mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
108 lines
3.4 KiB
108 lines
3.4 KiB
/** |
|
* @file HoughCircle_Demo.cpp |
|
* @brief Demo code for Hough Transform |
|
* @author OpenCV team |
|
*/ |
|
|
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/imgproc/imgproc.hpp" |
|
#include <iostream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
namespace |
|
{ |
|
// windows and trackbars name |
|
const std::string windowName = "Hough Circle Detection Demo"; |
|
const std::string cannyThresholdTrackbarName = "Canny threshold"; |
|
const std::string accumulatorThresholdTrackbarName = "Accumulator Threshold"; |
|
const std::string usage = "Usage : tutorial_HoughCircle_Demo <path_to_input_image>\n"; |
|
|
|
// initial and max values of the parameters of interests. |
|
const int cannyThresholdInitialValue = 200; |
|
const int accumulatorThresholdInitialValue = 50; |
|
const int maxAccumulatorThreshold = 200; |
|
const int maxCannyThreshold = 255; |
|
|
|
void HoughDetection(const Mat& src_gray, const Mat& src_display, int cannyThreshold, int accumulatorThreshold) |
|
{ |
|
// will hold the results of the detection |
|
std::vector<Vec3f> circles; |
|
// runs the actual detection |
|
HoughCircles( src_gray, circles, HOUGH_GRADIENT, 1, src_gray.rows/8, cannyThreshold, accumulatorThreshold, 0, 0 ); |
|
|
|
// clone the colour, input image for displaying purposes |
|
Mat display = src_display.clone(); |
|
for( size_t i = 0; i < circles.size(); i++ ) |
|
{ |
|
Point center(cvRound(circles[i][0]), cvRound(circles[i][1])); |
|
int radius = cvRound(circles[i][2]); |
|
// circle center |
|
circle( display, center, 3, Scalar(0,255,0), -1, 8, 0 ); |
|
// circle outline |
|
circle( display, center, radius, Scalar(0,0,255), 3, 8, 0 ); |
|
} |
|
|
|
// shows the results |
|
imshow( windowName, display); |
|
} |
|
} |
|
|
|
|
|
int main(int argc, char** argv) |
|
{ |
|
Mat src, src_gray; |
|
|
|
if (argc < 2) |
|
{ |
|
std::cerr<<"No input image specified\n"; |
|
std::cout<<usage; |
|
return -1; |
|
} |
|
|
|
// Read the image |
|
src = imread( argv[1], 1 ); |
|
|
|
if( !src.data ) |
|
{ |
|
std::cerr<<"Invalid input image\n"; |
|
std::cout<<usage; |
|
return -1; |
|
} |
|
|
|
// Convert it to gray |
|
cvtColor( src, src_gray, COLOR_BGR2GRAY ); |
|
|
|
// Reduce the noise so we avoid false circle detection |
|
GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 ); |
|
|
|
//declare and initialize both parameters that are subjects to change |
|
int cannyThreshold = cannyThresholdInitialValue; |
|
int accumulatorThreshold = accumulatorThresholdInitialValue; |
|
|
|
// create the main window, and attach the trackbars |
|
namedWindow( windowName, WINDOW_AUTOSIZE ); |
|
createTrackbar(cannyThresholdTrackbarName, windowName, &cannyThreshold,maxCannyThreshold); |
|
createTrackbar(accumulatorThresholdTrackbarName, windowName, &accumulatorThreshold, maxAccumulatorThreshold); |
|
|
|
// infinite loop to display |
|
// and refresh the content of the output image |
|
// until the user presses q or Q |
|
int key = 0; |
|
while(key != 'q' && key != 'Q') |
|
{ |
|
// those paramaters cannot be =0 |
|
// so we must check here |
|
cannyThreshold = std::max(cannyThreshold, 1); |
|
accumulatorThreshold = std::max(accumulatorThreshold, 1); |
|
|
|
//runs the detection, and update the display |
|
HoughDetection(src_gray, src, cannyThreshold, accumulatorThreshold); |
|
|
|
// get user key |
|
key = waitKey(10); |
|
} |
|
|
|
return 0; |
|
}
|
|
|