Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
247 lines
9.0 KiB
247 lines
9.0 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "layers_common.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
static void computeShapeByReshapeMask(const MatShape &srcShape, |
|
const MatShape &maskShape, |
|
Range srcRange /*= Range::all()*/, |
|
MatShape& dstShape) |
|
{ |
|
int srcShapeSize = (int)srcShape.size(); |
|
int maskShapeSize = (int)maskShape.size(); |
|
|
|
if (srcRange == Range::all()) |
|
srcRange = Range(0, srcShapeSize); |
|
else |
|
{ |
|
int sz = srcRange.size(); |
|
srcRange.start = clamp(srcRange.start, srcShapeSize); |
|
srcRange.end = srcRange.end == INT_MAX ? srcShapeSize : srcRange.start + sz; |
|
} |
|
|
|
bool explicitMask = !maskShape.empty(); // All mask values are positive. |
|
for (int i = 0, n = maskShape.size(); i < n && explicitMask; ++i) |
|
{ |
|
explicitMask = maskShape[i] > 0; |
|
} |
|
// Working range of source shape is a range where area(src) == area(mask). |
|
if (explicitMask) |
|
{ |
|
int maskTotal = total(maskShape); |
|
for (int i = srcRange.start + 1; i < srcRange.end; ++i) |
|
{ |
|
if (total(srcShape, i, srcRange.end) != maskTotal) |
|
{ |
|
srcRange.start = i - 1; |
|
break; |
|
} |
|
} |
|
CV_Assert(total(srcShape, srcRange.start, srcRange.end) == maskTotal); |
|
} |
|
|
|
CV_Assert(0 <= srcRange.start && srcRange.start <= srcRange.end && srcRange.end <= srcShapeSize); |
|
int dstShapeSize = srcShapeSize - srcRange.size() + maskShapeSize; |
|
dstShape.resize(dstShapeSize); |
|
|
|
std::copy(srcShape.begin(), srcShape.begin() + srcRange.start, dstShape.begin()); |
|
std::copy(srcShape.begin() + srcRange.end, srcShape.begin() + srcShapeSize, dstShape.begin() + srcRange.start + maskShapeSize); |
|
|
|
int inferDim = -1; |
|
for (int i = 0; i < maskShapeSize; i++) |
|
{ |
|
if (maskShape[i] > 0) |
|
{ |
|
dstShape[srcRange.start + i] = maskShape[i]; |
|
} |
|
else if (maskShape[i] == 0) |
|
{ |
|
if (srcRange.start + i >= srcShapeSize) |
|
CV_Error(Error::StsBadArg, format("Copy dim[%d] (which has zero size) is out of the source shape bounds", srcRange.start + i)); |
|
dstShape[srcRange.start + i] = srcShape[srcRange.start + i]; |
|
} |
|
else if (maskShape[i] == -1) |
|
{ |
|
if (inferDim != -1) |
|
CV_Error(Error::StsAssert, "Duplicate of inferred dim (which is denoted by -1)"); |
|
inferDim = srcRange.start + i; |
|
dstShape[inferDim] = 1; |
|
} |
|
else |
|
CV_Error(Error::StsBadArg, "maskShape[i] >= -1"); |
|
} |
|
|
|
size_t srcTotal = total(srcShape); |
|
size_t dstTotal = total(dstShape); |
|
|
|
if (inferDim != -1) |
|
{ |
|
if (srcTotal % dstTotal != 0) |
|
CV_Error(Error::StsBackTrace, "Can't infer a dim denoted by -1"); |
|
|
|
dstShape[inferDim] = (int)(srcTotal / dstTotal); |
|
} |
|
else |
|
{ |
|
CV_Assert(srcTotal == dstTotal); |
|
} |
|
} |
|
|
|
|
|
class ReshapeLayerImpl : public ReshapeLayer |
|
{ |
|
public: |
|
ReshapeLayerImpl(const LayerParams& params): |
|
performReordering(false) |
|
{ |
|
setParamsFrom(params); |
|
int axis = params.get<int>("axis", 0); |
|
int numAxes = params.get<int>("num_axes", -1); |
|
enableReordering = params.get<bool>("reorder_dims", false); |
|
CV_Assert(numAxes >= -1); |
|
newShapeRange = (numAxes == -1) ? Range(axis, INT_MAX) : Range(axis, axis + numAxes); |
|
|
|
newShapeDesc.clear(); |
|
if (params.has("dim")) |
|
{ |
|
const DictValue ¶mShape = params.get("dim"); |
|
int i, dims = paramShape.size(); |
|
newShapeDesc.resize(dims); |
|
for (i = 0; i < dims; i++) |
|
newShapeDesc[i] = paramShape.get<int>(i); |
|
} |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const |
|
{ |
|
outputs.clear(); |
|
|
|
for (size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
outputs.push_back(MatShape()); |
|
computeShapeByReshapeMask(inputs[i], newShapeDesc, newShapeRange, outputs.back()); |
|
} |
|
internals = outputs; |
|
|
|
return true; |
|
} |
|
|
|
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs) |
|
{ |
|
CV_Assert(inputs.size()); |
|
CV_Assert(outputs.size()); |
|
Mat srcBlob = *inputs[0]; |
|
int dims = srcBlob.dims; |
|
MatShape inputShape = shape(srcBlob), outShape = shape(outputs[0]); |
|
|
|
// input.total() == output.total(). So if reordering is require, |
|
// one of the sizes will be are not equal. |
|
// Example where reordering is require: from 1x128x4x4 to 1x2048 |
|
// Example where reordering is NOT require: from 1x1024x1x1 to 1x1024. |
|
bool reorderingRequire = false; |
|
const int minDims = min(dims, (int)outShape.size()); |
|
for (int i = 0; !reorderingRequire && i < minDims; ++i) |
|
reorderingRequire = inputShape[i] != outShape[i]; |
|
performReordering = enableReordering && reorderingRequire; |
|
} |
|
|
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) |
|
{ |
|
for (size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
Mat srcBlob = *inputs[i]; |
|
MatShape inputShape = shape(srcBlob), outShape = shape(outputs[i]); |
|
|
|
if (performReordering) |
|
{ |
|
float *dstData = internals[i].ptr<float>(); |
|
const float *srcData = srcBlob.ptr<float>(); |
|
|
|
int num = inputShape[0], channels = inputShape[1], height = inputShape[2], width = inputShape[3]; |
|
int total = num*channels*height*width; |
|
for(int i_n = 0; i_n < num; i_n++) { |
|
for(int i_c = 0; i_c < channels; i_c++) { |
|
for(int i_h = 0; i_h < height; i_h++) { |
|
for(int i_w = 0; i_w < width; i_w++) { |
|
int src_i = channels*height*width*i_n + height*width*i_c + width*i_h + i_w; |
|
int dst_i = channels*height*width*i_n + i_c + channels*width*i_h + channels*i_w; |
|
|
|
CV_Assert(dst_i < total); |
|
CV_Assert(src_i < total); |
|
|
|
dstData[dst_i] = srcData[src_i]; |
|
} |
|
} |
|
} |
|
} |
|
internals[i].copyTo(outputs[i]); |
|
} |
|
else |
|
{ |
|
if (outputs[i].data != srcBlob.data) |
|
srcBlob.reshape(1, outShape).copyTo(outputs[i]); |
|
} |
|
} |
|
} |
|
|
|
private: |
|
std::vector<std::vector<int> > outShapes; |
|
bool enableReordering, performReordering; |
|
}; |
|
|
|
Ptr<ReshapeLayer> ReshapeLayer::create(const LayerParams& params) |
|
{ |
|
return Ptr<ReshapeLayer>(new ReshapeLayerImpl(params)); |
|
} |
|
|
|
|
|
} |
|
}
|
|
|