mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
298 lines
11 KiB
298 lines
11 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2008-2013, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and / or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_SOFTCASCADE_HPP__ |
|
#define __OPENCV_SOFTCASCADE_HPP__ |
|
|
|
#include "opencv2/core.hpp" |
|
#include "opencv2/core/gpumat.hpp" |
|
|
|
namespace cv { namespace softcascade { |
|
|
|
// Representation of detectors result. |
|
// We assume that image is less then 2^16x2^16. |
|
struct CV_EXPORTS Detection |
|
{ |
|
// Creates Detection from an object bounding box and confidence. |
|
// Param b is a bounding box |
|
// Param c is a confidence that object belongs to class k |
|
// Param k is an object class |
|
Detection(const cv::Rect& b, const float c, int k = PEDESTRIAN); |
|
cv::Rect bb() const; |
|
enum {PEDESTRIAN = 1}; |
|
|
|
ushort x; |
|
ushort y; |
|
ushort w; |
|
ushort h; |
|
float confidence; |
|
int kind; |
|
}; |
|
|
|
class CV_EXPORTS Dataset |
|
{ |
|
public: |
|
typedef enum {POSITIVE = 1, NEGATIVE = 2} SampleType; |
|
|
|
virtual cv::Mat get(SampleType type, int idx) const = 0; |
|
virtual int available(SampleType type) const = 0; |
|
virtual ~Dataset(); |
|
}; |
|
|
|
// ========================================================================== // |
|
// Public interface feature pool. |
|
// ========================================================================== // |
|
|
|
class CV_EXPORTS FeaturePool |
|
{ |
|
public: |
|
|
|
virtual int size() const = 0; |
|
virtual float apply(int fi, int si, const Mat& channels) const = 0; |
|
virtual void write( cv::FileStorage& fs, int index) const = 0; |
|
virtual ~FeaturePool(); |
|
|
|
static cv::Ptr<FeaturePool> create(const cv::Size& model, int nfeatures, int nchannels ); |
|
}; |
|
|
|
// ========================================================================== // |
|
// First order channel feature. |
|
// ========================================================================== // |
|
|
|
class CV_EXPORTS ChannelFeature |
|
{ |
|
public: |
|
ChannelFeature(int x, int y, int w, int h, int ch); |
|
~ChannelFeature(); |
|
|
|
bool operator ==(ChannelFeature b); |
|
bool operator !=(ChannelFeature b); |
|
|
|
float operator() (const cv::Mat& integrals, const cv::Size& model) const; |
|
|
|
friend void write(cv::FileStorage& fs, const String&, const ChannelFeature& f); |
|
friend std::ostream& operator<<(std::ostream& out, const ChannelFeature& f); |
|
|
|
private: |
|
cv::Rect bb; |
|
int channel; |
|
}; |
|
|
|
void write(cv::FileStorage& fs, const String&, const ChannelFeature& f); |
|
std::ostream& operator<<(std::ostream& out, const ChannelFeature& m); |
|
|
|
// ========================================================================== // |
|
// Public Interface for Integral Channel Feature. |
|
// ========================================================================== // |
|
|
|
class CV_EXPORTS_W ChannelFeatureBuilder : public cv::Algorithm |
|
{ |
|
public: |
|
virtual ~ChannelFeatureBuilder(); |
|
|
|
// apply channels to source frame |
|
CV_WRAP_AS(compute) virtual void operator()(InputArray src, OutputArray channels, cv::Size channelsSize = cv::Size()) const = 0; |
|
|
|
CV_WRAP virtual int totalChannels() const = 0; |
|
virtual cv::AlgorithmInfo* info() const = 0; |
|
|
|
CV_WRAP static cv::Ptr<ChannelFeatureBuilder> create(const String& featureType); |
|
}; |
|
|
|
// ========================================================================== // |
|
// Implementation of soft (stageless) cascaded detector. |
|
// ========================================================================== // |
|
class CV_EXPORTS_W Detector : public cv::Algorithm |
|
{ |
|
public: |
|
|
|
enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,*/ DEFAULT = NO_REJECT}; |
|
|
|
// An empty cascade will be created. |
|
// Param minScale is a minimum scale relative to the original size of the image on which cascade will be applied. |
|
// Param minScale is a maximum scale relative to the original size of the image on which cascade will be applied. |
|
// Param scales is a number of scales from minScale to maxScale. |
|
// Param rejCriteria is used for NMS. |
|
CV_WRAP Detector(double minScale = 0.4, double maxScale = 5., int scales = 55, int rejCriteria = 1); |
|
|
|
CV_WRAP virtual ~Detector(); |
|
|
|
cv::AlgorithmInfo* info() const; |
|
|
|
// Load soft cascade from FileNode. |
|
// Param fileNode is a root node for cascade. |
|
CV_WRAP virtual bool load(const FileNode& fileNode); |
|
|
|
// Load soft cascade config. |
|
CV_WRAP virtual void read(const FileNode& fileNode); |
|
|
|
// Return the vector of Detection objects. |
|
// Param image is a frame on which detector will be applied. |
|
// Param rois is a vector of regions of interest. Only the objects that fall into one of the regions will be returned. |
|
// Param objects is an output array of Detections |
|
virtual void detect(InputArray image, InputArray rois, std::vector<Detection>& objects) const; |
|
|
|
// Param rects is an output array of bounding rectangles for detected objects. |
|
// Param confs is an output array of confidence for detected objects. i-th bounding rectangle corresponds i-th confidence. |
|
CV_WRAP virtual void detect(InputArray image, InputArray rois, OutputArray rects, OutputArray confs) const; |
|
|
|
private: |
|
void detectNoRoi(const Mat& image, std::vector<Detection>& objects) const; |
|
|
|
struct Fields; |
|
Fields* fields; |
|
|
|
double minScale; |
|
double maxScale; |
|
|
|
int scales; |
|
int rejCriteria; |
|
}; |
|
|
|
// ========================================================================== // |
|
// Public Interface for singe soft (stageless) cascade octave training. |
|
// ========================================================================== // |
|
class CV_EXPORTS Octave : public cv::Algorithm |
|
{ |
|
public: |
|
enum |
|
{ |
|
// Direct backward pruning. (Cha Zhang and Paul Viola) |
|
DBP = 1, |
|
// Multiple instance pruning. (Cha Zhang and Paul Viola) |
|
MIP = 2, |
|
// Originally proposed by L. Bourdev and J. Brandt |
|
HEURISTIC = 4 |
|
}; |
|
|
|
virtual ~Octave(); |
|
static cv::Ptr<Octave> create(cv::Rect boundingBox, int npositives, int nnegatives, |
|
int logScale, int shrinkage, cv::Ptr<ChannelFeatureBuilder> builder); |
|
|
|
virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth) = 0; |
|
virtual void setRejectThresholds(OutputArray thresholds) = 0; |
|
virtual void write( cv::FileStorage &fs, const FeaturePool* pool, InputArray thresholds) const = 0; |
|
virtual void write( CvFileStorage* fs, String name) const = 0; |
|
}; |
|
|
|
CV_EXPORTS bool initModule_softcascade(void); |
|
|
|
// ======================== GPU version for soft cascade ===================== // |
|
|
|
class CV_EXPORTS ChannelsProcessor |
|
{ |
|
public: |
|
enum |
|
{ |
|
// GENERIC = 1 << 4, does not supported |
|
SEPARABLE = 2 << 4 |
|
}; |
|
|
|
// Appends specified number of HOG first-order features integrals into given vector. |
|
// Param frame is an input 3-channel bgr image. |
|
// Param channels is a GPU matrix of optionally shrinked channels |
|
// Param stream is stream is a high-level CUDA stream abstraction used for asynchronous execution. |
|
virtual void apply(InputArray frame, OutputArray channels, cv::gpu::Stream& stream = cv::gpu::Stream::Null()) = 0; |
|
|
|
// Creates a specific preprocessor implementation. |
|
// Param shrinkage is a resizing factor. Resize is applied before the computing integral sum |
|
// Param bins is a number of HOG-like channels. |
|
// Param flags is a channel computing extra flags. |
|
static cv::Ptr<ChannelsProcessor> create(const int shrinkage, const int bins, const int flags = SEPARABLE); |
|
|
|
virtual ~ChannelsProcessor(); |
|
|
|
protected: |
|
ChannelsProcessor(); |
|
}; |
|
|
|
// Implementation of soft (stage-less) cascaded detector. |
|
class CV_EXPORTS SCascade : public cv::Algorithm |
|
{ |
|
public: |
|
|
|
enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,*/ DEFAULT = NO_REJECT, NMS_MASK = 0xF}; |
|
|
|
// An empty cascade will be created. |
|
// Param minScale is a minimum scale relative to the original size of the image on which cascade will be applied. |
|
// Param minScale is a maximum scale relative to the original size of the image on which cascade will be applied. |
|
// Param scales is a number of scales from minScale to maxScale. |
|
// Param flags is an extra tuning flags. |
|
SCascade(const double minScale = 0.4, const double maxScale = 5., const int scales = 55, |
|
const int flags = NO_REJECT | ChannelsProcessor::SEPARABLE); |
|
|
|
virtual ~SCascade(); |
|
|
|
cv::AlgorithmInfo* info() const; |
|
|
|
// Load cascade from FileNode. |
|
// Param fn is a root node for cascade. Should be <cascade>. |
|
virtual bool load(const FileNode& fn); |
|
|
|
// Load cascade config. |
|
virtual void read(const FileNode& fn); |
|
|
|
// Return the matrix of of detected objects. |
|
// Param image is a frame on which detector will be applied. |
|
// Param rois is a regions of interests mask generated by genRoi. |
|
// Only the objects that fall into one of the regions will be returned. |
|
// Param objects is an output array of Detections represented as GpuMat of detections (SCascade::Detection) |
|
// The first element of the matrix is actually a count of detections. |
|
// Param stream is stream is a high-level CUDA stream abstraction used for asynchronous execution |
|
virtual void detect(InputArray image, InputArray rois, OutputArray objects, cv::gpu::Stream& stream = cv::gpu::Stream::Null()) const; |
|
|
|
private: |
|
|
|
struct Fields; |
|
Fields* fields; |
|
|
|
double minScale; |
|
double maxScale; |
|
int scales; |
|
|
|
int flags; |
|
}; |
|
|
|
|
|
}} // namespace cv { namespace softcascade { |
|
|
|
#endif |