Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
566 lines
22 KiB
566 lines
22 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "../precomp.hpp" |
|
#include "layers_common.hpp" |
|
#include "opencv2/core/hal/intrin.hpp" |
|
#include "op_halide.hpp" |
|
#include <float.h> |
|
#include <algorithm> |
|
using std::max; |
|
using std::min; |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
//TODO: add ceil_mode param |
|
class PoolingLayerImpl : public PoolingLayer |
|
{ |
|
public: |
|
PoolingLayerImpl(const LayerParams& params) |
|
{ |
|
type = PoolingLayer::MAX; |
|
computeMaxIdx = true; |
|
|
|
if (params.has("pool")) |
|
{ |
|
String pool = params.get<String>("pool").toLowerCase(); |
|
if (pool == "max") |
|
type = PoolingLayer::MAX; |
|
else if (pool == "ave") |
|
type = PoolingLayer::AVE; |
|
else if (pool == "stochastic") |
|
type = PoolingLayer::STOCHASTIC; |
|
else |
|
CV_Error(Error::StsBadArg, "Unknown pooling type \"" + pool + "\""); |
|
} |
|
|
|
getPoolingKernelParams(params, kernel.height, kernel.width, globalPooling, |
|
pad.height, pad.width, stride.height, stride.width, padMode); |
|
setParamsFrom(params); |
|
} |
|
|
|
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs) |
|
{ |
|
CV_Assert(inputs.size() == 1); |
|
|
|
cv::Size inp(inputs[0]->size[3], inputs[0]->size[2]), |
|
out(outputs[0].size[3], outputs[0].size[2]); |
|
|
|
if(globalPooling) |
|
{ |
|
kernel = inp; |
|
} |
|
|
|
getConvPoolPaddings(inp, out, kernel, stride, padMode, pad); |
|
} |
|
|
|
virtual bool supportBackend(int backendId) |
|
{ |
|
return backendId == DNN_BACKEND_DEFAULT || |
|
backendId == DNN_BACKEND_HALIDE && haveHalide() && |
|
(type == PoolingLayer::MAX || |
|
type == PoolingLayer::AVE && !pad.width && !pad.height); |
|
} |
|
|
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) |
|
{ |
|
for (size_t ii = 0; ii < inputs.size(); ii++) |
|
{ |
|
switch (type) |
|
{ |
|
case MAX: |
|
maxPooling(*inputs[ii], outputs[2 * ii], outputs[2 * ii + 1]); |
|
break; |
|
case AVE: |
|
avePooling(*inputs[ii], outputs[ii]); |
|
break; |
|
default: |
|
CV_Error(Error::StsNotImplemented, "Not implemented"); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) |
|
{ |
|
if (type == PoolingLayer::MAX) |
|
return initMaxPoolingHalide(inputs); |
|
else if (type == PoolingLayer::AVE) |
|
return initAvePoolingHalide(inputs); |
|
else |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
class MaxPoolingInvoker : public ParallelLoopBody |
|
{ |
|
public: |
|
const Mat* src_; |
|
Mat *dst_, *mask_; |
|
Size kernel_, stride_, pad_; |
|
int nstripes_; |
|
bool computeMaxIdx_; |
|
|
|
MaxPoolingInvoker(const Mat& src, Mat& dst, Mat& mask, Size kernel, |
|
Size stride, Size pad, int nstripes, bool computeMaxIdx) |
|
{ |
|
src_ = &src; |
|
dst_ = &dst; |
|
mask_ = &mask; |
|
kernel_ = kernel; |
|
stride_ = stride; |
|
pad_ = pad; |
|
nstripes_ = nstripes; |
|
computeMaxIdx_ = computeMaxIdx; |
|
|
|
CV_Assert(src.isContinuous() && dst.isContinuous() && |
|
src.type() == CV_32F && src.type() == dst.type() && |
|
mask.type() == src.type() && src.dims == 4 && dst.dims == 4 && |
|
src.size[0] == dst.size[0] && src.size[1] == dst.size[1] && |
|
mask.size == dst.size); |
|
} |
|
|
|
void operator()(const Range& r) const |
|
{ |
|
int nimgs = dst_->size[0], channels = dst_->size[1]; |
|
int width = dst_->size[3], height = dst_->size[2]; |
|
int inp_width = src_->size[3], inp_height = src_->size[2]; |
|
size_t total = dst_->total(); |
|
size_t stripeSize = (total + nstripes_ - 1)/nstripes_; |
|
size_t stripeStart = r.start*stripeSize; |
|
size_t stripeEnd = std::min(r.end*stripeSize, total); |
|
size_t ofs = stripeStart; |
|
int x0 = (int)(ofs % width); |
|
ofs /= width; |
|
int y0 = (int)(ofs % height); |
|
ofs /= height; |
|
int c = (int)(ofs % channels); |
|
int n = (int)(ofs / channels); |
|
const float *srcData = src_->ptr<float>(n, c); |
|
float *dstData = dst_->ptr<float>(n, c, y0) + x0; |
|
float *dstMaskData = mask_->ptr<float>(n, c, y0) + x0; |
|
int kernel_w = kernel_.width, kernel_h = kernel_.height; |
|
int pad_w = pad_.width, pad_h = pad_.height; |
|
int stride_w = stride_.width, stride_h = stride_.height; |
|
bool compMaxIdx = computeMaxIdx_; |
|
#if CV_SIMD128 |
|
v_float32x4 idx00(0.f, (float)stride_w, (float)(stride_w*2), (float)(stride_w*3)); |
|
v_float32x4 ones = v_setall_f32(1.f); |
|
v_float32x4 delta = v_setall_f32((float)(inp_width - kernel_w)); |
|
#endif |
|
|
|
for( ofs = stripeStart; ofs < stripeEnd; ofs++ ) |
|
{ |
|
int ystart = y0 * stride_h - pad_h; |
|
int xstart = x0 * stride_w - pad_w; |
|
int yend = min(ystart + kernel_h, inp_height); |
|
int xend = min(xstart + kernel_w, inp_width); |
|
ystart = max(ystart, 0); |
|
xstart = max(xstart, 0); |
|
float max_val = -FLT_MAX; |
|
int max_index = -1; |
|
|
|
#if CV_SIMD128 |
|
if( xstart > 0 && (x0 + 7) * stride_w - pad_w + kernel_w < inp_width ) |
|
{ |
|
if( compMaxIdx ) |
|
{ |
|
v_float32x4 max_val0 = v_setall_f32(max_val); |
|
v_float32x4 max_val1 = max_val0; |
|
v_float32x4 max_idx0 = v_setall_f32(-1.f); |
|
v_float32x4 max_idx1 = max_idx0; |
|
int index0 = ystart * inp_width + xstart; |
|
v_float32x4 idx0 = idx00 + v_setall_f32((float)index0); |
|
v_float32x4 idx1 = idx0 + v_setall_f32((float)(stride_w*4)); |
|
|
|
for (int y = ystart; y < yend; ++y) |
|
{ |
|
for (int x = xstart; x < xend; ++x, idx0 += ones, idx1 += ones) |
|
{ |
|
const int index = y * inp_width + x; |
|
v_float32x4 v0(srcData[index], srcData[index + stride_w], |
|
srcData[index + stride_w*2], srcData[index + stride_w*3]); |
|
v_float32x4 v1(srcData[index + stride_w*4], srcData[index + stride_w*5], |
|
srcData[index + stride_w*6], srcData[index + stride_w*7]); |
|
max_idx0 = v_select(v0 > max_val0, idx0, max_idx0); |
|
max_idx1 = v_select(v1 > max_val1, idx1, max_idx1); |
|
max_val0 = v_max(max_val0, v0); |
|
max_val1 = v_max(max_val1, v1); |
|
} |
|
idx0 += delta; |
|
idx1 += delta; |
|
} |
|
v_store(dstData, max_val0); |
|
v_store(dstData + 4, max_val1); |
|
v_store(dstMaskData, max_idx0); |
|
v_store(dstMaskData + 4, max_idx1); |
|
ofs += 7; |
|
dstData += 8; |
|
dstMaskData += 8; |
|
x0 += 7; |
|
} |
|
else |
|
{ |
|
v_float32x4 max_val0 = v_setall_f32(max_val); |
|
v_float32x4 max_val1 = max_val0; |
|
|
|
for (int y = ystart; y < yend; ++y) |
|
{ |
|
for (int x = xstart; x < xend; ++x) |
|
{ |
|
const int index = y * inp_width + x; |
|
v_float32x4 v0(srcData[index], srcData[index + stride_w], |
|
srcData[index + stride_w*2], srcData[index + stride_w*3]); |
|
v_float32x4 v1(srcData[index + stride_w*4], srcData[index + stride_w*5], |
|
srcData[index + stride_w*6], srcData[index + stride_w*7]); |
|
max_val0 = v_max(max_val0, v0); |
|
max_val1 = v_max(max_val1, v1); |
|
} |
|
} |
|
v_store(dstData, max_val0); |
|
v_store(dstData + 4, max_val1); |
|
ofs += 7; |
|
dstData += 8; |
|
x0 += 7; |
|
} |
|
} |
|
else |
|
#endif |
|
{ |
|
if( compMaxIdx ) |
|
{ |
|
for (int y = ystart; y < yend; ++y) |
|
for (int x = xstart; x < xend; ++x) |
|
{ |
|
const int index = y * inp_width + x; |
|
float val = srcData[index]; |
|
if (val > max_val) |
|
{ |
|
max_val = val; |
|
max_index = index; |
|
} |
|
} |
|
|
|
*dstData++ = max_val; |
|
*dstMaskData++ = max_index; |
|
} |
|
else |
|
{ |
|
for (int y = ystart; y < yend; ++y) |
|
for (int x = xstart; x < xend; ++x) |
|
{ |
|
const int index = y * inp_width + x; |
|
float val = srcData[index]; |
|
max_val = std::max(max_val, val); |
|
} |
|
|
|
*dstData++ = max_val; |
|
} |
|
} |
|
|
|
if( ++x0 >= width ) |
|
{ |
|
x0 = 0; |
|
if( ++y0 >= height ) |
|
{ |
|
y0 = 0; |
|
if( ++c >= channels ) |
|
{ |
|
c = 0; |
|
if( ++n >= nimgs ) |
|
break; |
|
} |
|
srcData = src_->ptr<float>(n, c); |
|
} |
|
} |
|
} |
|
} |
|
}; |
|
|
|
void maxPooling(Mat &src, Mat &dst, Mat &mask) |
|
{ |
|
const int nstripes = getNumThreads(); |
|
MaxPoolingInvoker mp(src, dst, mask, kernel, stride, pad, nstripes, computeMaxIdx); |
|
parallel_for_(Range(0, nstripes), mp, nstripes); |
|
} |
|
|
|
void avePooling(Mat &src, Mat &dst) |
|
{ |
|
Size inp(src.size[3], src.size[2]), |
|
out(dst.size[3], dst.size[2]); |
|
for (int n = 0; n < src.size[0]; ++n) |
|
{ |
|
for (int c = 0; c < src.size[1]; ++c) |
|
{ |
|
const float *srcData = src.ptr<float>(n, c); |
|
float *dstData = dst.ptr<float>(n, c); |
|
|
|
for (int ph = 0; ph < out.height; ++ph) |
|
{ |
|
for (int pw = 0; pw < out.width; ++pw) |
|
{ |
|
int hstart = ph * stride.height - pad.height; |
|
int wstart = pw * stride.width - pad.width; |
|
int hend = min(hstart + kernel.height, inp.height + pad.height); |
|
int wend = min(wstart + kernel.width, inp.width + pad.width); |
|
int poolSize = (hend - hstart) * (wend - wstart); |
|
hstart = max(hstart, 0); |
|
wstart = max(wstart, 0); |
|
hend = min(hend, inp.height); |
|
wend = min(wend, inp.width); |
|
|
|
dstData[ph * out.width + pw] = 0.f; |
|
|
|
for (int h = hstart; h < hend; ++h) |
|
for (int w = wstart; w < wend; ++w) |
|
dstData[ph * out.width + pw] += srcData[h * inp.width + w]; |
|
|
|
dstData[ph * out.width + pw] /= poolSize; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
virtual Ptr<BackendNode> initMaxPoolingHalide(const std::vector<Ptr<BackendWrapper> > &inputs) |
|
{ |
|
#ifdef HAVE_HALIDE |
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]); |
|
const int inWidth = inputBuffer.width(); |
|
const int inHeight = inputBuffer.height(); |
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n"); |
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name)); |
|
Halide::RDom r(0, kernel.width, 0, kernel.height); |
|
Halide::Expr kx, ky; |
|
if (pad.width || pad.height) |
|
{ |
|
kx = clamp(x * stride.width + r.x - pad.width, 0, inWidth - 1); |
|
ky = clamp(y * stride.height + r.y - pad.height, 0, inHeight - 1); |
|
} |
|
else |
|
{ |
|
kx = min(x * stride.width + r.x, inWidth - 1); |
|
ky = min(y * stride.height + r.y, inHeight - 1); |
|
} |
|
|
|
// Halide::argmax returns tuple (r.x, r.y, max). |
|
Halide::Tuple res = argmax(inputBuffer(kx, ky, c, n)); |
|
|
|
// Compute offset from argmax in range [0, kernel_size). |
|
Halide::Expr max_index; |
|
if (pad.width || pad.height) |
|
{ |
|
max_index = clamp(y * stride.height + res[1] - pad.height, |
|
0, inHeight - 1) * inWidth + |
|
clamp(x * stride.width + res[0] - pad.width, |
|
0, inWidth - 1); |
|
} |
|
else |
|
{ |
|
max_index = min(y * stride.height + res[1], inHeight - 1) * inWidth + |
|
min(x * stride.width + res[0], inWidth - 1); |
|
} |
|
top(x, y, c, n) = { res[2], Halide::cast<float>(max_index) }; |
|
return Ptr<BackendNode>(new HalideBackendNode(top)); |
|
#endif // HAVE_HALIDE |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
virtual Ptr<BackendNode> initAvePoolingHalide(const std::vector<Ptr<BackendWrapper> > &inputs) |
|
{ |
|
#ifdef HAVE_HALIDE |
|
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]); |
|
|
|
const int inW = inputBuffer.width(), inH = inputBuffer.height(); |
|
if ((inW - kernel.width) % stride.width || (inH - kernel.height) % stride.height) |
|
{ |
|
CV_Error(cv::Error::StsNotImplemented, |
|
"Halide backend for average pooling with partial " |
|
"kernels is not implemented"); |
|
} |
|
|
|
const float norm = 1.0f / (kernel.width * kernel.height); |
|
|
|
Halide::Var x("x"), y("y"), c("c"), n("n"); |
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name)); |
|
Halide::RDom r(0, kernel.width, 0, kernel.height); |
|
top(x, y, c, n) = sum( |
|
inputBuffer(x * stride.width + r.x, |
|
y * stride.height + r.y, c, n)) * norm; |
|
return Ptr<BackendNode>(new HalideBackendNode(top)); |
|
#endif // HAVE_HALIDE |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
virtual void applyHalideScheduler(Ptr<BackendNode>& node, |
|
const std::vector<Mat*> &inputs, |
|
const std::vector<Mat> &outputs, |
|
int targetId) const |
|
{ |
|
#ifdef HAVE_HALIDE |
|
if (targetId != DNN_TARGET_CPU) |
|
{ |
|
Layer::applyHalideScheduler(node, inputs, outputs, targetId); |
|
return; |
|
} |
|
Halide::Var x("x"), y("y"), c("c"), n("n"), tile("tile"), |
|
xi("xi"), yi("yi"), ci("ci"), xo("xo"), yo("yo"), co("co"); |
|
Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs.back(); |
|
|
|
int outW, outH, outC, outN; |
|
getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN); |
|
|
|
if (outW < 8 || outH < 8) |
|
{ |
|
if (outC > 8) |
|
top.split(c, co, ci, 8) |
|
.fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile) |
|
.parallel(tile) |
|
.vectorize(ci); |
|
else |
|
{ |
|
top.fuse(y, c, tile).fuse(n, tile, tile) |
|
.parallel(tile); |
|
if (outW > 1) |
|
top.vectorize(x); |
|
} |
|
} |
|
else |
|
{ |
|
if (outC > 8) |
|
top.split(x, xo, xi, 8).split(y, yo, yi, 8).split(c, co, ci, 8) |
|
.fuse(xo, yo, tile).fuse(co, tile, tile).fuse(n, tile, tile) |
|
.parallel(tile) |
|
.vectorize(xi); |
|
else |
|
top.split(x, xo, xi, 8).split(y, yo, yi, 8) |
|
.fuse(xo, yo, tile).fuse(c, tile, tile).fuse(n, tile, tile) |
|
.parallel(tile) |
|
.vectorize(xi); |
|
} |
|
#endif // HAVE_HALIDE |
|
} |
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const |
|
{ |
|
CV_Assert(inputs.size() != 0); |
|
Size in(inputs[0][3], inputs[0][2]), out; |
|
|
|
if (globalPooling) |
|
{ |
|
out.height = 1; |
|
out.width = 1; |
|
} |
|
else if (padMode.empty()) |
|
{ |
|
//Yeah, something strange Caffe scheme-) |
|
out.height = static_cast<int>(ceil(static_cast<float>(in.height + 2 * pad.height - |
|
kernel.height) / stride.height)) + 1; |
|
out.width = static_cast<int>(ceil(static_cast<float>(in.width + 2 * pad.width - |
|
kernel.width) / stride.width)) + 1; |
|
|
|
if (pad.height || pad.width) |
|
{ |
|
// If we have padding, ensure that the last pooling starts strictly |
|
// inside the image (instead of at the padding); otherwise clip the last. |
|
if ((out.height - 1) * stride.height >= in.height + pad.height) |
|
--out.height; |
|
if ((out.width - 1) * stride.width >= in.width + pad.width) |
|
--out.width; |
|
CV_Assert((out.height - 1) * stride.height < in.height + pad.height); |
|
CV_Assert((out.width - 1) * stride.width < in.width + pad.width); |
|
} |
|
} |
|
else |
|
{ |
|
getConvPoolOutParams(in, kernel, stride, |
|
padMode, out); |
|
} |
|
|
|
outputs.resize(type == MAX ? 2 * inputs.size() : inputs.size()); |
|
for (size_t i = 0; i < inputs.size(); i++) |
|
{ |
|
size_t index = type == MAX ? 2*i : i; |
|
int dims[] = {inputs[i][0], inputs[i][1], out.height, out.width}; |
|
outputs[index] = shape(dims); |
|
|
|
if (type == MAX) |
|
outputs[index + 1] = shape(dims); |
|
} |
|
|
|
return false; |
|
} |
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs, |
|
const std::vector<MatShape> &outputs) const |
|
{ |
|
(void)inputs; // suppress unused variable warning |
|
long flops = 0; |
|
|
|
for(int i = 0; i < outputs.size(); i++) |
|
{ |
|
if (type == MAX) |
|
{ |
|
if (i%2 == 0) |
|
flops += total(outputs[i])*kernel.area(); |
|
} |
|
else |
|
{ |
|
flops += total(outputs[i])*(kernel.area() + 1); |
|
} |
|
} |
|
return flops; |
|
} |
|
}; |
|
|
|
Ptr<PoolingLayer> PoolingLayer::create(const LayerParams& params) |
|
{ |
|
return Ptr<PoolingLayer>(new PoolingLayerImpl(params)); |
|
} |
|
|
|
} |
|
}
|
|
|