mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
185 lines
7.0 KiB
185 lines
7.0 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html |
|
|
|
#include "test_precomp.hpp" |
|
|
|
// #define GENERATE_DATA // generate data in debug mode |
|
|
|
namespace opencv_test { namespace { |
|
|
|
#ifndef GENERATE_DATA |
|
static bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 ) |
|
{ |
|
const float maxPtDif = 1.f; |
|
const float maxSizeDif = 1.f; |
|
const float maxAngleDif = 2.f; |
|
const float maxResponseDif = 0.1f; |
|
|
|
float dist = (float)cv::norm( p1.pt - p2.pt ); |
|
return (dist < maxPtDif && |
|
fabs(p1.size - p2.size) < maxSizeDif && |
|
abs(p1.angle - p2.angle) < maxAngleDif && |
|
abs(p1.response - p2.response) < maxResponseDif && |
|
(p1.octave & 0xffff) == (p2.octave & 0xffff) // do not care about sublayers and class_id |
|
); |
|
} |
|
#endif |
|
|
|
TEST(Features2d_AFFINE_FEATURE, regression) |
|
{ |
|
Mat image = imread(cvtest::findDataFile("features2d/tsukuba.png")); |
|
string xml = cvtest::TS::ptr()->get_data_path() + "asift/regression_cpp.xml.gz"; |
|
ASSERT_FALSE(image.empty()); |
|
|
|
Mat gray; |
|
cvtColor(image, gray, COLOR_BGR2GRAY); |
|
|
|
// Default ASIFT generates too large descriptors. This test uses small maxTilt to suppress the size of testdata. |
|
Ptr<AffineFeature> ext = AffineFeature::create(SIFT::create(), 2, 0, 1.4142135623730951f, 144.0f); |
|
Mat mpt, msize, mangle, mresponse, moctave, mclass_id; |
|
#ifdef GENERATE_DATA |
|
// calculate |
|
vector<KeyPoint> calcKeypoints; |
|
Mat calcDescriptors; |
|
ext->detectAndCompute(gray, Mat(), calcKeypoints, calcDescriptors, false); |
|
|
|
// create keypoints XML |
|
FileStorage fs(xml, FileStorage::WRITE); |
|
ASSERT_TRUE(fs.isOpened()) << xml; |
|
std::cout << "Creating keypoints XML..." << std::endl; |
|
|
|
mpt = Mat(calcKeypoints.size(), 2, CV_32F); |
|
msize = Mat(calcKeypoints.size(), 1, CV_32F); |
|
mangle = Mat(calcKeypoints.size(), 1, CV_32F); |
|
mresponse = Mat(calcKeypoints.size(), 1, CV_32F); |
|
moctave = Mat(calcKeypoints.size(), 1, CV_32S); |
|
mclass_id = Mat(calcKeypoints.size(), 1, CV_32S); |
|
|
|
for( size_t i = 0; i < calcKeypoints.size(); i++ ) |
|
{ |
|
const KeyPoint& key = calcKeypoints[i]; |
|
mpt.at<float>(i, 0) = key.pt.x; |
|
mpt.at<float>(i, 1) = key.pt.y; |
|
msize.at<float>(i, 0) = key.size; |
|
mangle.at<float>(i, 0) = key.angle; |
|
mresponse.at<float>(i, 0) = key.response; |
|
moctave.at<int>(i, 0) = key.octave; |
|
mclass_id.at<int>(i, 0) = key.class_id; |
|
} |
|
|
|
fs << "keypoints_pt" << mpt; |
|
fs << "keypoints_size" << msize; |
|
fs << "keypoints_angle" << mangle; |
|
fs << "keypoints_response" << mresponse; |
|
fs << "keypoints_octave" << moctave; |
|
fs << "keypoints_class_id" << mclass_id; |
|
|
|
// create descriptor XML |
|
fs << "descriptors" << calcDescriptors; |
|
fs.release(); |
|
#else |
|
const float badCountsRatio = 0.01f; |
|
const float badDescriptorDist = 1.0f; |
|
const float maxBadKeypointsRatio = 0.15f; |
|
const float maxBadDescriptorRatio = 0.15f; |
|
|
|
// read keypoints |
|
vector<KeyPoint> validKeypoints; |
|
Mat validDescriptors; |
|
FileStorage fs(xml, FileStorage::READ); |
|
ASSERT_TRUE(fs.isOpened()) << xml; |
|
|
|
fs["keypoints_pt"] >> mpt; |
|
ASSERT_EQ(mpt.type(), CV_32F); |
|
fs["keypoints_size"] >> msize; |
|
ASSERT_EQ(msize.type(), CV_32F); |
|
fs["keypoints_angle"] >> mangle; |
|
ASSERT_EQ(mangle.type(), CV_32F); |
|
fs["keypoints_response"] >> mresponse; |
|
ASSERT_EQ(mresponse.type(), CV_32F); |
|
fs["keypoints_octave"] >> moctave; |
|
ASSERT_EQ(moctave.type(), CV_32S); |
|
fs["keypoints_class_id"] >> mclass_id; |
|
ASSERT_EQ(mclass_id.type(), CV_32S); |
|
|
|
validKeypoints.resize(mpt.rows); |
|
for( int i = 0; i < (int)validKeypoints.size(); i++ ) |
|
{ |
|
validKeypoints[i].pt.x = mpt.at<float>(i, 0); |
|
validKeypoints[i].pt.y = mpt.at<float>(i, 1); |
|
validKeypoints[i].size = msize.at<float>(i, 0); |
|
validKeypoints[i].angle = mangle.at<float>(i, 0); |
|
validKeypoints[i].response = mresponse.at<float>(i, 0); |
|
validKeypoints[i].octave = moctave.at<int>(i, 0); |
|
validKeypoints[i].class_id = mclass_id.at<int>(i, 0); |
|
} |
|
|
|
// read descriptors |
|
fs["descriptors"] >> validDescriptors; |
|
fs.release(); |
|
|
|
// calc and compare keypoints |
|
vector<KeyPoint> calcKeypoints; |
|
ext->detectAndCompute(gray, Mat(), calcKeypoints, noArray(), false); |
|
|
|
float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size(); |
|
ASSERT_LT(countRatio, 1 + badCountsRatio) << "Bad keypoints count ratio."; |
|
ASSERT_GT(countRatio, 1 - badCountsRatio) << "Bad keypoints count ratio."; |
|
|
|
int badPointCount = 0, commonPointCount = max((int)validKeypoints.size(), (int)calcKeypoints.size()); |
|
for( size_t v = 0; v < validKeypoints.size(); v++ ) |
|
{ |
|
int nearestIdx = -1; |
|
float minDist = std::numeric_limits<float>::max(); |
|
float angleDistOfNearest = std::numeric_limits<float>::max(); |
|
|
|
for( size_t c = 0; c < calcKeypoints.size(); c++ ) |
|
{ |
|
if( validKeypoints[v].class_id != calcKeypoints[c].class_id ) |
|
continue; |
|
float curDist = (float)cv::norm( calcKeypoints[c].pt - validKeypoints[v].pt ); |
|
if( curDist < minDist ) |
|
{ |
|
minDist = curDist; |
|
nearestIdx = (int)c; |
|
angleDistOfNearest = abs( calcKeypoints[c].angle - validKeypoints[v].angle ); |
|
} |
|
else if( curDist == minDist ) // the keypoints whose positions are same but angles are different |
|
{ |
|
float angleDist = abs( calcKeypoints[c].angle - validKeypoints[v].angle ); |
|
if( angleDist < angleDistOfNearest ) |
|
{ |
|
nearestIdx = (int)c; |
|
angleDistOfNearest = angleDist; |
|
} |
|
} |
|
} |
|
if( nearestIdx == -1 || !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) ) |
|
badPointCount++; |
|
} |
|
float badKeypointsRatio = (float)badPointCount / (float)commonPointCount; |
|
std::cout << "badKeypointsRatio: " << badKeypointsRatio << std::endl; |
|
ASSERT_LT( badKeypointsRatio , maxBadKeypointsRatio ) << "Bad accuracy!"; |
|
|
|
// Calc and compare descriptors. This uses validKeypoints for extraction. |
|
Mat calcDescriptors; |
|
ext->detectAndCompute(gray, Mat(), validKeypoints, calcDescriptors, true); |
|
|
|
int dim = validDescriptors.cols; |
|
int badDescriptorCount = 0; |
|
L1<float> distance; |
|
|
|
for( int i = 0; i < (int)validKeypoints.size(); i++ ) |
|
{ |
|
float dist = distance( validDescriptors.ptr<float>(i), calcDescriptors.ptr<float>(i), dim ); |
|
if( dist > badDescriptorDist ) |
|
badDescriptorCount++; |
|
} |
|
float badDescriptorRatio = (float)badDescriptorCount / (float)validKeypoints.size(); |
|
std::cout << "badDescriptorRatio: " << badDescriptorRatio << std::endl; |
|
ASSERT_LT( badDescriptorRatio, maxBadDescriptorRatio ) << "Too many descriptors mismatched."; |
|
#endif |
|
} |
|
|
|
}} // namespace
|
|
|