mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
406 lines
12 KiB
406 lines
12 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of OpenCV Foundation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the OpenCV Foundation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include "precomp.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
struct MinAreaState |
|
{ |
|
int bottom; |
|
int left; |
|
float height; |
|
float width; |
|
float base_a; |
|
float base_b; |
|
}; |
|
|
|
enum { CALIPERS_MAXHEIGHT=0, CALIPERS_MINAREARECT=1, CALIPERS_MAXDIST=2 }; |
|
|
|
/*F/////////////////////////////////////////////////////////////////////////////////////// |
|
// Name: rotatingCalipers |
|
// Purpose: |
|
// Rotating calipers algorithm with some applications |
|
// |
|
// Context: |
|
// Parameters: |
|
// points - convex hull vertices ( any orientation ) |
|
// n - number of vertices |
|
// mode - concrete application of algorithm |
|
// can be CV_CALIPERS_MAXDIST or |
|
// CV_CALIPERS_MINAREARECT |
|
// left, bottom, right, top - indexes of extremal points |
|
// out - output info. |
|
// In case CV_CALIPERS_MAXDIST it points to float value - |
|
// maximal height of polygon. |
|
// In case CV_CALIPERS_MINAREARECT |
|
// ((CvPoint2D32f*)out)[0] - corner |
|
// ((CvPoint2D32f*)out)[1] - vector1 |
|
// ((CvPoint2D32f*)out)[0] - corner2 |
|
// |
|
// ^ |
|
// | |
|
// vector2 | |
|
// | |
|
// |____________\ |
|
// corner / |
|
// vector1 |
|
// |
|
// Returns: |
|
// Notes: |
|
//F*/ |
|
|
|
/* we will use usual cartesian coordinates */ |
|
static void rotatingCalipers( const Point2f* points, int n, int mode, float* out ) |
|
{ |
|
float minarea = FLT_MAX; |
|
float max_dist = 0; |
|
char buffer[32] = {}; |
|
int i, k; |
|
AutoBuffer<float> abuf(n*3); |
|
float* inv_vect_length = abuf; |
|
Point2f* vect = (Point2f*)(inv_vect_length + n); |
|
int left = 0, bottom = 0, right = 0, top = 0; |
|
int seq[4] = { -1, -1, -1, -1 }; |
|
|
|
/* rotating calipers sides will always have coordinates |
|
(a,b) (-b,a) (-a,-b) (b, -a) |
|
*/ |
|
/* this is a first base bector (a,b) initialized by (1,0) */ |
|
float orientation = 0; |
|
float base_a; |
|
float base_b = 0; |
|
|
|
float left_x, right_x, top_y, bottom_y; |
|
Point2f pt0 = points[0]; |
|
|
|
left_x = right_x = pt0.x; |
|
top_y = bottom_y = pt0.y; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
double dx, dy; |
|
|
|
if( pt0.x < left_x ) |
|
left_x = pt0.x, left = i; |
|
|
|
if( pt0.x > right_x ) |
|
right_x = pt0.x, right = i; |
|
|
|
if( pt0.y > top_y ) |
|
top_y = pt0.y, top = i; |
|
|
|
if( pt0.y < bottom_y ) |
|
bottom_y = pt0.y, bottom = i; |
|
|
|
Point2f pt = points[(i+1) & (i+1 < n ? -1 : 0)]; |
|
|
|
dx = pt.x - pt0.x; |
|
dy = pt.y - pt0.y; |
|
|
|
vect[i].x = (float)dx; |
|
vect[i].y = (float)dy; |
|
inv_vect_length[i] = (float)(1./std::sqrt(dx*dx + dy*dy)); |
|
|
|
pt0 = pt; |
|
} |
|
|
|
// find convex hull orientation |
|
{ |
|
double ax = vect[n-1].x; |
|
double ay = vect[n-1].y; |
|
|
|
for( i = 0; i < n; i++ ) |
|
{ |
|
double bx = vect[i].x; |
|
double by = vect[i].y; |
|
|
|
double convexity = ax * by - ay * bx; |
|
|
|
if( convexity != 0 ) |
|
{ |
|
orientation = (convexity > 0) ? 1.f : (-1.f); |
|
break; |
|
} |
|
ax = bx; |
|
ay = by; |
|
} |
|
CV_Assert( orientation != 0 ); |
|
} |
|
base_a = orientation; |
|
|
|
/*****************************************************************************************/ |
|
/* init calipers position */ |
|
seq[0] = bottom; |
|
seq[1] = right; |
|
seq[2] = top; |
|
seq[3] = left; |
|
/*****************************************************************************************/ |
|
/* Main loop - evaluate angles and rotate calipers */ |
|
|
|
/* all of edges will be checked while rotating calipers by 90 degrees */ |
|
for( k = 0; k < n; k++ ) |
|
{ |
|
/* sinus of minimal angle */ |
|
/*float sinus;*/ |
|
|
|
/* compute cosine of angle between calipers side and polygon edge */ |
|
/* dp - dot product */ |
|
float dp0 = base_a * vect[seq[0]].x + base_b * vect[seq[0]].y; |
|
float dp1 = -base_b * vect[seq[1]].x + base_a * vect[seq[1]].y; |
|
float dp2 = -base_a * vect[seq[2]].x - base_b * vect[seq[2]].y; |
|
float dp3 = base_b * vect[seq[3]].x - base_a * vect[seq[3]].y; |
|
|
|
float cosalpha = dp0 * inv_vect_length[seq[0]]; |
|
float maxcos = cosalpha; |
|
|
|
/* number of calipers edges, that has minimal angle with edge */ |
|
int main_element = 0; |
|
|
|
/* choose minimal angle */ |
|
cosalpha = dp1 * inv_vect_length[seq[1]]; |
|
maxcos = (cosalpha > maxcos) ? (main_element = 1, cosalpha) : maxcos; |
|
cosalpha = dp2 * inv_vect_length[seq[2]]; |
|
maxcos = (cosalpha > maxcos) ? (main_element = 2, cosalpha) : maxcos; |
|
cosalpha = dp3 * inv_vect_length[seq[3]]; |
|
maxcos = (cosalpha > maxcos) ? (main_element = 3, cosalpha) : maxcos; |
|
|
|
/*rotate calipers*/ |
|
{ |
|
//get next base |
|
int pindex = seq[main_element]; |
|
float lead_x = vect[pindex].x*inv_vect_length[pindex]; |
|
float lead_y = vect[pindex].y*inv_vect_length[pindex]; |
|
switch( main_element ) |
|
{ |
|
case 0: |
|
base_a = lead_x; |
|
base_b = lead_y; |
|
break; |
|
case 1: |
|
base_a = lead_y; |
|
base_b = -lead_x; |
|
break; |
|
case 2: |
|
base_a = -lead_x; |
|
base_b = -lead_y; |
|
break; |
|
case 3: |
|
base_a = -lead_y; |
|
base_b = lead_x; |
|
break; |
|
default: |
|
CV_Error(CV_StsError, "main_element should be 0, 1, 2 or 3"); |
|
} |
|
} |
|
/* change base point of main edge */ |
|
seq[main_element] += 1; |
|
seq[main_element] = (seq[main_element] == n) ? 0 : seq[main_element]; |
|
|
|
switch (mode) |
|
{ |
|
case CALIPERS_MAXHEIGHT: |
|
{ |
|
/* now main element lies on edge alligned to calipers side */ |
|
|
|
/* find opposite element i.e. transform */ |
|
/* 0->2, 1->3, 2->0, 3->1 */ |
|
int opposite_el = main_element ^ 2; |
|
|
|
float dx = points[seq[opposite_el]].x - points[seq[main_element]].x; |
|
float dy = points[seq[opposite_el]].y - points[seq[main_element]].y; |
|
float dist; |
|
|
|
if( main_element & 1 ) |
|
dist = (float)fabs(dx * base_a + dy * base_b); |
|
else |
|
dist = (float)fabs(dx * (-base_b) + dy * base_a); |
|
|
|
if( dist > max_dist ) |
|
max_dist = dist; |
|
} |
|
break; |
|
case CALIPERS_MINAREARECT: |
|
/* find area of rectangle */ |
|
{ |
|
float height; |
|
float area; |
|
|
|
/* find vector left-right */ |
|
float dx = points[seq[1]].x - points[seq[3]].x; |
|
float dy = points[seq[1]].y - points[seq[3]].y; |
|
|
|
/* dotproduct */ |
|
float width = dx * base_a + dy * base_b; |
|
|
|
/* find vector left-right */ |
|
dx = points[seq[2]].x - points[seq[0]].x; |
|
dy = points[seq[2]].y - points[seq[0]].y; |
|
|
|
/* dotproduct */ |
|
height = -dx * base_b + dy * base_a; |
|
|
|
area = width * height; |
|
if( area <= minarea ) |
|
{ |
|
float *buf = (float *) buffer; |
|
|
|
minarea = area; |
|
/* leftist point */ |
|
((int *) buf)[0] = seq[3]; |
|
buf[1] = base_a; |
|
buf[2] = width; |
|
buf[3] = base_b; |
|
buf[4] = height; |
|
/* bottom point */ |
|
((int *) buf)[5] = seq[0]; |
|
buf[6] = area; |
|
} |
|
} |
|
break; |
|
} /*switch */ |
|
} /* for */ |
|
|
|
switch (mode) |
|
{ |
|
case CALIPERS_MINAREARECT: |
|
{ |
|
float *buf = (float *) buffer; |
|
|
|
float A1 = buf[1]; |
|
float B1 = buf[3]; |
|
|
|
float A2 = -buf[3]; |
|
float B2 = buf[1]; |
|
|
|
float C1 = A1 * points[((int *) buf)[0]].x + points[((int *) buf)[0]].y * B1; |
|
float C2 = A2 * points[((int *) buf)[5]].x + points[((int *) buf)[5]].y * B2; |
|
|
|
float idet = 1.f / (A1 * B2 - A2 * B1); |
|
|
|
float px = (C1 * B2 - C2 * B1) * idet; |
|
float py = (A1 * C2 - A2 * C1) * idet; |
|
|
|
out[0] = px; |
|
out[1] = py; |
|
|
|
out[2] = A1 * buf[2]; |
|
out[3] = B1 * buf[2]; |
|
|
|
out[4] = A2 * buf[4]; |
|
out[5] = B2 * buf[4]; |
|
} |
|
break; |
|
case CALIPERS_MAXHEIGHT: |
|
{ |
|
out[0] = max_dist; |
|
} |
|
break; |
|
} |
|
} |
|
|
|
} |
|
|
|
|
|
cv::RotatedRect cv::minAreaRect( InputArray _points ) |
|
{ |
|
Mat hull; |
|
Point2f out[3]; |
|
RotatedRect box; |
|
|
|
convexHull(_points, hull, true, true); |
|
|
|
if( hull.depth() != CV_32F ) |
|
{ |
|
Mat temp; |
|
hull.convertTo(temp, CV_32F); |
|
hull = temp; |
|
} |
|
|
|
int n = hull.checkVector(2); |
|
const Point2f* hpoints = hull.ptr<Point2f>(); |
|
|
|
if( n > 2 ) |
|
{ |
|
rotatingCalipers( hpoints, n, CALIPERS_MINAREARECT, (float*)out ); |
|
box.center.x = out[0].x + (out[1].x + out[2].x)*0.5f; |
|
box.center.y = out[0].y + (out[1].y + out[2].y)*0.5f; |
|
box.size.width = (float)std::sqrt((double)out[1].x*out[1].x + (double)out[1].y*out[1].y); |
|
box.size.height = (float)std::sqrt((double)out[2].x*out[2].x + (double)out[2].y*out[2].y); |
|
box.angle = (float)atan2( (double)out[1].y, (double)out[1].x ); |
|
} |
|
else if( n == 2 ) |
|
{ |
|
box.center.x = (hpoints[0].x + hpoints[1].x)*0.5f; |
|
box.center.y = (hpoints[0].y + hpoints[1].y)*0.5f; |
|
double dx = hpoints[1].x - hpoints[0].x; |
|
double dy = hpoints[1].y - hpoints[0].y; |
|
box.size.width = (float)std::sqrt(dx*dx + dy*dy); |
|
box.size.height = 0; |
|
box.angle = (float)atan2( dy, dx ); |
|
} |
|
else |
|
{ |
|
if( n == 1 ) |
|
box.center = hpoints[0]; |
|
} |
|
|
|
box.angle = (float)(box.angle*180/CV_PI); |
|
return box; |
|
} |
|
|
|
|
|
CV_IMPL CvBox2D |
|
cvMinAreaRect2( const CvArr* array, CvMemStorage* /*storage*/ ) |
|
{ |
|
cv::AutoBuffer<double> abuf; |
|
cv::Mat points = cv::cvarrToMat(array, false, false, 0, &abuf); |
|
|
|
cv::RotatedRect rr = cv::minAreaRect(points); |
|
return (CvBox2D)rr; |
|
} |
|
|
|
void cv::boxPoints(cv::RotatedRect box, OutputArray _pts) |
|
{ |
|
_pts.create(4, 2, CV_32F); |
|
Mat pts = _pts.getMat(); |
|
box.points(pts.ptr<Point2f>()); |
|
}
|
|
|