mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
447 lines
18 KiB
447 lines
18 KiB
#include <algorithm> |
|
#include <fstream> |
|
#include <iostream> |
|
#include <cctype> |
|
#include <tuple> |
|
|
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/gapi.hpp> |
|
#include <opencv2/gapi/core.hpp> |
|
#include <opencv2/gapi/cpu/gcpukernel.hpp> |
|
#include <opencv2/gapi/infer/ie.hpp> |
|
#include <opencv2/gapi/render.hpp> |
|
#include <opencv2/gapi/streaming/onevpl/source.hpp> |
|
#include <opencv2/gapi/streaming/onevpl/data_provider_interface.hpp> |
|
#include <opencv2/highgui.hpp> // CommandLineParser |
|
#include <opencv2/gapi/infer/parsers.hpp> |
|
|
|
#ifdef HAVE_INF_ENGINE |
|
#include <inference_engine.hpp> // ParamMap |
|
|
|
#ifdef HAVE_DIRECTX |
|
#ifdef HAVE_D3D11 |
|
#pragma comment(lib,"d3d11.lib") |
|
|
|
// get rid of generate macro max/min/etc from DX side |
|
#define D3D11_NO_HELPERS |
|
#define NOMINMAX |
|
#include <cldnn/cldnn_config.hpp> |
|
#include <d3d11.h> |
|
#pragma comment(lib, "dxgi") |
|
#undef NOMINMAX |
|
#undef D3D11_NO_HELPERS |
|
|
|
#endif // HAVE_D3D11 |
|
#endif // HAVE_DIRECTX |
|
#endif // HAVE_INF_ENGINE |
|
|
|
const std::string about = |
|
"This is an OpenCV-based version of oneVPLSource decoder example"; |
|
const std::string keys = |
|
"{ h help | | Print this help message }" |
|
"{ input | | Path to the input demultiplexed video file }" |
|
"{ output | | Path to the output RAW video file. Use .avi extension }" |
|
"{ facem | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }" |
|
"{ faced | AUTO | Target device for face detection model (e.g. AUTO, GPU, VPU, ...) }" |
|
"{ cfg_params | <prop name>:<value>;<prop name>:<value> | Semicolon separated list of oneVPL mfxVariants which is used for configuring source (see `MFXSetConfigFilterProperty` by https://spec.oneapi.io/versions/latest/elements/oneVPL/source/index.html) }" |
|
"{ streaming_queue_capacity | 1 | Streaming executor queue capacity. Calculated automaticaly if 0 }" |
|
"{ frames_pool_size | 0 | OneVPL source applies this parameter as preallocated frames pool size}" |
|
"{ vpp_frames_pool_size | 0 | OneVPL source applies this parameter as preallocated frames pool size for VPP preprocessing results}" |
|
"{ source_preproc_enable | 0 | Turn on OneVPL source frame preprocessing using network input description instead of IE plugin preprocessing}"; |
|
|
|
namespace { |
|
bool is_gpu(const std::string &device_name) { |
|
return device_name.find("GPU") != std::string::npos; |
|
} |
|
|
|
std::string get_weights_path(const std::string &model_path) { |
|
const auto EXT_LEN = 4u; |
|
const auto sz = model_path.size(); |
|
CV_Assert(sz > EXT_LEN); |
|
|
|
auto ext = model_path.substr(sz - EXT_LEN); |
|
std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){ |
|
return static_cast<unsigned char>(std::tolower(c)); |
|
}); |
|
CV_Assert(ext == ".xml"); |
|
return model_path.substr(0u, sz - EXT_LEN) + ".bin"; |
|
} |
|
|
|
#ifdef HAVE_INF_ENGINE |
|
#ifdef HAVE_DIRECTX |
|
#ifdef HAVE_D3D11 |
|
|
|
// Since ATL headers might not be available on specific MSVS Build Tools |
|
// we use simple `CComPtr` implementation like as `ComPtrGuard` |
|
// which is not supposed to be the full functional replacement of `CComPtr` |
|
// and it uses as RAII to make sure utilization is correct |
|
template <typename COMNonManageableType> |
|
void release(COMNonManageableType *ptr) { |
|
if (ptr) { |
|
ptr->Release(); |
|
} |
|
} |
|
|
|
template <typename COMNonManageableType> |
|
using ComPtrGuard = std::unique_ptr<COMNonManageableType, decltype(&release<COMNonManageableType>)>; |
|
|
|
template <typename COMNonManageableType> |
|
ComPtrGuard<COMNonManageableType> createCOMPtrGuard(COMNonManageableType *ptr = nullptr) { |
|
return ComPtrGuard<COMNonManageableType> {ptr, &release<COMNonManageableType>}; |
|
} |
|
|
|
|
|
using AccelParamsType = std::tuple<ComPtrGuard<ID3D11Device>, ComPtrGuard<ID3D11DeviceContext>>; |
|
|
|
AccelParamsType create_device_with_ctx(IDXGIAdapter* adapter) { |
|
UINT flags = 0; |
|
D3D_FEATURE_LEVEL feature_levels[] = { D3D_FEATURE_LEVEL_11_1, |
|
D3D_FEATURE_LEVEL_11_0, |
|
}; |
|
D3D_FEATURE_LEVEL featureLevel; |
|
ID3D11Device* ret_device_ptr = nullptr; |
|
ID3D11DeviceContext* ret_ctx_ptr = nullptr; |
|
HRESULT err = D3D11CreateDevice(adapter, D3D_DRIVER_TYPE_UNKNOWN, |
|
nullptr, flags, |
|
feature_levels, |
|
ARRAYSIZE(feature_levels), |
|
D3D11_SDK_VERSION, &ret_device_ptr, |
|
&featureLevel, &ret_ctx_ptr); |
|
if (FAILED(err)) { |
|
throw std::runtime_error("Cannot create D3D11CreateDevice, error: " + |
|
std::to_string(HRESULT_CODE(err))); |
|
} |
|
|
|
return std::make_tuple(createCOMPtrGuard(ret_device_ptr), |
|
createCOMPtrGuard(ret_ctx_ptr)); |
|
} |
|
#endif // HAVE_D3D11 |
|
#endif // HAVE_DIRECTX |
|
#endif // HAVE_INF_ENGINE |
|
} // anonymous namespace |
|
|
|
namespace custom { |
|
G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face-detector"); |
|
|
|
using GDetections = cv::GArray<cv::Rect>; |
|
using GRect = cv::GOpaque<cv::Rect>; |
|
using GSize = cv::GOpaque<cv::Size>; |
|
using GPrims = cv::GArray<cv::gapi::wip::draw::Prim>; |
|
|
|
G_API_OP(LocateROI, <GRect(GSize, std::reference_wrapper<const std::string>)>, "sample.custom.locate-roi") { |
|
static cv::GOpaqueDesc outMeta(const cv::GOpaqueDesc &, |
|
std::reference_wrapper<const std::string>) { |
|
return cv::empty_gopaque_desc(); |
|
} |
|
}; |
|
|
|
G_API_OP(BBoxes, <GPrims(GDetections, GRect)>, "sample.custom.b-boxes") { |
|
static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GOpaqueDesc &) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
GAPI_OCV_KERNEL(OCVLocateROI, LocateROI) { |
|
// This is the place where we can run extra analytics |
|
// on the input image frame and select the ROI (region |
|
// of interest) where we want to detect our objects (or |
|
// run any other inference). |
|
// |
|
// Currently it doesn't do anything intelligent, |
|
// but only crops the input image to square (this is |
|
// the most convenient aspect ratio for detectors to use) |
|
|
|
static void run(const cv::Size& in_size, |
|
std::reference_wrapper<const std::string> device_id_ref, |
|
cv::Rect &out_rect) { |
|
|
|
// Identify the central point & square size (- some padding) |
|
// NB: GPU plugin in InferenceEngine doesn't support ROI at now |
|
if (!is_gpu(device_id_ref.get())) { |
|
const auto center = cv::Point{in_size.width/2, in_size.height/2}; |
|
auto sqside = std::min(in_size.width, in_size.height); |
|
|
|
// Now build the central square ROI |
|
out_rect = cv::Rect{ center.x - sqside/2 |
|
, center.y - sqside/2 |
|
, sqside |
|
, sqside |
|
}; |
|
} else { |
|
// use whole frame for GPU device |
|
out_rect = cv::Rect{ 0 |
|
, 0 |
|
, in_size.width |
|
, in_size.height |
|
}; |
|
} |
|
} |
|
}; |
|
|
|
GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) { |
|
// This kernel converts the rectangles into G-API's |
|
// rendering primitives |
|
static void run(const std::vector<cv::Rect> &in_face_rcs, |
|
const cv::Rect &in_roi, |
|
std::vector<cv::gapi::wip::draw::Prim> &out_prims) { |
|
out_prims.clear(); |
|
const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) { |
|
return cv::gapi::wip::draw::Rect(rc, clr, 2); |
|
}; |
|
out_prims.emplace_back(cvt(in_roi, CV_RGB(0,255,255))); // cyan |
|
for (auto &&rc : in_face_rcs) { |
|
out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green |
|
} |
|
} |
|
}; |
|
|
|
} // namespace custom |
|
|
|
namespace cfg { |
|
typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line); |
|
} |
|
|
|
int main(int argc, char *argv[]) { |
|
|
|
cv::CommandLineParser cmd(argc, argv, keys); |
|
cmd.about(about); |
|
if (cmd.has("help")) { |
|
cmd.printMessage(); |
|
return 0; |
|
} |
|
|
|
// get file name |
|
const auto file_path = cmd.get<std::string>("input"); |
|
const auto output = cmd.get<std::string>("output"); |
|
const auto face_model_path = cmd.get<std::string>("facem"); |
|
const auto streaming_queue_capacity = cmd.get<uint32_t>("streaming_queue_capacity"); |
|
const auto source_decode_queue_capacity = cmd.get<uint32_t>("frames_pool_size"); |
|
const auto source_vpp_queue_capacity = cmd.get<uint32_t>("vpp_frames_pool_size"); |
|
const auto vpl_source_preproc_enable = cmd.get<uint32_t>("source_preproc_enable"); |
|
const auto device_id = cmd.get<std::string>("faced"); |
|
|
|
// check ouput file extension |
|
if (!output.empty()) { |
|
auto ext = output.find_last_of("."); |
|
if (ext == std::string::npos || (output.substr(ext + 1) != "avi")) { |
|
std::cerr << "Output file should have *.avi extension for output video" << std::endl; |
|
return -1; |
|
} |
|
} |
|
|
|
// get oneVPL cfg params from cmd |
|
std::stringstream params_list(cmd.get<std::string>("cfg_params")); |
|
std::vector<cv::gapi::wip::onevpl::CfgParam> source_cfgs; |
|
try { |
|
std::string line; |
|
while (std::getline(params_list, line, ';')) { |
|
if (vpl_source_preproc_enable == 0) { |
|
if (line.find("vpp.") != std::string::npos) { |
|
// skip VPP preprocessing primitives if not requested |
|
continue; |
|
} |
|
} |
|
source_cfgs.push_back(cfg::create_from_string(line)); |
|
} |
|
} catch (const std::exception& ex) { |
|
std::cerr << "Invalid cfg parameter: " << ex.what() << std::endl; |
|
return -1; |
|
} |
|
|
|
if (source_decode_queue_capacity != 0) { |
|
source_cfgs.push_back(cv::gapi::wip::onevpl::CfgParam::create_frames_pool_size(source_decode_queue_capacity)); |
|
} |
|
if (source_vpp_queue_capacity != 0) { |
|
source_cfgs.push_back(cv::gapi::wip::onevpl::CfgParam::create_vpp_frames_pool_size(source_vpp_queue_capacity)); |
|
} |
|
|
|
auto face_net = cv::gapi::ie::Params<custom::FaceDetector> { |
|
face_model_path, // path to topology IR |
|
get_weights_path(face_model_path), // path to weights |
|
device_id |
|
}; |
|
|
|
// Create device_ptr & context_ptr using graphic API |
|
// InferenceEngine requires such device & context to create its own |
|
// remote shared context through InferenceEngine::ParamMap in |
|
// GAPI InferenceEngine backend to provide interoperability with onevpl::GSource |
|
// So GAPI InferenceEngine backend and onevpl::GSource MUST share the same |
|
// device and context |
|
void* accel_device_ptr = nullptr; |
|
void* accel_ctx_ptr = nullptr; |
|
|
|
#ifdef HAVE_INF_ENGINE |
|
#ifdef HAVE_DIRECTX |
|
#ifdef HAVE_D3D11 |
|
auto dx11_dev = createCOMPtrGuard<ID3D11Device>(); |
|
auto dx11_ctx = createCOMPtrGuard<ID3D11DeviceContext>(); |
|
|
|
if (is_gpu(device_id)) { |
|
auto adapter_factory = createCOMPtrGuard<IDXGIFactory>(); |
|
{ |
|
IDXGIFactory* out_factory = nullptr; |
|
HRESULT err = CreateDXGIFactory(__uuidof(IDXGIFactory), |
|
reinterpret_cast<void**>(&out_factory)); |
|
if (FAILED(err)) { |
|
std::cerr << "Cannot create CreateDXGIFactory, error: " << HRESULT_CODE(err) << std::endl; |
|
return -1; |
|
} |
|
adapter_factory = createCOMPtrGuard(out_factory); |
|
} |
|
|
|
auto intel_adapter = createCOMPtrGuard<IDXGIAdapter>(); |
|
UINT adapter_index = 0; |
|
const unsigned int refIntelVendorID = 0x8086; |
|
IDXGIAdapter* out_adapter = nullptr; |
|
|
|
while (adapter_factory->EnumAdapters(adapter_index, &out_adapter) != DXGI_ERROR_NOT_FOUND) { |
|
DXGI_ADAPTER_DESC desc{}; |
|
out_adapter->GetDesc(&desc); |
|
if (desc.VendorId == refIntelVendorID) { |
|
intel_adapter = createCOMPtrGuard(out_adapter); |
|
break; |
|
} |
|
++adapter_index; |
|
} |
|
|
|
if (!intel_adapter) { |
|
std::cerr << "No Intel GPU adapter on aboard. Exit" << std::endl; |
|
return -1; |
|
} |
|
|
|
std::tie(dx11_dev, dx11_ctx) = create_device_with_ctx(intel_adapter.get()); |
|
accel_device_ptr = reinterpret_cast<void*>(dx11_dev.get()); |
|
accel_ctx_ptr = reinterpret_cast<void*>(dx11_ctx.get()); |
|
|
|
// put accel type description for VPL source |
|
source_cfgs.push_back(cfg::create_from_string( |
|
"mfxImplDescription.AccelerationMode" |
|
":" |
|
"MFX_ACCEL_MODE_VIA_D3D11")); |
|
} |
|
|
|
#endif // HAVE_D3D11 |
|
#endif // HAVE_DIRECTX |
|
// set ctx_config for GPU device only - no need in case of CPU device type |
|
if (is_gpu(device_id)) { |
|
InferenceEngine::ParamMap ctx_config({{"CONTEXT_TYPE", "VA_SHARED"}, |
|
{"VA_DEVICE", accel_device_ptr} }); |
|
|
|
face_net.cfgContextParams(ctx_config); |
|
face_net.pluginConfig({{"GPU_NV12_TWO_INPUTS", "YES" }}); |
|
|
|
std::cout <<"/*******************************************************/\n" |
|
"ATTENTION: GPU Inference Engine preprocessing is not vital as expected!" |
|
" Please consider param \"source_preproc_enable=1\" and specify " |
|
" appropriated media frame transformation using oneVPL::VPP primitives" |
|
" which force onevpl::GSource to produce tranformed media frames." |
|
" For exploring list of supported transformations please find out " |
|
" vpp_* related stuff in" |
|
" gapi/include/opencv2/gapi/streaming/onevpl/cfg_params.hpp" |
|
" Pay attention that to obtain expected result In this case VPP " |
|
" transformation must match network input params." |
|
" Please vote/create issue about exporting network params using GAPI\n" |
|
"/******************************************************/" << std::endl; |
|
} |
|
#endif // HAVE_INF_ENGINE |
|
|
|
auto kernels = cv::gapi::kernels |
|
< custom::OCVLocateROI |
|
, custom::OCVBBoxes>(); |
|
auto networks = cv::gapi::networks(face_net); |
|
auto face_detection_args = cv::compile_args(networks, kernels); |
|
if (streaming_queue_capacity != 0) { |
|
face_detection_args += cv::compile_args(cv::gapi::streaming::queue_capacity{ streaming_queue_capacity }); |
|
} |
|
|
|
// Create source |
|
cv::Ptr<cv::gapi::wip::IStreamSource> cap; |
|
try { |
|
if (is_gpu(device_id)) { |
|
cap = cv::gapi::wip::make_onevpl_src(file_path, source_cfgs, |
|
device_id, |
|
accel_device_ptr, |
|
accel_ctx_ptr); |
|
} else { |
|
cap = cv::gapi::wip::make_onevpl_src(file_path, source_cfgs); |
|
} |
|
std::cout << "oneVPL source desription: " << cap->descr_of() << std::endl; |
|
} catch (const std::exception& ex) { |
|
std::cerr << "Cannot create source: " << ex.what() << std::endl; |
|
return -1; |
|
} |
|
|
|
cv::GMetaArg descr = cap->descr_of(); |
|
auto frame_descr = cv::util::get<cv::GFrameDesc>(descr); |
|
|
|
// Now build the graph |
|
cv::GFrame in; |
|
auto size = cv::gapi::streaming::size(in); |
|
auto roi = custom::LocateROI::on(size, std::cref(device_id)); |
|
auto blob = cv::gapi::infer<custom::FaceDetector>(roi, in); |
|
cv::GArray<cv::Rect> rcs = cv::gapi::parseSSD(blob, size, 0.5f, true, true); |
|
auto out_frame = cv::gapi::wip::draw::renderFrame(in, custom::BBoxes::on(rcs, roi)); |
|
auto out = cv::gapi::streaming::BGR(out_frame); |
|
|
|
cv::GStreamingCompiled pipeline; |
|
try { |
|
pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out)) |
|
.compileStreaming(std::move(face_detection_args)); |
|
} catch (const std::exception& ex) { |
|
std::cerr << "Exception occured during pipeline construction: " << ex.what() << std::endl; |
|
return -1; |
|
} |
|
// The execution part |
|
|
|
// TODO USE may set pool size from outside and set queue_capacity size, |
|
// compile arg: cv::gapi::streaming::queue_capacity |
|
pipeline.setSource(std::move(cap)); |
|
pipeline.start(); |
|
|
|
size_t frames = 0u; |
|
cv::TickMeter tm; |
|
cv::VideoWriter writer; |
|
if (!output.empty() && !writer.isOpened()) { |
|
const auto sz = cv::Size{frame_descr.size.width, frame_descr.size.height}; |
|
writer.open(output, cv::VideoWriter::fourcc('M','J','P','G'), 25.0, sz); |
|
CV_Assert(writer.isOpened()); |
|
} |
|
|
|
cv::Mat outMat; |
|
tm.start(); |
|
while (pipeline.pull(cv::gout(outMat))) { |
|
cv::imshow("Out", outMat); |
|
cv::waitKey(1); |
|
if (!output.empty()) { |
|
writer << outMat; |
|
} |
|
++frames; |
|
} |
|
tm.stop(); |
|
std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl; |
|
return 0; |
|
} |
|
|
|
|
|
namespace cfg { |
|
typename cv::gapi::wip::onevpl::CfgParam create_from_string(const std::string &line) { |
|
using namespace cv::gapi::wip; |
|
|
|
if (line.empty()) { |
|
throw std::runtime_error("Cannot parse CfgParam from emply line"); |
|
} |
|
|
|
std::string::size_type name_endline_pos = line.find(':'); |
|
if (name_endline_pos == std::string::npos) { |
|
throw std::runtime_error("Cannot parse CfgParam from: " + line + |
|
"\nExpected separator \":\""); |
|
} |
|
|
|
std::string name = line.substr(0, name_endline_pos); |
|
std::string value = line.substr(name_endline_pos + 1); |
|
|
|
return cv::gapi::wip::onevpl::CfgParam::create(name, value, |
|
/* vpp params strongly optional */ |
|
name.find("vpp.") == std::string::npos); |
|
} |
|
}
|
|
|