Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

15 lines
1.2 KiB

Extremely randomized trees
==========================
Extremely randomized trees have been introduced by Pierre Geurts, Damien Ernst and Louis Wehenkel in the article "Extremely randomized trees", 2006 [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.7485&rep=rep1&type=pdf]. The algorithm of growing Extremely randomized trees is similar to :ref:`Random Trees` (Random Forest), but there are two differences:
#. Extremely randomized trees don't apply the bagging procedure to construct a set of the training samples for each tree. The same input training set is used to train all trees.
#. Extremely randomized trees pick a node split very extremely (both a variable index and variable splitting value are chosen randomly), whereas Random Forest finds the best split (optimal one by variable index and variable splitting value) among random subset of variables.
CvERTrees
----------
.. ocv:class:: CvERTrees : public CvRTrees
The class implements the Extremely randomized trees algorithm. ``CvERTrees`` is inherited from :ocv:class:`CvRTrees` and has the same interface, so see description of :ocv:class:`CvRTrees` class to get details. To set the training parameters of Extremely randomized trees the same class :ocv:struct:`CvRTParams` is used.