
UpdateChroma(src1, src2, best_rgb_uv, uv_w, rgb_bit_depth, transfer_type); |
|
|
|
// update two rows of Y and one row of RGB |
|
diff_y_sum += |
|
SharpYuvUpdateY(target_y, best_rgb_y, best_y, 2 * w, y_bit_depth); |
|
SharpYuvUpdateRGB(target_uv, best_rgb_uv, best_uv, 3 * uv_w); |
|
|
|
best_y += 2 * w; |
|
best_uv += 3 * uv_w; |
|
target_y += 2 * w; |
|
target_uv += 3 * uv_w; |
|
j += 2; |
|
} while (j < h); |
|
// test exit condition |
|
if (iter > 0) { |
|
if (diff_y_sum < diff_y_threshold) break; |
|
if (diff_y_sum > prev_diff_y_sum) break; |
|
} |
|
prev_diff_y_sum = diff_y_sum; |
|
} |
|
|
|
// final reconstruction |
|
ok = ConvertWRGBToYUV(best_y_base, best_uv_base, y_ptr, y_stride, u_ptr, |
|
u_stride, v_ptr, v_stride, rgb_bit_depth, yuv_bit_depth, |
|
width, height, yuv_matrix); |
|
|
|
End: |
|
free(best_y_base); |
|
free(best_uv_base); |
|
free(target_y_base); |
|
free(target_uv_base); |
|
free(best_rgb_y); |
|
free(best_rgb_uv); |
|
free(tmp_buffer); |
|
return ok; |
|
} |
|
|
|
#undef SAFE_ALLOC |
|
|
|
#if defined(WEBP_USE_THREAD) && !defined(_WIN32) |
|
#include <pthread.h> // NOLINT |
|
|
|
#define LOCK_ACCESS \ |
|
static pthread_mutex_t sharpyuv_lock = PTHREAD_MUTEX_INITIALIZER; \ |
|
if (pthread_mutex_lock(&sharpyuv_lock)) return |
|
#define UNLOCK_ACCESS_AND_RETURN \ |
|
do { \ |
|
(void)pthread_mutex_unlock(&sharpyuv_lock); \ |
|
return; \ |
|
} while (0) |
|
#else // !(defined(WEBP_USE_THREAD) && !defined(_WIN32)) |
|
#define LOCK_ACCESS do {} while (0) |
|
#define UNLOCK_ACCESS_AND_RETURN return |
|
#endif // defined(WEBP_USE_THREAD) && !defined(_WIN32) |
|
|
|
// Hidden exported init function. |
|
// By default SharpYuvConvert calls it with SharpYuvGetCPUInfo. If needed, |
|
// users can declare it as extern and call it with an alternate VP8CPUInfo |
|
// function. |
|
extern VP8CPUInfo SharpYuvGetCPUInfo; |
|
SHARPYUV_EXTERN void SharpYuvInit(VP8CPUInfo cpu_info_func); |
|
void SharpYuvInit(VP8CPUInfo cpu_info_func) { |
|
static volatile VP8CPUInfo sharpyuv_last_cpuinfo_used = |
|
(VP8CPUInfo)&sharpyuv_last_cpuinfo_used; |
|
LOCK_ACCESS; |
|
// Only update SharpYuvGetCPUInfo when called from external code to avoid a |
|
// race on reading the value in SharpYuvConvert(). |
|
if (cpu_info_func != (VP8CPUInfo)&SharpYuvGetCPUInfo) { |
|
SharpYuvGetCPUInfo = cpu_info_func; |
|
} |
|
if (sharpyuv_last_cpuinfo_used == SharpYuvGetCPUInfo) { |
|
UNLOCK_ACCESS_AND_RETURN; |
|
} |
|
|
|
SharpYuvInitDsp(); |
|
SharpYuvInitGammaTables(); |
|
|
|
sharpyuv_last_cpuinfo_used = SharpYuvGetCPUInfo; |
|
UNLOCK_ACCESS_AND_RETURN; |
|
} |
|
|
|
int SharpYuvConvert(const void* r_ptr, const void* g_ptr, const void* b_ptr, |
|
int rgb_step, int rgb_stride, int rgb_bit_depth, |
|
void* y_ptr, int y_stride, void* u_ptr, int u_stride, |
|
void* v_ptr, int v_stride, int yuv_bit_depth, int width, |
|
int height, const SharpYuvConversionMatrix* yuv_matrix) { |
|
SharpYuvOptions options; |
|
options.yuv_matrix = yuv_matrix; |
|
options.transfer_type = kSharpYuvTransferFunctionSrgb; |
|
return SharpYuvConvertWithOptions( |
|
r_ptr, g_ptr, b_ptr, rgb_step, rgb_stride, rgb_bit_depth, y_ptr, y_stride, |
|
u_ptr, u_stride, v_ptr, v_stride, yuv_bit_depth, width, height, &options); |
|
} |
|
|
|
int SharpYuvOptionsInitInternal(const SharpYuvConversionMatrix* yuv_matrix, |
|
SharpYuvOptions* options, int version) { |
|
const int major = (version >> 24); |
|
const int minor = (version >> 16) & 0xff; |
|
if (options == NULL || yuv_matrix == NULL || |
|
(major == SHARPYUV_VERSION_MAJOR && major == 0 && |
|
minor != SHARPYUV_VERSION_MINOR) || |
|
(major != SHARPYUV_VERSION_MAJOR)) { |
|
return 0; |
|
} |
|
options->yuv_matrix = yuv_matrix; |
|
options->transfer_type = kSharpYuvTransferFunctionSrgb; |
|
return 1; |
|
} |
|
|
|
int SharpYuvConvertWithOptions(const void* r_ptr, const void* g_ptr, |
|
const void* b_ptr, int rgb_step, int rgb_stride, |
|
int rgb_bit_depth, void* y_ptr, int y_stride, |
|
void* u_ptr, int u_stride, void* v_ptr, |
|
int v_stride, int yuv_bit_depth, int width, |
|
int height, const SharpYuvOptions* options) { |
|
const SharpYuvConversionMatrix* yuv_matrix = options->yuv_matrix; |
|
SharpYuvTransferFunctionType transfer_type = options->transfer_type; |
|
SharpYuvConversionMatrix scaled_matrix; |
|
const int rgb_max = (1 << rgb_bit_depth) - 1; |
|
const int rgb_round = 1 << (rgb_bit_depth - 1); |
|
const int yuv_max = (1 << yuv_bit_depth) - 1; |
|
const int sfix = GetPrecisionShift(rgb_bit_depth); |
|
|
|
if (width < 1 || height < 1 || width == INT_MAX || height == INT_MAX || |
|
r_ptr == NULL || g_ptr == NULL || b_ptr == NULL || y_ptr == NULL || |
|
u_ptr == NULL || v_ptr == NULL) { |
|
return 0; |
|
} |
|
if (rgb_bit_depth != 8 && rgb_bit_depth != 10 && rgb_bit_depth != 12 && |
|
rgb_bit_depth != 16) { |
|
return 0; |
|
} |
|
if (yuv_bit_depth != 8 && yuv_bit_depth != 10 && yuv_bit_depth != 12) { |
|
return 0; |
|
} |
|
if (rgb_bit_depth > 8 && (rgb_step % 2 != 0 || rgb_stride % 2 != 0)) { |
|
// Step/stride should be even for uint16_t buffers. |
|
return 0; |
|
} |
|
if (yuv_bit_depth > 8 && |
|
(y_stride % 2 != 0 || u_stride % 2 != 0 || v_stride % 2 != 0)) { |
|
// Stride should be even for uint16_t buffers. |
|
return 0; |
|
} |
|
// The address of the function pointer is used to avoid a read race. |
|
SharpYuvInit((VP8CPUInfo)&SharpYuvGetCPUInfo); |
|
|
|
// Add scaling factor to go from rgb_bit_depth to yuv_bit_depth, to the |
|
// rgb->yuv conversion matrix. |
|
if (rgb_bit_depth == yuv_bit_depth) { |
|
memcpy(&scaled_matrix, yuv_matrix, sizeof(scaled_matrix)); |
|
} else { |
|
int i; |
|
for (i = 0; i < 3; ++i) { |
|
scaled_matrix.rgb_to_y[i] = |
|
(yuv_matrix->rgb_to_y[i] * yuv_max + rgb_round) / rgb_max; |
|
scaled_matrix.rgb_to_u[i] = |
|
(yuv_matrix->rgb_to_u[i] * yuv_max + rgb_round) / rgb_max; |
|
scaled_matrix.rgb_to_v[i] = |
|
(yuv_matrix->rgb_to_v[i] * yuv_max + rgb_round) / rgb_max; |
|
} |
|
} |
|
// Also incorporate precision change scaling. |
|
scaled_matrix.rgb_to_y[3] = Shift(yuv_matrix->rgb_to_y[3], sfix); |
|
scaled_matrix.rgb_to_u[3] = Shift(yuv_matrix->rgb_to_u[3], sfix); |
|
scaled_matrix.rgb_to_v[3] = Shift(yuv_matrix->rgb_to_v[3], sfix); |
|
|
|
return DoSharpArgbToYuv(r_ptr, g_ptr, b_ptr, rgb_step, rgb_stride, |
|
rgb_bit_depth, y_ptr, y_stride, u_ptr, u_stride, |
|
v_ptr, v_stride, yuv_bit_depth, width, height, |
|
&scaled_matrix, transfer_type); |
|
} |
|
|
|
//------------------------------------------------------------------------------
|
|
|