mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
98 lines
2.5 KiB
98 lines
2.5 KiB
#!/usr/bin/env python |
|
|
|
''' |
|
Robust line fitting. |
|
================== |
|
|
|
Example of using cv2.fitLine function for fitting line |
|
to points in presence of outliers. |
|
|
|
Usage |
|
----- |
|
fitline.py |
|
|
|
Switch through different M-estimator functions and see, |
|
how well the robust functions fit the line even |
|
in case of ~50% of outliers. |
|
|
|
Keys |
|
---- |
|
SPACE - generate random points |
|
f - change distance function |
|
ESC - exit |
|
''' |
|
|
|
# Python 2/3 compatibility |
|
from __future__ import print_function |
|
import sys |
|
PY3 = sys.version_info[0] == 3 |
|
|
|
import numpy as np |
|
import cv2 |
|
|
|
# built-in modules |
|
import itertools as it |
|
|
|
# local modules |
|
from common import draw_str |
|
|
|
|
|
w, h = 512, 256 |
|
|
|
def toint(p): |
|
return tuple(map(int, p)) |
|
|
|
def sample_line(p1, p2, n, noise=0.0): |
|
p1 = np.float32(p1) |
|
t = np.random.rand(n,1) |
|
return p1 + (p2-p1)*t + np.random.normal(size=(n, 2))*noise |
|
|
|
dist_func_names = it.cycle('DIST_L2 DIST_L1 DIST_L12 DIST_FAIR DIST_WELSCH DIST_HUBER'.split()) |
|
|
|
if PY3: |
|
cur_func_name = next(dist_func_names) |
|
else: |
|
cur_func_name = dist_func_names.next() |
|
|
|
def update(_=None): |
|
noise = cv2.getTrackbarPos('noise', 'fit line') |
|
n = cv2.getTrackbarPos('point n', 'fit line') |
|
r = cv2.getTrackbarPos('outlier %', 'fit line') / 100.0 |
|
outn = int(n*r) |
|
|
|
p0, p1 = (90, 80), (w-90, h-80) |
|
img = np.zeros((h, w, 3), np.uint8) |
|
cv2.line(img, toint(p0), toint(p1), (0, 255, 0)) |
|
|
|
if n > 0: |
|
line_points = sample_line(p0, p1, n-outn, noise) |
|
outliers = np.random.rand(outn, 2) * (w, h) |
|
points = np.vstack([line_points, outliers]) |
|
for p in line_points: |
|
cv2.circle(img, toint(p), 2, (255, 255, 255), -1) |
|
for p in outliers: |
|
cv2.circle(img, toint(p), 2, (64, 64, 255), -1) |
|
func = getattr(cv2, cur_func_name) |
|
vx, vy, cx, cy = cv2.fitLine(np.float32(points), func, 0, 0.01, 0.01) |
|
cv2.line(img, (int(cx-vx*w), int(cy-vy*w)), (int(cx+vx*w), int(cy+vy*w)), (0, 0, 255)) |
|
|
|
draw_str(img, (20, 20), cur_func_name) |
|
cv2.imshow('fit line', img) |
|
|
|
if __name__ == '__main__': |
|
print(__doc__) |
|
|
|
cv2.namedWindow('fit line') |
|
cv2.createTrackbar('noise', 'fit line', 3, 50, update) |
|
cv2.createTrackbar('point n', 'fit line', 100, 500, update) |
|
cv2.createTrackbar('outlier %', 'fit line', 30, 100, update) |
|
while True: |
|
update() |
|
ch = cv2.waitKey(0) |
|
if ch == ord('f'): |
|
if PY3: |
|
cur_func_name = next(dist_func_names) |
|
else: |
|
cur_func_name = dist_func_names.next() |
|
if ch == 27: |
|
break
|
|
|