mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
333 lines
11 KiB
333 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Copyright (C) 2014, Itseez Inc, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
#ifdef HAVE_OPENCV_FLANN |
|
using namespace cv::flann; |
|
#endif |
|
|
|
//-------------------------------------------------------------------------------- |
|
class NearestNeighborTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
NearestNeighborTest() {} |
|
protected: |
|
static const int minValue = 0; |
|
static const int maxValue = 1; |
|
static const int dims = 30; |
|
static const int featuresCount = 2000; |
|
static const int K = 1; // * should also test 2nd nn etc.? |
|
|
|
|
|
virtual void run( int start_from ); |
|
virtual void createModel( const Mat& data ) = 0; |
|
virtual int findNeighbors( Mat& points, Mat& neighbors ) = 0; |
|
virtual int checkGetPoints( const Mat& data ); |
|
virtual int checkFindBoxed(); |
|
virtual int checkFind( const Mat& data ); |
|
virtual void releaseModel() = 0; |
|
}; |
|
|
|
int NearestNeighborTest::checkGetPoints( const Mat& ) |
|
{ |
|
return cvtest::TS::OK; |
|
} |
|
|
|
int NearestNeighborTest::checkFindBoxed() |
|
{ |
|
return cvtest::TS::OK; |
|
} |
|
|
|
int NearestNeighborTest::checkFind( const Mat& data ) |
|
{ |
|
int code = cvtest::TS::OK; |
|
int pointsCount = 1000; |
|
float noise = 0.2f; |
|
|
|
RNG rng; |
|
Mat points( pointsCount, dims, CV_32FC1 ); |
|
Mat results( pointsCount, K, CV_32SC1 ); |
|
|
|
std::vector<int> fmap( pointsCount ); |
|
for( int pi = 0; pi < pointsCount; pi++ ) |
|
{ |
|
int fi = rng.next() % featuresCount; |
|
fmap[pi] = fi; |
|
for( int d = 0; d < dims; d++ ) |
|
points.at<float>(pi, d) = data.at<float>(fi, d) + rng.uniform(0.0f, 1.0f) * noise; |
|
} |
|
|
|
code = findNeighbors( points, results ); |
|
|
|
if( code == cvtest::TS::OK ) |
|
{ |
|
int correctMatches = 0; |
|
for( int pi = 0; pi < pointsCount; pi++ ) |
|
{ |
|
if( fmap[pi] == results.at<int>(pi, 0) ) |
|
correctMatches++; |
|
} |
|
|
|
double correctPerc = correctMatches / (double)pointsCount; |
|
EXPECT_GE(correctPerc, .75) << "correctMatches=" << correctMatches << " pointsCount=" << pointsCount; |
|
} |
|
|
|
return code; |
|
} |
|
|
|
void NearestNeighborTest::run( int /*start_from*/ ) { |
|
int code = cvtest::TS::OK, tempCode; |
|
Mat desc( featuresCount, dims, CV_32FC1 ); |
|
ts->get_rng().fill( desc, RNG::UNIFORM, minValue, maxValue ); |
|
|
|
createModel( desc.clone() ); // .clone() is used to simulate dangling pointers problem: https://github.com/opencv/opencv/issues/17553 |
|
|
|
tempCode = checkGetPoints( desc ); |
|
if( tempCode != cvtest::TS::OK ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "bad accuracy of GetPoints \n" ); |
|
code = tempCode; |
|
} |
|
|
|
tempCode = checkFindBoxed(); |
|
if( tempCode != cvtest::TS::OK ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "bad accuracy of FindBoxed \n" ); |
|
code = tempCode; |
|
} |
|
|
|
tempCode = checkFind( desc ); |
|
if( tempCode != cvtest::TS::OK ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "bad accuracy of Find \n" ); |
|
code = tempCode; |
|
} |
|
|
|
releaseModel(); |
|
|
|
if (::testing::Test::HasFailure()) code = cvtest::TS::FAIL_BAD_ACCURACY; |
|
ts->set_failed_test_info( code ); |
|
} |
|
|
|
//-------------------------------------------------------------------------------- |
|
#ifdef HAVE_OPENCV_FLANN |
|
|
|
class CV_FlannTest : public NearestNeighborTest |
|
{ |
|
public: |
|
CV_FlannTest() : NearestNeighborTest(), index(NULL) { } |
|
protected: |
|
void createIndex( const Mat& data, const IndexParams& params ); |
|
int knnSearch( Mat& points, Mat& neighbors ); |
|
int radiusSearch( Mat& points, Mat& neighbors ); |
|
virtual void releaseModel(); |
|
Index* index; |
|
}; |
|
|
|
void CV_FlannTest::createIndex( const Mat& data, const IndexParams& params ) |
|
{ |
|
// release previously allocated index |
|
releaseModel(); |
|
|
|
index = new Index( data, params ); |
|
} |
|
|
|
int CV_FlannTest::knnSearch( Mat& points, Mat& neighbors ) |
|
{ |
|
Mat dist( points.rows, neighbors.cols, CV_32FC1); |
|
int knn = 1, j; |
|
|
|
// 1st way |
|
index->knnSearch( points, neighbors, dist, knn, SearchParams() ); |
|
|
|
// 2nd way |
|
Mat neighbors1( neighbors.size(), CV_32SC1 ); |
|
for( int i = 0; i < points.rows; i++ ) |
|
{ |
|
float* fltPtr = points.ptr<float>(i); |
|
vector<float> query( fltPtr, fltPtr + points.cols ); |
|
vector<int> indices( neighbors1.cols, 0 ); |
|
vector<float> dists( dist.cols, 0 ); |
|
index->knnSearch( query, indices, dists, knn, SearchParams() ); |
|
vector<int>::const_iterator it = indices.begin(); |
|
for( j = 0; it != indices.end(); ++it, j++ ) |
|
neighbors1.at<int>(i,j) = *it; |
|
} |
|
|
|
// compare results |
|
EXPECT_LE(cvtest::norm(neighbors, neighbors1, NORM_L1), 0); |
|
|
|
return ::testing::Test::HasFailure() ? cvtest::TS::FAIL_BAD_ACCURACY : cvtest::TS::OK; |
|
} |
|
|
|
int CV_FlannTest::radiusSearch( Mat& points, Mat& neighbors ) |
|
{ |
|
Mat dist( 1, neighbors.cols, CV_32FC1); |
|
Mat neighbors1( neighbors.size(), CV_32SC1 ); |
|
float radius = 10.0f; |
|
int j; |
|
|
|
// radiusSearch can only search one feature at a time for range search |
|
for( int i = 0; i < points.rows; i++ ) |
|
{ |
|
// 1st way |
|
Mat p( 1, points.cols, CV_32FC1, points.ptr<float>(i) ), |
|
n( 1, neighbors.cols, CV_32SC1, neighbors.ptr<int>(i) ); |
|
index->radiusSearch( p, n, dist, radius, neighbors.cols, SearchParams() ); |
|
|
|
// 2nd way |
|
float* fltPtr = points.ptr<float>(i); |
|
vector<float> query( fltPtr, fltPtr + points.cols ); |
|
vector<int> indices( neighbors1.cols, 0 ); |
|
vector<float> dists( dist.cols, 0 ); |
|
index->radiusSearch( query, indices, dists, radius, neighbors.cols, SearchParams() ); |
|
vector<int>::const_iterator it = indices.begin(); |
|
for( j = 0; it != indices.end(); ++it, j++ ) |
|
neighbors1.at<int>(i,j) = *it; |
|
} |
|
|
|
// compare results |
|
EXPECT_LE(cvtest::norm(neighbors, neighbors1, NORM_L1), 0); |
|
|
|
return ::testing::Test::HasFailure() ? cvtest::TS::FAIL_BAD_ACCURACY : cvtest::TS::OK; |
|
} |
|
|
|
void CV_FlannTest::releaseModel() |
|
{ |
|
if (index) |
|
{ |
|
delete index; |
|
index = NULL; |
|
} |
|
} |
|
|
|
//--------------------------------------- |
|
class CV_FlannLinearIndexTest : public CV_FlannTest |
|
{ |
|
public: |
|
CV_FlannLinearIndexTest() {} |
|
protected: |
|
virtual void createModel( const Mat& data ) { createIndex( data, LinearIndexParams() ); } |
|
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); } |
|
}; |
|
|
|
//--------------------------------------- |
|
class CV_FlannKMeansIndexTest : public CV_FlannTest |
|
{ |
|
public: |
|
CV_FlannKMeansIndexTest() {} |
|
protected: |
|
virtual void createModel( const Mat& data ) { createIndex( data, KMeansIndexParams() ); } |
|
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return radiusSearch( points, neighbors ); } |
|
}; |
|
|
|
//--------------------------------------- |
|
class CV_FlannKDTreeIndexTest : public CV_FlannTest |
|
{ |
|
public: |
|
CV_FlannKDTreeIndexTest() {} |
|
protected: |
|
virtual void createModel( const Mat& data ) { createIndex( data, KDTreeIndexParams() ); } |
|
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return radiusSearch( points, neighbors ); } |
|
}; |
|
|
|
//---------------------------------------- |
|
class CV_FlannCompositeIndexTest : public CV_FlannTest |
|
{ |
|
public: |
|
CV_FlannCompositeIndexTest() {} |
|
protected: |
|
virtual void createModel( const Mat& data ) { createIndex( data, CompositeIndexParams() ); } |
|
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); } |
|
}; |
|
|
|
//---------------------------------------- |
|
class CV_FlannAutotunedIndexTest : public CV_FlannTest |
|
{ |
|
public: |
|
CV_FlannAutotunedIndexTest() {} |
|
protected: |
|
virtual void createModel( const Mat& data ) { createIndex( data, AutotunedIndexParams() ); } |
|
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); } |
|
}; |
|
//---------------------------------------- |
|
class CV_FlannSavedIndexTest : public CV_FlannTest |
|
{ |
|
public: |
|
CV_FlannSavedIndexTest() {} |
|
protected: |
|
virtual void createModel( const Mat& data ); |
|
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); } |
|
}; |
|
|
|
void CV_FlannSavedIndexTest::createModel(const cv::Mat &data) |
|
{ |
|
switch ( cvtest::randInt(ts->get_rng()) % 2 ) |
|
{ |
|
//case 0: createIndex( data, LinearIndexParams() ); break; // nothing to save for linear search |
|
case 0: createIndex( data, KMeansIndexParams() ); break; |
|
case 1: createIndex( data, KDTreeIndexParams() ); break; |
|
//case 2: createIndex( data, CompositeIndexParams() ); break; // nothing to save for linear search |
|
//case 2: createIndex( data, AutotunedIndexParams() ); break; // possible linear index ! |
|
default: assert(0); |
|
} |
|
string filename = tempfile(); |
|
index->save( filename ); |
|
|
|
createIndex( data, SavedIndexParams(filename.c_str())); |
|
remove( filename.c_str() ); |
|
} |
|
|
|
TEST(Features2d_FLANN_Linear, regression) { CV_FlannLinearIndexTest test; test.safe_run(); } |
|
TEST(Features2d_FLANN_KMeans, regression) { CV_FlannKMeansIndexTest test; test.safe_run(); } |
|
TEST(Features2d_FLANN_KDTree, regression) { CV_FlannKDTreeIndexTest test; test.safe_run(); } |
|
TEST(Features2d_FLANN_Composite, regression) { CV_FlannCompositeIndexTest test; test.safe_run(); } |
|
TEST(Features2d_FLANN_Auto, regression) { CV_FlannAutotunedIndexTest test; test.safe_run(); } |
|
TEST(Features2d_FLANN_Saved, regression) { CV_FlannSavedIndexTest test; test.safe_run(); } |
|
|
|
#endif |
|
|
|
}} // namespace
|
|
|