Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2001 lines
61 KiB
2001 lines
61 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "op_halide.hpp" |
|
#include "halide_scheduler.hpp" |
|
#include <set> |
|
#include <algorithm> |
|
#include <iostream> |
|
#include <sstream> |
|
#include <iterator> |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
|
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
using std::vector; |
|
using std::map; |
|
using std::make_pair; |
|
using std::set; |
|
|
|
namespace |
|
{ |
|
typedef std::vector<MatShape> ShapesVec; |
|
|
|
struct LayerShapes |
|
{ |
|
ShapesVec in, out, internal; |
|
// No guarantees that layer which support in-place computations |
|
// will be computed in-place (input.data_ptr == output.data_ptr). |
|
// If layer said that it could work in-place and layers after it |
|
// no longer use input blob, we'll set output = input. |
|
bool supportInPlace; |
|
LayerShapes() {supportInPlace = false;} |
|
}; |
|
} |
|
|
|
namespace cv |
|
{ |
|
namespace dnn |
|
{ |
|
|
|
template<typename T> |
|
static String toString(const T &v) |
|
{ |
|
std::ostringstream ss; |
|
ss << v; |
|
return ss.str(); |
|
} |
|
|
|
Mat blobFromImage(const Mat& image, double scalefactor, const Size& size, |
|
const Scalar& mean, bool swapRB) |
|
{ |
|
std::vector<Mat> images(1, image); |
|
return blobFromImages(images, scalefactor, size, mean, swapRB); |
|
} |
|
|
|
Mat blobFromImages(const std::vector<Mat>& images_, double scalefactor, Size size, |
|
const Scalar& mean_, bool swapRB) |
|
{ |
|
std::vector<Mat> images = images_; |
|
for (int i = 0; i < images.size(); i++) |
|
{ |
|
Size imgSize = images[i].size(); |
|
if (size == Size()) |
|
size = imgSize; |
|
if (size != imgSize) |
|
{ |
|
float resizeFactor = std::max(size.width / (float)imgSize.width, |
|
size.height / (float)imgSize.height); |
|
resize(images[i], images[i], Size(), resizeFactor, resizeFactor); |
|
Rect crop(Point(0.5 * (images[i].cols - size.width), |
|
0.5 * (images[i].rows - size.height)), |
|
size); |
|
images[i] = images[i](crop); |
|
} |
|
if(images[i].depth() == CV_8U) |
|
images[i].convertTo(images[i], CV_32F); |
|
Scalar mean = mean_; |
|
if (swapRB) |
|
std::swap(mean[0], mean[2]); |
|
|
|
images[i] -= mean; |
|
images[i] *= scalefactor; |
|
} |
|
|
|
size_t i, nimages = images.size(); |
|
if(nimages == 0) |
|
return Mat(); |
|
Mat image0 = images[0]; |
|
int nch = image0.channels(); |
|
CV_Assert(image0.dims == 2); |
|
Mat blob, image; |
|
if (nch == 3 || nch == 4) |
|
{ |
|
int sz[] = { (int)nimages, 3, image0.rows, image0.cols }; |
|
blob = Mat(4, sz, CV_32F); |
|
Mat ch[4]; |
|
|
|
for( i = 0; i < nimages; i++ ) |
|
{ |
|
image = images[i]; |
|
CV_Assert(image.depth() == CV_32F); |
|
nch = image.channels(); |
|
CV_Assert(image.dims == 2 && (nch == 3 || nch == 4)); |
|
CV_Assert(image.size() == image0.size()); |
|
|
|
for( int j = 0; j < 3; j++ ) |
|
ch[j] = Mat(image.rows, image.cols, CV_32F, blob.ptr((int)i, j)); |
|
if(swapRB) |
|
std::swap(ch[0], ch[2]); |
|
split(image, ch); |
|
} |
|
} |
|
else |
|
{ |
|
CV_Assert(nch == 1); |
|
int sz[] = { (int)nimages, 1, image0.rows, image0.cols }; |
|
blob = Mat(4, sz, CV_32F); |
|
|
|
for( i = 0; i < nimages; i++ ) |
|
{ |
|
Mat image = images[i]; |
|
CV_Assert(image.depth() == CV_32F); |
|
nch = image.channels(); |
|
CV_Assert(image.dims == 2 && (nch == 1)); |
|
CV_Assert(image.size() == image0.size()); |
|
|
|
image.copyTo(Mat(image.rows, image.cols, CV_32F, blob.ptr((int)i, 0))); |
|
} |
|
} |
|
return blob; |
|
} |
|
|
|
struct LayerPin |
|
{ |
|
int lid; |
|
int oid; |
|
|
|
LayerPin(int layerId = -1, int outputId = -1) |
|
: lid(layerId), oid(outputId) {} |
|
|
|
bool valid() const |
|
{ |
|
return (lid >= 0 && oid >= 0); |
|
} |
|
|
|
bool equal(const LayerPin &r) const |
|
{ |
|
return (lid == r.lid && oid == r.oid); |
|
} |
|
|
|
bool operator<(const LayerPin &r) const |
|
{ |
|
return lid < r.lid || lid == r.lid && oid < r.oid; |
|
} |
|
|
|
bool operator ==(const LayerPin &r) const |
|
{ |
|
return lid == r.lid && oid == r.oid; |
|
} |
|
}; |
|
|
|
// Objects of this class manages wrappers. For every CPU memory pointer and shape |
|
// one and only wrapper. Now it support wrapping for single backend and target. |
|
class BackendWrapManager |
|
{ |
|
public: |
|
Ptr<BackendWrapper> wrap(const Mat& m, int backendId, int targetId) |
|
{ |
|
CV_Assert(backendId != DNN_BACKEND_DEFAULT); |
|
|
|
std::map<void*, Ptr<BackendWrapper> >::iterator hostsIt; |
|
// Check that the same CPU memory was previously wrapped. |
|
hostsIt = hostWrappers.find(m.data); |
|
if (hostsIt == hostWrappers.end()) |
|
{ |
|
// If not wrapped before. |
|
return (hostWrappers[m.data] = wrapHost(m, backendId, targetId)); |
|
} |
|
else |
|
{ |
|
// Find if wrapper of this host and shape was created before. |
|
std::map<std::pair<void*, MatSize>, Ptr<BackendWrapper> >::iterator it; |
|
std::pair<void*, MatSize> key(m.data, m.size); |
|
it = extraWrappers.find(key); |
|
if (it == extraWrappers.end()) |
|
{ |
|
MatShape shape(m.dims); |
|
for (int i = 0; i < m.dims; ++i) |
|
shape[i] = m.size.p[i]; |
|
return (extraWrappers[key] = wrapUser(hostsIt->second, shape)); |
|
} |
|
else |
|
return it->second; |
|
} |
|
} |
|
|
|
std::vector<Ptr<BackendWrapper> > wrap(const std::vector<Mat*>& mats, |
|
int backendId, int targetId) |
|
{ |
|
const int num = mats.size(); |
|
std::vector<Ptr<BackendWrapper> > dst(num); |
|
for (int i = 0; i < num; ++i) |
|
{ |
|
dst[i] = wrap(*mats[i], backendId, targetId); |
|
} |
|
return dst; |
|
} |
|
|
|
std::vector<Ptr<BackendWrapper> > wrap(const std::vector<Mat>& mats, |
|
int backendId, int targetId) |
|
{ |
|
const int num = mats.size(); |
|
std::vector<Ptr<BackendWrapper> > dst(num); |
|
for (int i = 0; i < num; ++i) |
|
{ |
|
dst[i] = wrap(mats[i], backendId, targetId); |
|
} |
|
return dst; |
|
} |
|
|
|
void reset() |
|
{ |
|
hostWrappers.clear(); |
|
extraWrappers.clear(); |
|
} |
|
|
|
private: |
|
// Backend-specific wrapping function. |
|
Ptr<BackendWrapper> wrapHost(const Mat& m, int backendId, int targetId) |
|
{ |
|
if (backendId == DNN_BACKEND_DEFAULT) |
|
{ |
|
return Ptr<BackendWrapper>(); |
|
} |
|
else if (backendId == DNN_BACKEND_HALIDE) |
|
{ |
|
CV_Assert(haveHalide()); |
|
#ifdef HAVE_HALIDE |
|
return Ptr<BackendWrapper>(new HalideBackendWrapper(targetId, m)); |
|
#endif // HAVE_HALIDE |
|
} |
|
else |
|
{ |
|
CV_Error(Error::StsNotImplemented, "Unknown backend identifier"); |
|
} |
|
return Ptr<BackendWrapper>(); |
|
} |
|
|
|
// Backend-specific wrapping function. |
|
Ptr<BackendWrapper> wrapUser(const Ptr<BackendWrapper>& host, const MatShape& shape) |
|
{ |
|
int backendId = host->backendId; |
|
if (backendId == DNN_BACKEND_DEFAULT) |
|
{ |
|
return Ptr<BackendWrapper>(); |
|
} |
|
else if (backendId == DNN_BACKEND_HALIDE) |
|
{ |
|
CV_Assert(haveHalide()); |
|
#ifdef HAVE_HALIDE |
|
return Ptr<BackendWrapper>(new HalideBackendWrapper(host, shape)); |
|
#endif // HAVE_HALIDE |
|
} |
|
else |
|
{ |
|
CV_Error(Error::StsNotImplemented, "Unknown backend identifier"); |
|
} |
|
return Ptr<BackendWrapper>(); |
|
} |
|
|
|
// Wrappers that initialized for memory hosts (first wrapping of CPU data). |
|
std::map<void*, Ptr<BackendWrapper> > hostWrappers; |
|
// The rest of wrappers. They initialized for non-host cv::Mat. |
|
std::map<std::pair<void*, MatSize>, Ptr<BackendWrapper> > extraWrappers; |
|
}; |
|
|
|
struct LayerData |
|
{ |
|
LayerData() {} |
|
LayerData(int _id, const String &_name, const String &_type, LayerParams &_params) |
|
: id(_id), name(_name), type(_type), params(_params) |
|
{ |
|
//add logging info |
|
params.name = name; |
|
params.type = type; |
|
} |
|
|
|
int id; |
|
String name; |
|
String type; |
|
LayerParams params; |
|
|
|
std::vector<LayerPin> inputBlobsId; |
|
std::set<int> inputLayersId; |
|
std::set<int> requiredOutputs; |
|
std::vector<LayerPin> consumers; |
|
|
|
Ptr<Layer> layerInstance; |
|
std::vector<Mat> outputBlobs; |
|
std::vector<Mat*> inputBlobs; |
|
std::vector<Mat> internals; |
|
// Computation nodes of implemented backends (except DEFAULT). |
|
std::map<int, Ptr<BackendNode> > backendNodes; |
|
// Flag for skip layer computation for specific backend. |
|
std::map<int, bool> skipFlags; |
|
|
|
int flag; |
|
|
|
Ptr<Layer> getLayerInstance() |
|
{ |
|
if (layerInstance) |
|
return layerInstance; |
|
|
|
layerInstance = LayerFactory::createLayerInstance(type, params); |
|
if (!layerInstance) |
|
{ |
|
CV_Error(Error::StsError, "Can't create layer \"" + name + "\" of type \"" + type + "\""); |
|
} |
|
|
|
return layerInstance; |
|
} |
|
}; |
|
|
|
//fake layer containing network input blobs |
|
struct DataLayer : public Layer |
|
{ |
|
void finalize(const std::vector<Mat*>&, std::vector<Mat>&) {} |
|
void forward(std::vector<Mat*>&, std::vector<Mat>&, std::vector<Mat> &) {} |
|
|
|
int outputNameToIndex(String tgtName) |
|
{ |
|
int idx = (int)(std::find(outNames.begin(), outNames.end(), tgtName) - outNames.begin()); |
|
return (idx < (int)outNames.size()) ? idx : -1; |
|
} |
|
|
|
void setNames(const std::vector<String> &names) |
|
{ |
|
outNames.assign(names.begin(), names.end()); |
|
} |
|
|
|
private: |
|
std::vector<String> outNames; |
|
}; |
|
|
|
struct BlobManager |
|
{ |
|
public: |
|
// Increase references counter to layer output. |
|
void addReference(const LayerPin& lp) |
|
{ |
|
std::map<LayerPin, int>::iterator it = refCounter.find(lp); |
|
if (it == refCounter.end()) |
|
refCounter[lp] = 1; |
|
else |
|
it->second += 1; |
|
} |
|
|
|
void addReferences(const std::vector<LayerPin>& pins) |
|
{ |
|
for (int i = 0; i < pins.size(); i++) |
|
{ |
|
addReference(pins[i]); |
|
} |
|
} |
|
|
|
// Returns number of references to allocated memory that used in specific |
|
// layer blob. |
|
int numReferences(const LayerPin& lp) |
|
{ |
|
std::map<LayerPin, LayerPin>::iterator mapIt = reuseMap.find(lp); |
|
CV_Assert(mapIt != reuseMap.end()); |
|
LayerPin memHost = mapIt->second; |
|
|
|
std::map<LayerPin, int>::iterator refIt = refCounter.find(memHost); |
|
CV_Assert(refIt != refCounter.end()); |
|
return refIt->second; |
|
} |
|
|
|
// Reuse data allocated in <host> inside the <user> blob. |
|
void reuse(const LayerPin& host, const LayerPin& user) |
|
{ |
|
CV_Assert(reuseMap.find(user) == reuseMap.end()); |
|
CV_Assert(reuseMap.find(host) != reuseMap.end()); |
|
LayerPin memHost = reuseMap[host]; |
|
reuseMap[user] = memHost; |
|
if (refCounter.find(memHost) != refCounter.end()) |
|
{ |
|
std::map<LayerPin, int>::iterator userRefIt = refCounter.find(user); |
|
if (userRefIt != refCounter.end()) |
|
{ |
|
refCounter[memHost] += userRefIt->second; |
|
refCounter.erase(userRefIt); |
|
} |
|
else |
|
refCounter[memHost] += 1; |
|
} |
|
} |
|
|
|
// Decrease references counter to allocated memory inside specific blob. |
|
void releaseReference(const LayerPin& lp) |
|
{ |
|
std::map<LayerPin, LayerPin>::iterator mapIt = reuseMap.find(lp); |
|
CV_Assert(mapIt != reuseMap.end()); |
|
|
|
std::map<LayerPin, int>::iterator refIt = refCounter.find(mapIt->second); |
|
CV_Assert(refIt != refCounter.end()); |
|
CV_Assert(refIt->second > 0); |
|
refIt->second -= 1; |
|
} |
|
|
|
void releaseReferences(const std::vector<LayerPin>& pins) |
|
{ |
|
for (int i = 0; i < pins.size(); i++) |
|
{ |
|
releaseReference(pins[i]); |
|
} |
|
} |
|
|
|
void reuseOrCreate(const MatShape& shape, const LayerPin& lp, Mat& dst) |
|
{ |
|
std::map<LayerPin, Mat>::iterator hostIt; |
|
std::map<LayerPin, int>::iterator refIt; |
|
|
|
const int targetTotal = total(shape); |
|
Mat bestBlob; |
|
int bestBlobTotal = INT_MAX; |
|
LayerPin bestBlobPin; |
|
for (hostIt = memHosts.begin(); hostIt != memHosts.end(); ++hostIt) |
|
{ |
|
refIt = refCounter.find(hostIt->first); |
|
// Use only blobs that had references before because if not, |
|
// it might be used as output. |
|
if (refIt != refCounter.end() && refIt->second == 0) |
|
{ |
|
Mat& unusedBlob = hostIt->second; |
|
if (unusedBlob.total() >= targetTotal && |
|
unusedBlob.total() < bestBlobTotal) |
|
{ |
|
bestBlobPin = hostIt->first; |
|
bestBlob = unusedBlob; |
|
bestBlobTotal = unusedBlob.total(); |
|
} |
|
} |
|
} |
|
if (!bestBlob.empty()) |
|
{ |
|
reuse(bestBlobPin, lp); |
|
dst = Mat(shape, CV_32F, bestBlob.data); |
|
} |
|
else |
|
{ |
|
// if dst already has been allocated with total(shape) elements, |
|
// it won't be recrreated and pointer of dst.data remains the same. |
|
dst.create(shape, CV_32F); |
|
addHost(lp, dst); |
|
} |
|
} |
|
|
|
void allocateBlobsForLayer(LayerData &ld, const LayerShapes& layerShapes, |
|
std::vector<LayerPin>& pinsForInternalBlobs) |
|
{ |
|
pinsForInternalBlobs.clear(); |
|
|
|
std::vector<Mat>& outputBlobs = ld.outputBlobs, |
|
&internalBlobs = ld.internals; |
|
|
|
const ShapesVec& outShapes = layerShapes.out, |
|
internalShapes = layerShapes.internal; |
|
|
|
outputBlobs.resize(std::max((size_t)1, outShapes.size())); //layer produce at least one output blob |
|
internalBlobs.resize(internalShapes.size()); |
|
|
|
CV_Assert(ld.requiredOutputs.size() <= outShapes.size()); |
|
|
|
// Check that layer could work in-place. |
|
bool inPlace = false; |
|
if (layerShapes.supportInPlace) |
|
{ |
|
if (ld.inputBlobs.size() == 1) |
|
{ |
|
// Get number of references to the input memory. |
|
int numRef = numReferences(ld.inputBlobsId[0]); |
|
// If current layer is one and only customer of this blob. |
|
inPlace = numRef == 1; |
|
} |
|
} |
|
|
|
ShapesVec shapes(outShapes); |
|
shapes.insert(shapes.end(), internalShapes.begin(), internalShapes.end()); |
|
std::vector<Mat*> blobs; |
|
for(int i = 0; i < outputBlobs.size(); i++) |
|
{ |
|
blobs.push_back(&outputBlobs[i]); |
|
} |
|
|
|
for(int i = 0; i < internalBlobs.size(); i++) |
|
{ |
|
blobs.push_back(&internalBlobs[i]); |
|
if (total(internalShapes[i])) |
|
{ |
|
pinsForInternalBlobs.push_back(LayerPin(ld.id, ld.outputBlobs.size() + i)); |
|
} |
|
} |
|
|
|
addReferences(pinsForInternalBlobs); |
|
|
|
std::map<int, std::vector<int> > idxSizes; |
|
for(int i = 0; i < shapes.size(); i++) |
|
{ |
|
idxSizes[total(shapes[i])].push_back(i); |
|
} |
|
|
|
std::map<int, std::vector<int> >::reverse_iterator it; |
|
for(it = idxSizes.rbegin(); it != idxSizes.rend(); it++) |
|
{ |
|
for(int j = 0; j < it->second.size(); j++) |
|
{ |
|
int index = it->second[j]; |
|
if (total(shapes[index])) |
|
{ |
|
LayerPin blobPin(ld.id, index); |
|
if (index < outShapes.size() && inPlace) |
|
{ |
|
CV_Assert(ld.inputBlobs[0]->total() == total(shapes[index])); |
|
ld.outputBlobs[index] = ld.inputBlobs[0]->reshape(1, shapes[index]); |
|
reuse(ld.inputBlobsId[0], blobPin); |
|
} |
|
else |
|
{ |
|
reuseOrCreate(shapes[index], blobPin, *blobs[index]); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Clear internal state. Calls before an every reallocation. |
|
void reset() |
|
{ |
|
refCounter.clear(); |
|
reuseMap.clear(); |
|
memHosts.clear(); |
|
} |
|
|
|
private: |
|
// Register allocated memory. |
|
void addHost(const LayerPin& lp, const Mat& mat) |
|
{ |
|
CV_Assert(memHosts.find(lp) == memHosts.end()); |
|
reuseMap[lp] = lp; |
|
memHosts[lp] = mat; |
|
} |
|
|
|
std::map<LayerPin, int> refCounter; |
|
// Maps pin to origin blob (for whom memory was allocated firstly). |
|
// For origin blobs key == value. |
|
std::map<LayerPin, LayerPin> reuseMap; |
|
std::map<LayerPin, Mat> memHosts; |
|
}; |
|
|
|
struct Net::Impl |
|
{ |
|
typedef std::map<int, LayerShapes> LayersShapesMap; |
|
typedef std::map<int, LayerData> MapIdToLayerData; |
|
|
|
Impl() |
|
{ |
|
//allocate fake net input layer |
|
netInputLayer = Ptr<DataLayer>(new DataLayer()); |
|
LayerData &inpl = layers.insert( make_pair(0, LayerData()) ).first->second; |
|
inpl.id = 0; |
|
inpl.name = "_input"; |
|
inpl.type = "__NetInputLayer__"; |
|
inpl.layerInstance = netInputLayer; |
|
layerNameToId.insert(std::make_pair(inpl.name, inpl.id)); |
|
|
|
lastLayerId = 1; |
|
netWasAllocated = false; |
|
preferableBackend = DNN_BACKEND_DEFAULT; |
|
preferableTarget = DNN_TARGET_CPU; |
|
} |
|
|
|
Ptr<DataLayer> netInputLayer; |
|
std::vector<int> netOutputs; |
|
std::vector<LayerPin> blobsToKeep; |
|
MapIdToLayerData layers; |
|
std::map<String, int> layerNameToId; |
|
BlobManager blobManager; |
|
int preferableBackend; |
|
int preferableTarget; |
|
String halideConfigFile; |
|
// Backend-specific wrapping manager. |
|
BackendWrapManager backendWrapper; |
|
|
|
int lastLayerId; |
|
|
|
bool netWasAllocated; |
|
|
|
void compileHalide() |
|
{ |
|
CV_Assert(preferableBackend == DNN_BACKEND_HALIDE); |
|
|
|
HalideScheduler scheduler(halideConfigFile); |
|
MapIdToLayerData::iterator it; |
|
for (it = layers.begin(); it != layers.end(); ++it) |
|
{ |
|
LayerData &ld = it->second; |
|
Ptr<Layer> layer = ld.layerInstance; |
|
if (layer->supportBackend(DNN_BACKEND_HALIDE) && !ld.skipFlags[DNN_BACKEND_HALIDE]) |
|
{ |
|
CV_Assert(!ld.backendNodes[DNN_BACKEND_HALIDE].empty()); |
|
bool scheduled = scheduler.process(ld.backendNodes[DNN_BACKEND_HALIDE]); |
|
if (!scheduled) |
|
{ |
|
// Use automatic scheduling provided by layer. |
|
layer->applyHalideScheduler(ld.backendNodes[DNN_BACKEND_HALIDE], |
|
ld.inputBlobs, ld.outputBlobs, |
|
preferableTarget); |
|
} |
|
dnn::compileHalide(ld.outputBlobs, ld.backendNodes[DNN_BACKEND_HALIDE], |
|
preferableTarget); |
|
} |
|
} |
|
} |
|
|
|
void clear() |
|
{ |
|
MapIdToLayerData::iterator it; |
|
for (it = layers.begin(); it != layers.end(); it++) |
|
{ |
|
if (it->second.id != 0) { |
|
it->second.outputBlobs.clear(); |
|
it->second.internals.clear(); |
|
} |
|
it->second.skipFlags.clear(); |
|
it->second.consumers.clear(); |
|
Ptr<ConvolutionLayer> convLayer = it->second.layerInstance.dynamicCast<ConvolutionLayer>(); |
|
|
|
if( !convLayer.empty() ) |
|
{ |
|
convLayer->setActivation(Ptr<ActivationLayer>()); |
|
convLayer->setBatchNorm(Ptr<BatchNormLayer>()); |
|
} |
|
|
|
Ptr<PoolingLayer> poolingLayer = it->second.layerInstance.dynamicCast<PoolingLayer>(); |
|
if( !poolingLayer.empty() ) |
|
{ |
|
poolingLayer->computeMaxIdx = true; |
|
} |
|
} |
|
} |
|
|
|
|
|
void setUpNet(const std::vector<LayerPin>& blobsToKeep_ = std::vector<LayerPin>()) |
|
{ |
|
if (!netWasAllocated || this->blobsToKeep != blobsToKeep_) |
|
{ |
|
clear(); |
|
|
|
allocateLayers(blobsToKeep_); |
|
computeNetOutputLayers(); |
|
initBackend(); |
|
|
|
if (!netWasAllocated ) |
|
{ |
|
// If user didn't call compileHalide() between |
|
// setPreferableBackend(DNN_BACKEND_HALIDE) and forward(). |
|
if (preferableBackend == DNN_BACKEND_HALIDE) |
|
compileHalide(); |
|
} |
|
|
|
netWasAllocated = true; |
|
this->blobsToKeep = blobsToKeep_; |
|
} |
|
} |
|
|
|
int getLayerId(const String &layerName) |
|
{ |
|
std::map<String, int>::iterator it = layerNameToId.find(layerName); |
|
return (it != layerNameToId.end()) ? it->second : -1; |
|
} |
|
|
|
int getLayerId(int id) |
|
{ |
|
MapIdToLayerData::iterator it = layers.find(id); |
|
return (it != layers.end()) ? id : -1; |
|
} |
|
|
|
int getLayerId(DictValue &layerDesc) |
|
{ |
|
if (layerDesc.isInt()) |
|
return getLayerId(layerDesc.get<int>()); |
|
else if (layerDesc.isString()) |
|
return getLayerId(layerDesc.get<String>()); |
|
|
|
CV_Assert(layerDesc.isInt() || layerDesc.isString()); |
|
return -1; |
|
} |
|
|
|
String getLayerName(int id) |
|
{ |
|
MapIdToLayerData::iterator it = layers.find(id); |
|
return (it != layers.end()) ? it->second.name : "(unknown layer)"; |
|
} |
|
|
|
LayerData& getLayerData(int id) |
|
{ |
|
MapIdToLayerData::iterator it = layers.find(id); |
|
|
|
if (it == layers.end()) |
|
CV_Error(Error::StsObjectNotFound, format("Layer with requested id=%d not found", id)); |
|
|
|
return it->second; |
|
} |
|
|
|
LayerData& getLayerData(const String &layerName) |
|
{ |
|
int id = getLayerId(layerName); |
|
|
|
if (id < 0) |
|
CV_Error(Error::StsError, "Requsted layer \"" + layerName + "\" not found"); |
|
|
|
return getLayerData(id); |
|
} |
|
|
|
LayerData& getLayerData(const DictValue &layerDesc) |
|
{ |
|
if (layerDesc.isInt()) |
|
return getLayerData(layerDesc.get<int>()); |
|
else if (layerDesc.isString()) |
|
return getLayerData(layerDesc.get<String>()); |
|
|
|
CV_Assert(layerDesc.isInt() || layerDesc.isString()); |
|
return *((LayerData*)NULL); |
|
} |
|
|
|
static void addLayerInput(LayerData &ld, int inNum, LayerPin from) |
|
{ |
|
if ((int)ld.inputBlobsId.size() <= inNum) |
|
{ |
|
ld.inputBlobsId.resize(inNum + 1); |
|
} |
|
else |
|
{ |
|
LayerPin storedFrom = ld.inputBlobsId[inNum]; |
|
if (storedFrom.valid() && !storedFrom.equal(from)) |
|
CV_Error(Error::StsError, "Input #" + toString(inNum) + "of layer \"" + ld.name + "\" already was connected"); |
|
} |
|
|
|
ld.inputBlobsId[inNum] = from; |
|
} |
|
|
|
static void splitPin(const String &pinAlias, String &layerName, String &outName) |
|
{ |
|
size_t delimPos = pinAlias.find('.'); |
|
layerName = pinAlias.substr(0, delimPos); |
|
outName = (delimPos == String::npos) ? String() : pinAlias.substr(delimPos + 1); |
|
} |
|
|
|
int resolvePinOutputName(LayerData &ld, const String &outName) |
|
{ |
|
if (outName.empty()) |
|
return 0; |
|
|
|
if (std::isdigit(outName[0])) |
|
{ |
|
char *lastChar; |
|
long inum = std::strtol(outName.c_str(), &lastChar, 10); |
|
|
|
if (*lastChar == 0) |
|
{ |
|
CV_Assert(inum == (int)inum); |
|
return (int)inum; |
|
} |
|
} |
|
|
|
return ld.getLayerInstance()->outputNameToIndex(outName); |
|
} |
|
|
|
LayerPin getPinByAlias(const String &pinAlias) |
|
{ |
|
LayerPin pin; |
|
String layerName, outName; |
|
splitPin(pinAlias, layerName, outName); |
|
|
|
pin.lid = (layerName.empty()) ? 0 : getLayerId(layerName); |
|
|
|
if (pin.lid >= 0) |
|
pin.oid = resolvePinOutputName(getLayerData(pin.lid), outName); |
|
|
|
return pin; |
|
} |
|
|
|
std::vector<LayerPin> getLayerOutPins(const String &pinAlias) |
|
{ |
|
String layerName, outName; |
|
splitPin(pinAlias, layerName, outName); |
|
|
|
int lid = (layerName.empty()) ? 0 : getLayerId(layerName); |
|
|
|
std::vector<LayerPin> pins; |
|
|
|
for (int i = 0; i < layers[lid].outputBlobs.size(); i++) |
|
{ |
|
pins.push_back(LayerPin(lid, i)); |
|
} |
|
|
|
return pins; |
|
} |
|
|
|
void connect(int outLayerId, int outNum, int inLayerId, int inNum) |
|
{ |
|
CV_Assert(outLayerId < inLayerId); |
|
LayerData &ldOut = getLayerData(outLayerId); |
|
LayerData &ldInp = getLayerData(inLayerId); |
|
|
|
addLayerInput(ldInp, inNum, LayerPin(outLayerId, outNum)); |
|
ldOut.requiredOutputs.insert(outNum); |
|
ldOut.consumers.push_back(LayerPin(inLayerId, outNum)); |
|
} |
|
|
|
void computeNetOutputLayers() |
|
{ |
|
netOutputs.clear(); |
|
|
|
MapIdToLayerData::iterator it; |
|
for (it = layers.begin(); it != layers.end(); it++) |
|
{ |
|
int lid = it->first; |
|
LayerData &ld = it->second; |
|
|
|
if (ld.requiredOutputs.size() == 0) |
|
netOutputs.push_back(lid); |
|
} |
|
|
|
#ifndef NDEBUG |
|
std::cout << "\nNet Outputs(" << netOutputs.size() << "):\n"; |
|
for (size_t i = 0; i < netOutputs.size(); i++) |
|
std::cout << layers[netOutputs[i]].name << "\n"; |
|
#endif |
|
} |
|
|
|
void initBackend() |
|
{ |
|
backendWrapper.reset(); |
|
if (preferableBackend == DNN_BACKEND_DEFAULT) |
|
{ |
|
CV_Assert(preferableTarget == DNN_TARGET_CPU); |
|
return; |
|
} |
|
|
|
// Iterator to current layer. |
|
MapIdToLayerData::iterator it = layers.begin(); |
|
// Iterator to base layer for fusion. In example, in case of conv+bn+relu |
|
// it'll be a conv layer. |
|
MapIdToLayerData::iterator baseIt = layers.begin(); |
|
for (; it != layers.end(); it++) |
|
{ |
|
LayerData &ldTop = it->second; |
|
Ptr<Layer> layerTop = ldTop.layerInstance; |
|
if (!layerTop->supportBackend(preferableBackend)) |
|
{ |
|
// Move base iterator to layer that don't support preferable |
|
// backend to prevent fusion over layer of different backend. |
|
baseIt = it; |
|
continue; |
|
} |
|
// Try to do layers fusion. |
|
LayerData &ldBot = baseIt->second; |
|
Ptr<Layer> layerBot = ldBot.layerInstance; |
|
// 1. Check that bottom and top from the same backends. |
|
if (it != layers.begin() && layerBot->supportBackend(preferableBackend)) |
|
{ |
|
// 2. Check that current layer works in-place. |
|
bool inPlace = ldTop.inputBlobs.size() == 1 && |
|
ldBot.outputBlobs.size() == 1 && |
|
ldTop.inputBlobs[0]->data == |
|
ldBot.outputBlobs[0].data; |
|
if (inPlace) |
|
{ |
|
// 3. Try to attach node. |
|
CV_Assert(!ldBot.backendNodes[preferableBackend].empty()); |
|
Ptr<BackendNode> fusedNode = |
|
layerTop->tryAttach(ldBot.backendNodes[preferableBackend]); |
|
if (!fusedNode.empty()) |
|
{ |
|
ldTop.skipFlags[preferableBackend] = true; |
|
ldBot.backendNodes[preferableBackend] = fusedNode; |
|
continue; |
|
} |
|
} |
|
} |
|
// No layers fusion. |
|
ldTop.skipFlags[preferableBackend] = false; |
|
std::vector<Ptr<BackendWrapper> > inputs = |
|
backendWrapper.wrap(ldTop.inputBlobs, preferableBackend, |
|
preferableTarget); |
|
if (preferableBackend == DNN_BACKEND_HALIDE) |
|
{ |
|
ldTop.backendNodes[DNN_BACKEND_HALIDE] = layerTop->initHalide(inputs); |
|
baseIt = it; |
|
} |
|
else |
|
{ |
|
CV_Error(Error::StsNotImplemented, "Unknown backend identifier"); |
|
} |
|
} |
|
} |
|
|
|
#define CV_RETHROW_ERROR(err, newmsg)\ |
|
cv::error(err.code, newmsg, err.func.c_str(), err.file.c_str(), err.line) |
|
|
|
void allocateLayer(int lid, const LayersShapesMap& layersShapes) |
|
{ |
|
LayerData &ld = layers[lid]; |
|
|
|
//already allocated |
|
if (ld.flag) |
|
return; |
|
|
|
size_t ninputs = ld.inputBlobsId.size(); |
|
#if 0 |
|
printf("layer %s:", ld.name.c_str()); |
|
for (size_t i = 0; i < ninputs; i++) |
|
{ |
|
int inp_lid = ld.inputBlobsId[i].lid; |
|
LayerData &inp_ld = layers[inp_lid]; |
|
int inp_outputs = (int)inp_ld.outputBlobs.size(); |
|
std::cout << " " << inp_ld.name << "(" << inp_outputs; |
|
|
|
for( int j = 0; j < inp_outputs; j++ ) |
|
{ |
|
std::cout << (j == 0 ? ": " : ", ") << inp_ld.outputBlobs[j].size; |
|
} |
|
std::cout << ")"; |
|
} |
|
printf("\n"); |
|
#endif |
|
|
|
//determine parent layers |
|
for (size_t i = 0; i < ninputs; i++) |
|
ld.inputLayersId.insert(ld.inputBlobsId[i].lid); |
|
|
|
//allocate parents |
|
for (set<int>::iterator i = ld.inputLayersId.begin(); i != ld.inputLayersId.end(); i++) |
|
allocateLayer(*i, layersShapes); |
|
|
|
//bind inputs |
|
ld.inputBlobs.resize(ninputs); |
|
for (size_t i = 0; i < ninputs; i++) |
|
{ |
|
LayerPin from = ld.inputBlobsId[i]; |
|
CV_Assert(from.valid()); |
|
CV_DbgAssert(layers.count(from.lid) && (int)layers[from.lid].outputBlobs.size() > from.oid); |
|
ld.inputBlobs[i] = &layers[from.lid].outputBlobs[from.oid]; |
|
} |
|
|
|
LayersShapesMap::const_iterator layerShapesIt = layersShapes.find(lid); |
|
|
|
CV_Assert(layerShapesIt != layersShapes.end()); |
|
|
|
std::vector<LayerPin> pinsForInternalBlobs; |
|
blobManager.allocateBlobsForLayer(ld, layerShapesIt->second, pinsForInternalBlobs); |
|
|
|
Ptr<Layer> layerPtr = ld.getLayerInstance(); |
|
{ |
|
layerPtr->finalize(ld.inputBlobs, ld.outputBlobs); |
|
#if 0 |
|
std::cout << "\toutputs:"; |
|
size_t noutputs = ld.outputBlobs.size(); |
|
for (size_t j = 0; j < noutputs; j++) |
|
{ |
|
std::cout << (j == 0 ? " " : ", ") << ld.outputBlobs[j].size; |
|
} |
|
std::cout << "\n"; |
|
#endif |
|
} |
|
|
|
// After allocation of layer, we decrease counters to it's input blobs. |
|
blobManager.releaseReferences(ld.inputBlobsId); |
|
blobManager.releaseReferences(pinsForInternalBlobs); |
|
|
|
ld.flag = 1; |
|
} |
|
|
|
void fuseLayers(const std::vector<LayerPin>& blobsToKeep_) |
|
{ |
|
// scan through all the layers. If there is convolution layer followed by the activation layer, |
|
// we try to embed this activation into the convolution and disable separate execution of the activation |
|
std::vector<String> outnames; |
|
std::set<LayerPin> pinsToKeep(blobsToKeep_.begin(), |
|
blobsToKeep_.end()); |
|
MapIdToLayerData::iterator it; |
|
for (it = layers.begin(); it != layers.end(); it++) |
|
{ |
|
int lid = it->first; |
|
LayerData& ld = layers[lid]; |
|
if( ld.skipFlags[DNN_BACKEND_DEFAULT] ) |
|
{ |
|
continue; |
|
} |
|
if( ld.consumers.size() == 0 ) |
|
outnames.push_back(ld.layerInstance->name); |
|
Ptr<ConvolutionLayer> convLayer = ld.layerInstance.dynamicCast<ConvolutionLayer>(); |
|
LayerPin lp(lid, 0); |
|
if( !convLayer.empty() && ld.consumers.size() == 1 && |
|
pinsToKeep.count(lp) == 0 ) |
|
{ |
|
LayerData* nextData = &layers[ld.consumers[0].lid]; |
|
Ptr<BatchNormLayer> nextBNormLayer = |
|
nextData->layerInstance.dynamicCast<BatchNormLayer>(); |
|
LayerPin lpNext(ld.consumers[0].lid, 0); |
|
if( !nextBNormLayer.empty() && pinsToKeep.count(lpNext) == 0 ) |
|
{ |
|
LayerData* bnormData = nextData; |
|
nextData = 0; |
|
if( convLayer->setBatchNorm(nextBNormLayer) ) |
|
{ |
|
bnormData->skipFlags[DNN_BACKEND_DEFAULT] = true; |
|
ld.outputBlobs = layers[lpNext.lid].outputBlobs; |
|
if( bnormData->consumers.size() == 1 ) |
|
nextData = &layers[bnormData->consumers[0].lid]; |
|
} |
|
} |
|
|
|
Ptr<ActivationLayer> nextActivLayer; |
|
if( nextData ) |
|
nextActivLayer = nextData->layerInstance.dynamicCast<ActivationLayer>(); |
|
|
|
if( !nextActivLayer.empty() && convLayer->setActivation(nextActivLayer) ) |
|
{ |
|
nextData->skipFlags[DNN_BACKEND_DEFAULT] = true; |
|
ld.outputBlobs = layers[lpNext.lid].outputBlobs; |
|
} |
|
} |
|
Ptr<PoolingLayer> poolingLayer = ld.layerInstance.dynamicCast<PoolingLayer>(); |
|
if( !poolingLayer.empty() && !ld.consumers.empty() ) |
|
{ |
|
size_t i = 0, nconsumers = ld.consumers.size(); |
|
for( ; i < nconsumers; i++ ) |
|
if( ld.consumers[i].oid > 0 ) |
|
break; |
|
// if there is no layer that takes the second output pin of the pooling layer |
|
// on input then we don't need to compute the indices |
|
if( i >= nconsumers ) |
|
poolingLayer->computeMaxIdx = false; |
|
} |
|
} |
|
} |
|
|
|
void allocateLayers(const std::vector<LayerPin>& blobsToKeep_) |
|
{ |
|
MapIdToLayerData::iterator it; |
|
for (it = layers.begin(); it != layers.end(); it++) |
|
it->second.flag = 0; |
|
|
|
CV_Assert(!layers[0].outputBlobs.empty()); |
|
ShapesVec inputShapes; |
|
for(int i = 0; i < layers[0].outputBlobs.size(); i++) |
|
{ |
|
CV_Assert(layers[0].outputBlobs[i].total()); |
|
inputShapes.push_back(shape(layers[0].outputBlobs[i])); |
|
} |
|
LayersShapesMap layersShapes; |
|
getLayersShapes(inputShapes, layersShapes); |
|
|
|
blobManager.reset(); |
|
for (it = layers.begin(); it != layers.end(); ++it) |
|
{ |
|
const LayerData& ld = it->second; |
|
blobManager.addReferences(ld.inputBlobsId); |
|
} |
|
|
|
for (int i = 0; i < blobsToKeep_.size(); i++) |
|
{ |
|
blobManager.addReference(blobsToKeep_[i]); |
|
} |
|
|
|
for (it = layers.begin(); it != layers.end(); it++) |
|
{ |
|
int lid = it->first; |
|
allocateLayer(lid, layersShapes); |
|
} |
|
|
|
fuseLayers(blobsToKeep_); |
|
} |
|
|
|
void forwardLayer(LayerData &ld) |
|
{ |
|
Ptr<Layer> layer = ld.layerInstance; |
|
|
|
if (preferableBackend == DNN_BACKEND_DEFAULT || |
|
!layer->supportBackend(preferableBackend)) |
|
{ |
|
if( !ld.skipFlags[DNN_BACKEND_DEFAULT] ) |
|
layer->forward(ld.inputBlobs, ld.outputBlobs, ld.internals); |
|
} |
|
else if (!ld.skipFlags[preferableBackend]) |
|
{ |
|
std::vector<Ptr<BackendWrapper> > outputs = |
|
backendWrapper.wrap(ld.outputBlobs, preferableBackend, preferableTarget); |
|
Ptr<BackendNode> node = ld.backendNodes[preferableBackend]; |
|
if (preferableBackend == DNN_BACKEND_HALIDE) |
|
{ |
|
forwardHalide(outputs, node); |
|
} |
|
else |
|
{ |
|
CV_Error(Error::StsNotImplemented, "Unknown backend identifier"); |
|
} |
|
} |
|
|
|
ld.flag = 1; |
|
} |
|
|
|
void forwardToLayer(LayerData &ld, bool clearFlags = true) |
|
{ |
|
if (clearFlags) |
|
{ |
|
MapIdToLayerData::iterator it; |
|
for (it = layers.begin(); it != layers.end(); it++) |
|
it->second.flag = 0; |
|
} |
|
|
|
//already was forwarded |
|
if (ld.flag) |
|
return; |
|
|
|
//forward parents |
|
MapIdToLayerData::iterator it; |
|
for (it = layers.begin(); it->second.id < ld.id; it++) |
|
{ |
|
LayerData &ld = it->second; |
|
if (ld.flag) |
|
continue; |
|
forwardLayer(ld); |
|
} |
|
|
|
//forward itself |
|
forwardLayer(ld); |
|
} |
|
|
|
void forwardAll() |
|
{ |
|
forwardToLayer(layers.rbegin()->second, true); |
|
} |
|
|
|
void getLayerShapesRecursively(int id, LayersShapesMap& inOutShapes) |
|
{ |
|
std::vector<LayerPin>& inputLayerIds = layers[id].inputBlobsId; |
|
|
|
if (inOutShapes[id].in.empty()) |
|
{ |
|
for(int i = 0; i < inputLayerIds.size(); i++) |
|
{ |
|
int layerId = inputLayerIds[i].lid; |
|
LayersShapesMap::iterator it = |
|
inOutShapes.find(layerId); |
|
if(it == inOutShapes.end() || |
|
it->second.out.empty()) |
|
{ |
|
getLayerShapesRecursively(layerId, inOutShapes); |
|
} |
|
const MatShape& shape = inOutShapes[layerId].out[inputLayerIds[i].oid]; |
|
inOutShapes[id].in.push_back(shape); |
|
} |
|
} |
|
const ShapesVec& is = inOutShapes[id].in; |
|
ShapesVec& os = inOutShapes[id].out; |
|
ShapesVec& ints = inOutShapes[id].internal; |
|
int requiredOutputs = layers[id].requiredOutputs.size(); |
|
inOutShapes[id].supportInPlace = |
|
layers[id].getLayerInstance()->getMemoryShapes(is, requiredOutputs, os, ints); |
|
} |
|
|
|
void getLayersShapes(const ShapesVec& netInputShapes, |
|
LayersShapesMap& inOutShapes) |
|
{ |
|
inOutShapes.clear(); |
|
|
|
inOutShapes[0].in = netInputShapes; //insert shape for first input layer |
|
for (MapIdToLayerData::iterator it = layers.begin(); |
|
it != layers.end(); it++) |
|
{ |
|
getLayerShapesRecursively(it->first, inOutShapes); |
|
} |
|
} |
|
|
|
void getLayerShapes(const ShapesVec& netInputShapes, |
|
const int layerId, |
|
LayerShapes& shapes) |
|
{ |
|
LayersShapesMap inOutShapes; |
|
inOutShapes[0].in = netInputShapes; //insert shape for first input layer |
|
getLayerShapesRecursively(layerId, inOutShapes); |
|
shapes = inOutShapes[layerId]; |
|
} |
|
|
|
LayerPin getLatestLayerPin(const std::vector<LayerPin>& pins) |
|
{ |
|
return *std::max_element(pins.begin(), pins.end()); |
|
} |
|
|
|
Mat getBlob(const LayerPin& pin) |
|
{ |
|
if (!pin.valid()) |
|
CV_Error(Error::StsObjectNotFound, "Requested blob not found"); |
|
|
|
LayerData &ld = layers[pin.lid]; |
|
if ((size_t)pin.oid >= ld.outputBlobs.size()) |
|
{ |
|
CV_Error(Error::StsOutOfRange, "Layer \"" + ld.name + "\" produce only " + toString(ld.outputBlobs.size()) + |
|
" outputs, the #" + toString(pin.oid) + " was requsted"); |
|
} |
|
if (preferableBackend != DNN_BACKEND_DEFAULT) |
|
{ |
|
// Transfer data to CPU if it's require. |
|
backendWrapper.wrap(ld.outputBlobs[pin.oid], preferableBackend, |
|
preferableTarget)->copyToHost(); |
|
} |
|
else |
|
{ |
|
CV_Assert(preferableTarget == DNN_TARGET_CPU); |
|
} |
|
return ld.outputBlobs[pin.oid]; |
|
} |
|
|
|
Mat getBlob(String outputName) |
|
{ |
|
return getBlob(getPinByAlias(outputName)); |
|
} |
|
}; |
|
|
|
Net::Net() : impl(new Net::Impl) |
|
{ |
|
} |
|
|
|
Net::~Net() |
|
{ |
|
} |
|
|
|
int Net::addLayer(const String &name, const String &type, LayerParams ¶ms) |
|
{ |
|
if (name.find('.') != String::npos) |
|
{ |
|
CV_Error(Error::StsBadArg, "Added layer name \"" + name + "\" must not contain dot symbol"); |
|
return -1; |
|
} |
|
|
|
if (impl->getLayerId(name) >= 0) |
|
{ |
|
CV_Error(Error::StsBadArg, "Layer \"" + name + "\" already into net"); |
|
return -1; |
|
} |
|
|
|
int id = ++impl->lastLayerId; |
|
impl->layerNameToId.insert(std::make_pair(name, id)); |
|
impl->layers.insert(std::make_pair(id, LayerData(id, name, type, params))); |
|
|
|
return id; |
|
} |
|
|
|
int Net::addLayerToPrev(const String &name, const String &type, LayerParams ¶ms) |
|
{ |
|
int prvLid = impl->lastLayerId; |
|
int newLid = this->addLayer(name, type, params); |
|
this->connect(prvLid, 0, newLid, 0); |
|
return newLid; |
|
} |
|
|
|
void Net::connect(int outLayerId, int outNum, int inpLayerId, int inpNum) |
|
{ |
|
impl->connect(outLayerId, outNum, inpLayerId, inpNum); |
|
} |
|
|
|
void Net::connect(String _outPin, String _inPin) |
|
{ |
|
LayerPin outPin = impl->getPinByAlias(_outPin); |
|
LayerPin inpPin = impl->getPinByAlias(_inPin); |
|
|
|
CV_Assert(outPin.valid() && inpPin.valid()); |
|
|
|
impl->connect(outPin.lid, outPin.oid, inpPin.lid, inpPin.oid); |
|
} |
|
|
|
Mat Net::forward(const String& outputName) |
|
{ |
|
String layerName = outputName; |
|
|
|
if (layerName.empty()) |
|
layerName = getLayerNames().back(); |
|
|
|
impl->setUpNet(); |
|
impl->forwardToLayer(impl->getLayerData(layerName)); |
|
|
|
return impl->getBlob(layerName); |
|
} |
|
|
|
void Net::forward(std::vector<Mat>& outputBlobs, const String& outputName) |
|
{ |
|
impl->setUpNet(); |
|
|
|
String layerName = outputName; |
|
|
|
if (layerName.empty()) |
|
layerName = getLayerNames().back(); |
|
|
|
impl->forwardToLayer(impl->getLayerData(layerName)); |
|
|
|
LayerPin pin = impl->getPinByAlias(layerName); |
|
LayerData &ld = impl->layers[pin.lid]; |
|
outputBlobs = ld.outputBlobs; |
|
} |
|
|
|
void Net::forward(std::vector<Mat>& outputBlobs, |
|
const std::vector<String>& outBlobNames) |
|
{ |
|
std::vector<LayerPin> pins; |
|
for (int i = 0; i < outBlobNames.size(); i++) |
|
{ |
|
pins.push_back(impl->getPinByAlias(outBlobNames[i])); |
|
} |
|
|
|
impl->setUpNet(pins); |
|
|
|
LayerPin out = impl->getLatestLayerPin(pins); |
|
|
|
impl->forwardToLayer(impl->getLayerData(out.lid)); |
|
|
|
outputBlobs.clear(); |
|
for (int i = 0; i < pins.size(); i++) |
|
{ |
|
outputBlobs.push_back(impl->getBlob(pins[i])); |
|
} |
|
} |
|
|
|
void Net::forward(std::vector<std::vector<Mat> >& outputBlobs, |
|
const std::vector<String>& outBlobNames) |
|
{ |
|
std::vector<LayerPin> pins; |
|
for (int i = 0; i < outBlobNames.size(); i++) |
|
{ |
|
std::vector<LayerPin> lp = impl->getLayerOutPins(outBlobNames[i]); |
|
pins.insert(pins.end(), lp.begin(), lp.end()); |
|
} |
|
|
|
impl->setUpNet(pins); |
|
|
|
LayerPin out = impl->getLatestLayerPin(pins); |
|
|
|
impl->forwardToLayer(impl->getLayerData(out.lid)); |
|
|
|
outputBlobs.resize(outBlobNames.size()); |
|
for (int i = 0; i < outBlobNames.size(); i++) |
|
{ |
|
std::vector<LayerPin> lp = impl->getLayerOutPins(outBlobNames[i]); |
|
for (int i = 0; i < lp.size(); i++) |
|
{ |
|
outputBlobs[i].push_back(impl->getBlob(lp[i])); |
|
} |
|
} |
|
} |
|
|
|
void Net::setPreferableBackend(int backendId) |
|
{ |
|
impl->netWasAllocated = impl->netWasAllocated && |
|
impl->preferableBackend == backendId; |
|
impl->preferableBackend = backendId; |
|
} |
|
|
|
void Net::setPreferableTarget(int targetId) |
|
{ |
|
impl->netWasAllocated = impl->netWasAllocated && |
|
impl->preferableTarget == targetId; |
|
impl->preferableTarget = targetId; |
|
} |
|
|
|
void Net::setInputsNames(const std::vector<String> &inputBlobNames) |
|
{ |
|
impl->netInputLayer->setNames(inputBlobNames); |
|
} |
|
|
|
void Net::setInput(const Mat &blob_, const String& name) |
|
{ |
|
LayerPin pin; |
|
pin.lid = 0; |
|
pin.oid = impl->resolvePinOutputName(impl->getLayerData(pin.lid), name); |
|
|
|
if (!pin.valid()) |
|
CV_Error(Error::StsObjectNotFound, "Requested blob \"" + name + "\" not found"); |
|
|
|
LayerData &ld = impl->layers[pin.lid]; |
|
ld.outputBlobs.resize( std::max(pin.oid+1, (int)ld.requiredOutputs.size()) ); |
|
MatShape prevShape = shape(ld.outputBlobs[pin.oid]); |
|
bool oldShape = prevShape == shape(blob_); |
|
if (oldShape) |
|
blob_.copyTo(ld.outputBlobs[pin.oid]); |
|
else |
|
ld.outputBlobs[pin.oid] = blob_.clone(); |
|
|
|
impl->netWasAllocated = impl->netWasAllocated && oldShape; |
|
} |
|
|
|
Mat Net::getParam(LayerId layer, int numParam) |
|
{ |
|
LayerData &ld = impl->getLayerData(layer); |
|
|
|
std::vector<Mat> &layerBlobs = ld.layerInstance->blobs; |
|
CV_Assert(numParam < (int)layerBlobs.size()); |
|
return layerBlobs[numParam]; |
|
} |
|
|
|
void Net::setParam(LayerId layer, int numParam, const Mat &blob) |
|
{ |
|
LayerData &ld = impl->getLayerData(layer); |
|
|
|
std::vector<Mat> &layerBlobs = ld.layerInstance->blobs; |
|
CV_Assert(numParam < (int)layerBlobs.size()); |
|
//we don't make strong checks, use this function carefully |
|
layerBlobs[numParam] = blob; |
|
} |
|
|
|
int Net::getLayerId(const String &layer) |
|
{ |
|
return impl->getLayerId(layer); |
|
} |
|
|
|
void Net::deleteLayer(LayerId) |
|
{ |
|
CV_Error(Error::StsNotImplemented, ""); |
|
} |
|
|
|
Ptr<Layer> Net::getLayer(LayerId layerId) |
|
{ |
|
LayerData &ld = impl->getLayerData(layerId); |
|
if (!ld.layerInstance) |
|
CV_Error(Error::StsNullPtr, format("Requested layer \"%s\" was not initialized", ld.name.c_str())); |
|
return ld.layerInstance; |
|
} |
|
|
|
std::vector<Ptr<Layer> > Net::getLayerInputs(LayerId layerId) |
|
{ |
|
LayerData &ld = impl->getLayerData(layerId); |
|
if (!ld.layerInstance) |
|
CV_Error(Error::StsNullPtr, format("Requested layer \"%s\" was not initialized", ld.name.c_str())); |
|
|
|
std::vector<Ptr<Layer> > inputLayers; |
|
inputLayers.reserve(ld.inputLayersId.size()); |
|
std::set<int>::iterator it; |
|
for (it = ld.inputLayersId.begin(); it != ld.inputLayersId.end(); ++it) { |
|
inputLayers.push_back(getLayer(*it)); |
|
} |
|
return inputLayers; |
|
} |
|
|
|
std::vector<String> Net::getLayerNames() const |
|
{ |
|
std::vector<String> res; |
|
res.reserve(impl->layers.size()); |
|
|
|
Impl::MapIdToLayerData::iterator it; |
|
for (it = impl->layers.begin(); it != impl->layers.end(); it++) |
|
{ |
|
if (it->second.id) //skip Data layer |
|
res.push_back(it->second.name); |
|
} |
|
|
|
return res; |
|
} |
|
|
|
bool Net::empty() const |
|
{ |
|
return impl->layers.size() <= 1; //first layer is default Data layer |
|
} |
|
|
|
std::vector<int> Net::getUnconnectedOutLayers() const |
|
{ |
|
std::vector<int> layersIds; |
|
|
|
Impl::MapIdToLayerData::iterator it; |
|
for (it = impl->layers.begin(); it != impl->layers.end(); it++) |
|
{ |
|
int lid = it->first; |
|
LayerData &ld = it->second; |
|
|
|
if (ld.requiredOutputs.size() == 0) |
|
layersIds.push_back(lid); |
|
} |
|
|
|
return layersIds; |
|
} |
|
|
|
void Net::getLayersShapes(const ShapesVec& netInputShapes, |
|
std::vector<int>* layersIds, |
|
std::vector<ShapesVec>* inLayersShapes, |
|
std::vector<ShapesVec>* outLayersShapes) const |
|
{ |
|
if ((layersIds || inLayersShapes || outLayersShapes) == false) |
|
return; |
|
|
|
if (layersIds) layersIds->clear(); |
|
if (inLayersShapes) inLayersShapes->clear(); |
|
if (outLayersShapes) outLayersShapes->clear(); |
|
|
|
Impl::LayersShapesMap inOutShapes; |
|
impl->getLayersShapes(netInputShapes, inOutShapes); |
|
|
|
for(Impl::LayersShapesMap::const_iterator it = inOutShapes.begin(); |
|
it != inOutShapes.end(); it++) |
|
{ |
|
if (layersIds) |
|
layersIds->push_back(it->first); |
|
if (inLayersShapes) |
|
inLayersShapes->push_back(it->second.in); |
|
if (outLayersShapes) |
|
outLayersShapes->push_back(it->second.out); |
|
} |
|
} |
|
|
|
void Net::getLayersShapes(const MatShape& netInputShape, |
|
std::vector<int>* layerIds, |
|
std::vector<ShapesVec>* inLayersShapes, |
|
std::vector<ShapesVec>* outLayersShapes) const |
|
{ |
|
getLayersShapes(ShapesVec(1, netInputShape), |
|
layerIds, inLayersShapes, outLayersShapes); |
|
} |
|
|
|
void Net::getLayerShapes(const MatShape& netInputShape, |
|
const int layerId, |
|
ShapesVec* inLayerShapes, |
|
ShapesVec* outLayerShapes) const |
|
{ |
|
getLayerShapes(ShapesVec(1, netInputShape), |
|
layerId, inLayerShapes, outLayerShapes); |
|
|
|
} |
|
|
|
void Net::getLayerShapes(const ShapesVec& netInputShapes, |
|
const int layerId, |
|
ShapesVec* inLayerShapes, |
|
ShapesVec* outLayerShapes) const |
|
{ |
|
LayerShapes shapes; |
|
impl->getLayerShapes(netInputShapes, layerId, shapes); |
|
if (inLayerShapes) |
|
*inLayerShapes = shapes.in; |
|
if (outLayerShapes) |
|
*outLayerShapes = shapes.out; |
|
} |
|
|
|
int64 Net::getFLOPS(const std::vector<MatShape>& netInputShapes) const |
|
{ |
|
int64 flops = 0; |
|
std::vector<int> ids; |
|
std::vector<std::vector<MatShape> > inShapes, outShapes; |
|
getLayersShapes(netInputShapes, &ids, &inShapes, &outShapes); |
|
CV_Assert(inShapes.size() == outShapes.size()); |
|
CV_Assert(inShapes.size() == ids.size()); |
|
|
|
for(int i = 0; i < ids.size(); i++) |
|
{ |
|
flops += impl->layers[ids[i]].getLayerInstance()->getFLOPS(inShapes[i], |
|
outShapes[i]); |
|
} |
|
|
|
return flops; |
|
} |
|
|
|
int64 Net::getFLOPS(const MatShape& netInputShape) const |
|
{ |
|
return getFLOPS(std::vector<MatShape>(1, netInputShape)); |
|
} |
|
|
|
int64 Net::getFLOPS(const int layerId, |
|
const std::vector<MatShape>& netInputShapes) const |
|
{ |
|
Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerId); |
|
CV_Assert(layer != impl->layers.end()); |
|
|
|
LayerShapes shapes; |
|
impl->getLayerShapes(netInputShapes, layerId, shapes); |
|
|
|
return layer->second.getLayerInstance()->getFLOPS(shapes.in, shapes.out); |
|
} |
|
|
|
int64 Net::getFLOPS(const int layerId, |
|
const MatShape& netInputShape) const |
|
{ |
|
return getFLOPS(layerId, std::vector<MatShape>(1, netInputShape)); |
|
} |
|
|
|
void Net::getLayerTypes(std::vector<String>& layersTypes) const |
|
{ |
|
layersTypes.clear(); |
|
|
|
std::map<String, int> layers; |
|
for (Impl::MapIdToLayerData::iterator it = impl->layers.begin(); |
|
it != impl->layers.end(); it++) |
|
{ |
|
if (layers.find(it->second.type) == layers.end()) |
|
layers[it->second.type] = 0; |
|
layers[it->second.type]++; |
|
} |
|
|
|
for (std::map<String, int>::iterator it = layers.begin(); |
|
it != layers.end(); it++) |
|
{ |
|
layersTypes.push_back(it->first); |
|
} |
|
} |
|
|
|
int Net::getLayersCount(const String& layerType) const |
|
{ |
|
int count = 0; |
|
for (Impl::MapIdToLayerData::iterator it = impl->layers.begin(); |
|
it != impl->layers.end(); it++) |
|
{ |
|
if (it->second.type == layerType) |
|
count++; |
|
} |
|
return count; |
|
} |
|
|
|
void Net::getMemoryConsumption(const int layerId, |
|
const std::vector<MatShape>& netInputShapes, |
|
size_t& weights, size_t& blobs) const |
|
{ |
|
Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerId); |
|
CV_Assert(layer != impl->layers.end()); |
|
|
|
weights = blobs = 0; |
|
|
|
for(int i = 0; i < layer->second.params.blobs.size(); i++) |
|
{ |
|
const Mat& weightsBlob = layer->second.params.blobs[i]; |
|
weights += weightsBlob.total()*weightsBlob.elemSize(); |
|
} |
|
|
|
std::vector<MatShape> outLayerShapes; |
|
getLayerShapes(netInputShapes, layerId, 0, &outLayerShapes); |
|
for(int i = 0; i < outLayerShapes.size(); i++) |
|
{ |
|
blobs += total(outLayerShapes[i]) * sizeof(float); |
|
} |
|
} |
|
|
|
void Net::getMemoryConsumption(const std::vector<MatShape>& netInputShapes, |
|
size_t& weights, size_t& blobs) const |
|
{ |
|
std::vector<int> layerIds; |
|
std::vector<size_t> w, b; |
|
getMemoryConsumption(netInputShapes, layerIds, w, b); |
|
|
|
weights = blobs = 0; |
|
for(int i = 0; i < layerIds.size(); i++) |
|
{ |
|
weights += w[i]; |
|
blobs += b[i]; |
|
} |
|
} |
|
|
|
void Net::getMemoryConsumption(const int layerId, |
|
const MatShape& netInputShape, |
|
size_t& weights, size_t& blobs) const |
|
{ |
|
getMemoryConsumption(layerId, std::vector<MatShape>(1, netInputShape), |
|
weights, blobs); |
|
} |
|
|
|
void Net::getMemoryConsumption(const MatShape& netInputShape, |
|
size_t& weights, size_t& blobs) const |
|
{ |
|
getMemoryConsumption(std::vector<MatShape>(1, netInputShape), |
|
weights, blobs); |
|
} |
|
|
|
void Net::getMemoryConsumption(const std::vector<MatShape>& netInputShapes, |
|
std::vector<int>& layerIds, std::vector<size_t>& weights, |
|
std::vector<size_t>& blobs) const |
|
{ |
|
layerIds.clear(); |
|
weights.clear(); |
|
blobs.clear(); |
|
|
|
std::vector<std::vector<MatShape> > outLayerShapes; |
|
|
|
getLayersShapes(netInputShapes, &layerIds, 0, &outLayerShapes); |
|
|
|
for(int i = 0; i < layerIds.size(); i++) |
|
{ |
|
int w = 0, b = 0; |
|
Impl::MapIdToLayerData::iterator layer = impl->layers.find(layerIds[i]); |
|
CV_Assert(layer != impl->layers.end()); |
|
|
|
for(int j = 0; j < layer->second.params.blobs.size(); j++) |
|
{ |
|
const Mat& weightsBlob = layer->second.params.blobs[j]; |
|
w += weightsBlob.total()*weightsBlob.elemSize(); |
|
} |
|
|
|
for(int j = 0; j < outLayerShapes[i].size(); j++) |
|
{ |
|
b += total(outLayerShapes[i][j]) * sizeof(float); |
|
} |
|
|
|
weights.push_back(w); |
|
blobs.push_back(b); |
|
} |
|
} |
|
|
|
void Net::getMemoryConsumption(const MatShape& netInputShape, std::vector<int>& layerIds, |
|
std::vector<size_t>& weights, std::vector<size_t>& blobs) const |
|
{ |
|
getMemoryConsumption(std::vector<MatShape>(1, netInputShape), layerIds, |
|
weights, blobs); |
|
} |
|
|
|
void Net::setHalideScheduler(const String& scheduler) |
|
{ |
|
impl->halideConfigFile = scheduler; |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////// |
|
|
|
Importer::~Importer() {} |
|
|
|
Layer::Layer() {} |
|
|
|
Layer::Layer(const LayerParams ¶ms) |
|
: blobs(params.blobs), name(params.name), type(params.type) |
|
{ |
|
|
|
} |
|
|
|
void Layer::setParamsFrom(const LayerParams ¶ms) |
|
{ |
|
blobs = params.blobs; |
|
name = params.name; |
|
type = params.type; |
|
} |
|
|
|
int Layer::inputNameToIndex(String) |
|
{ |
|
return -1; |
|
} |
|
|
|
int Layer::outputNameToIndex(String) |
|
{ |
|
return -1; |
|
} |
|
|
|
bool Layer::supportBackend(int backendId) |
|
{ |
|
return backendId == DNN_BACKEND_DEFAULT; |
|
} |
|
|
|
Ptr<BackendNode> Layer::initHalide(const std::vector<Ptr<BackendWrapper> > &) |
|
{ |
|
CV_Error(Error::StsNotImplemented, "Halide pipeline of " + type + |
|
" layers is not defined."); |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
void Layer::applyHalideScheduler(Ptr<BackendNode>& node, const std::vector<Mat*> &inputs, |
|
const std::vector<Mat> &outputs, int targetId) const |
|
{ |
|
#ifdef HAVE_HALIDE |
|
Halide::Var x("x"), y("y"), c("c"), n("n"), co("co"), ci("ci"), |
|
xo("xo"), xi("xi"), yo("yo"), yi("yi"), tile("tile"); |
|
Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs.back(); |
|
|
|
int outW, outH, outC, outN; |
|
getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN); |
|
|
|
if (targetId == DNN_TARGET_CPU) |
|
{ |
|
if (outW == 1 && outH == 1) |
|
{ |
|
if (outC + outN == 1) |
|
return; |
|
|
|
if (outC > 8) |
|
top.split(c, co, ci, 8) |
|
.fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile) |
|
.parallel(tile) |
|
.vectorize(ci, 8); |
|
else |
|
top.fuse(x, y, tile).fuse(c, tile, tile).fuse(n, tile, tile) |
|
.parallel(tile); |
|
} |
|
else |
|
{ |
|
if (outH > 2) |
|
{ |
|
top.reorder(x, c, y) |
|
.split(y, yo, yi, 2) |
|
.fuse(yo, n, tile) |
|
.parallel(tile) |
|
.unroll(yi) |
|
.vectorize(x, outW >= 16 ? 16 : outW); |
|
} |
|
} |
|
} |
|
else if (targetId == DNN_TARGET_OPENCL) |
|
{ |
|
int c_split = outC > 8 ? (outC > 16 ? 8 : 4) : outC; |
|
if (outW == 1 && outH == 1) |
|
{ |
|
top.split(c, co, ci, c_split) |
|
.fuse(x, y, tile).fuse(co, tile, tile).fuse(n, tile, tile) |
|
.gpu_blocks(tile) |
|
.gpu_threads(ci); |
|
} |
|
else |
|
{ |
|
int x_split = outW > 8 ? (outW >= 32 ? 16 : 8) : outW; |
|
int y_split = outH > 8 ? (outH >= 32 ? 16 : 8) : outH; |
|
top.split(x, xo, xi, x_split).split(y, yo, yi, y_split) |
|
.split(c, co, ci, c_split) |
|
.gpu_blocks(xo, yo, co) |
|
.gpu_threads(xi, yi) |
|
.reorder(xi, yi, ci, xo, yo, co) |
|
.vectorize(ci); |
|
} |
|
} |
|
else |
|
CV_Error(Error::StsNotImplemented, "Unknown target identifier"); |
|
#endif // HAVE_HALIDE |
|
} |
|
|
|
Ptr<BackendNode> Layer::tryAttach(const Ptr<BackendNode>& node) |
|
{ |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
template <typename T> |
|
static void vecToPVec(const std::vector<T> &v, std::vector<T*> &pv) |
|
{ |
|
pv.resize(v.size()); |
|
for (size_t i = 0; i < v.size(); i++) |
|
pv[i] = const_cast<T*>(&v[i]); |
|
} |
|
|
|
void Layer::finalize(const std::vector<Mat> &inputs, std::vector<Mat> &outputs) |
|
{ |
|
std::vector<Mat*> inputsp; |
|
vecToPVec(inputs, inputsp); |
|
this->finalize(inputsp, outputs); |
|
} |
|
|
|
void Layer::finalize(const std::vector<Mat*> &input, std::vector<Mat> &output) |
|
{ |
|
(void)input;(void)output; |
|
} |
|
|
|
std::vector<Mat> Layer::finalize(const std::vector<Mat> &inputs) |
|
{ |
|
std::vector<Mat> outputs; |
|
this->finalize(inputs, outputs); |
|
return outputs; |
|
} |
|
|
|
void Layer::forward(const std::vector<Mat> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) |
|
{ |
|
std::vector<Mat*> inputsp; |
|
vecToPVec(inputs, inputsp); |
|
this->forward(inputsp, outputs, internals); |
|
} |
|
|
|
void Layer::run(const std::vector<Mat> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) |
|
{ |
|
std::vector<Mat*> inputsp; |
|
vecToPVec(inputs, inputsp); |
|
this->finalize(inputsp, outputs); |
|
this->forward(inputsp, outputs, internals); |
|
} |
|
|
|
Layer::~Layer() {} |
|
|
|
bool Layer::getMemoryShapes(const std::vector<MatShape> &inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape> &outputs, |
|
std::vector<MatShape> &internals) const |
|
{ |
|
CV_Assert(inputs.size()); |
|
outputs.assign(std::max(requiredOutputs, (int)inputs.size()), inputs[0]); |
|
return false; |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////// |
|
|
|
struct LayerFactory::Impl : public std::map<String, LayerFactory::Constuctor> |
|
{ |
|
}; |
|
|
|
Ptr<LayerFactory::Impl> LayerFactory::impl () |
|
{ |
|
// allocate on first use |
|
static Ptr<LayerFactory::Impl> impl_(new LayerFactory::Impl()); |
|
return impl_; |
|
} |
|
|
|
void LayerFactory::registerLayer(const String &_type, Constuctor constructor) |
|
{ |
|
String type = _type.toLowerCase(); |
|
Impl::iterator it = impl()->find(type); |
|
|
|
if (it != impl()->end() && it->second != constructor) |
|
{ |
|
CV_Error(cv::Error::StsBadArg, "Layer \"" + type + "\" already was registered"); |
|
} |
|
|
|
impl()->insert(std::make_pair(type, constructor)); |
|
} |
|
|
|
void LayerFactory::unregisterLayer(const String &_type) |
|
{ |
|
String type = _type.toLowerCase(); |
|
impl()->erase(type); |
|
} |
|
|
|
Ptr<Layer> LayerFactory::createLayerInstance(const String &_type, LayerParams& params) |
|
{ |
|
String type = _type.toLowerCase(); |
|
Impl::const_iterator it = LayerFactory::impl()->find(type); |
|
|
|
if (it != impl()->end()) |
|
{ |
|
return it->second(params); |
|
} |
|
else |
|
{ |
|
return Ptr<Layer>(); //NULL |
|
} |
|
} |
|
|
|
BackendNode::BackendNode(int backendId) : backendId(backendId) {} |
|
|
|
BackendNode::~BackendNode() {}; |
|
|
|
BackendWrapper::BackendWrapper(int backendId, int targetId) |
|
: backendId(backendId), targetId(targetId) {} |
|
|
|
BackendWrapper::BackendWrapper(int targetId, const cv::Mat& m) |
|
{ |
|
CV_Error(Error::StsNotImplemented, |
|
"Constructor of backend wrapper must be implemented"); |
|
} |
|
|
|
BackendWrapper::BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape) |
|
{ |
|
CV_Error(Error::StsNotImplemented, |
|
"Constructor of backend wrapper must be implemented"); |
|
} |
|
|
|
BackendWrapper::~BackendWrapper() {} |
|
|
|
} |
|
}
|
|
|