mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
741 lines
31 KiB
741 lines
31 KiB
#include <algorithm> |
|
#include <cctype> |
|
#include <cmath> |
|
#include <iostream> |
|
#include <limits> |
|
#include <numeric> |
|
#include <stdexcept> |
|
#include <string> |
|
#include <vector> |
|
|
|
#include <opencv2/gapi.hpp> |
|
#include <opencv2/gapi/core.hpp> |
|
#include <opencv2/gapi/imgproc.hpp> |
|
#include <opencv2/gapi/cpu/gcpukernel.hpp> |
|
#include <opencv2/gapi/infer.hpp> |
|
#include <opencv2/gapi/infer/ie.hpp> |
|
#include <opencv2/gapi/streaming/cap.hpp> |
|
#include <opencv2/gapi/gopaque.hpp> |
|
#include <opencv2/highgui.hpp> |
|
|
|
const std::string about = |
|
"This is an OpenCV-based version of OMZ MTCNN Face Detection example"; |
|
const std::string keys = |
|
"{ h help | | Print this help message }" |
|
"{ input | | Path to the input video file }" |
|
"{ mtcnnpm | mtcnn-p.xml | Path to OpenVINO MTCNN P (Proposal) detection model (.xml)}" |
|
"{ mtcnnpd | CPU | Target device for the MTCNN P (e.g. CPU, GPU, VPU, ...) }" |
|
"{ mtcnnrm | mtcnn-r.xml | Path to OpenVINO MTCNN R (Refinement) detection model (.xml)}" |
|
"{ mtcnnrd | CPU | Target device for the MTCNN R (e.g. CPU, GPU, VPU, ...) }" |
|
"{ mtcnnom | mtcnn-o.xml | Path to OpenVINO MTCNN O (Output) detection model (.xml)}" |
|
"{ mtcnnod | CPU | Target device for the MTCNN O (e.g. CPU, GPU, VPU, ...) }" |
|
"{ thrp | 0.6 | MTCNN P confidence threshold}" |
|
"{ thrr | 0.7 | MTCNN R confidence threshold}" |
|
"{ thro | 0.7 | MTCNN O confidence threshold}" |
|
"{ half_scale | false | MTCNN P use half scale pyramid}" |
|
"{ queue_capacity | 1 | Streaming executor queue capacity. Calculated automaticaly if 0}" |
|
; |
|
|
|
namespace { |
|
std::string weights_path(const std::string& model_path) { |
|
const auto EXT_LEN = 4u; |
|
const auto sz = model_path.size(); |
|
CV_Assert(sz > EXT_LEN); |
|
|
|
const auto ext = model_path.substr(sz - EXT_LEN); |
|
CV_Assert(cv::toLowerCase(ext) == ".xml"); |
|
return model_path.substr(0u, sz - EXT_LEN) + ".bin"; |
|
} |
|
////////////////////////////////////////////////////////////////////// |
|
} // anonymous namespace |
|
|
|
namespace custom { |
|
namespace { |
|
|
|
// Define custom structures and operations |
|
#define NUM_REGRESSIONS 4 |
|
#define NUM_PTS 5 |
|
|
|
struct BBox { |
|
int x1; |
|
int y1; |
|
int x2; |
|
int y2; |
|
|
|
cv::Rect getRect() const { return cv::Rect(x1, |
|
y1, |
|
x2 - x1, |
|
y2 - y1); } |
|
|
|
BBox getSquare() const { |
|
BBox bbox; |
|
float bboxWidth = static_cast<float>(x2 - x1); |
|
float bboxHeight = static_cast<float>(y2 - y1); |
|
float side = std::max(bboxWidth, bboxHeight); |
|
bbox.x1 = static_cast<int>(static_cast<float>(x1) + (bboxWidth - side) * 0.5f); |
|
bbox.y1 = static_cast<int>(static_cast<float>(y1) + (bboxHeight - side) * 0.5f); |
|
bbox.x2 = static_cast<int>(static_cast<float>(bbox.x1) + side); |
|
bbox.y2 = static_cast<int>(static_cast<float>(bbox.y1) + side); |
|
return bbox; |
|
} |
|
}; |
|
|
|
struct Face { |
|
BBox bbox; |
|
float score; |
|
std::array<float, NUM_REGRESSIONS> regression; |
|
std::array<float, 2 * NUM_PTS> ptsCoords; |
|
|
|
static void applyRegression(std::vector<Face>& faces, bool addOne = false) { |
|
for (auto& face : faces) { |
|
float bboxWidth = |
|
face.bbox.x2 - face.bbox.x1 + static_cast<float>(addOne); |
|
float bboxHeight = |
|
face.bbox.y2 - face.bbox.y1 + static_cast<float>(addOne); |
|
face.bbox.x1 = static_cast<int>(static_cast<float>(face.bbox.x1) + (face.regression[1] * bboxWidth)); |
|
face.bbox.y1 = static_cast<int>(static_cast<float>(face.bbox.y1) + (face.regression[0] * bboxHeight)); |
|
face.bbox.x2 = static_cast<int>(static_cast<float>(face.bbox.x2) + (face.regression[3] * bboxWidth)); |
|
face.bbox.y2 = static_cast<int>(static_cast<float>(face.bbox.y2) + (face.regression[2] * bboxHeight)); |
|
} |
|
} |
|
|
|
static void bboxes2Squares(std::vector<Face>& faces) { |
|
for (auto& face : faces) { |
|
face.bbox = face.bbox.getSquare(); |
|
} |
|
} |
|
|
|
static std::vector<Face> runNMS(std::vector<Face>& faces, const float threshold, |
|
const bool useMin = false) { |
|
std::vector<Face> facesNMS; |
|
if (faces.empty()) { |
|
return facesNMS; |
|
} |
|
|
|
std::sort(faces.begin(), faces.end(), [](const Face& f1, const Face& f2) { |
|
return f1.score > f2.score; |
|
}); |
|
|
|
std::vector<int> indices(faces.size()); |
|
std::iota(indices.begin(), indices.end(), 0); |
|
|
|
while (indices.size() > 0) { |
|
const int idx = indices[0]; |
|
facesNMS.push_back(faces[idx]); |
|
std::vector<int> tmpIndices = indices; |
|
indices.clear(); |
|
const float area1 = static_cast<float>(faces[idx].bbox.x2 - faces[idx].bbox.x1 + 1) * |
|
static_cast<float>(faces[idx].bbox.y2 - faces[idx].bbox.y1 + 1); |
|
for (size_t i = 1; i < tmpIndices.size(); ++i) { |
|
int tmpIdx = tmpIndices[i]; |
|
const float interX1 = static_cast<float>(std::max(faces[idx].bbox.x1, faces[tmpIdx].bbox.x1)); |
|
const float interY1 = static_cast<float>(std::max(faces[idx].bbox.y1, faces[tmpIdx].bbox.y1)); |
|
const float interX2 = static_cast<float>(std::min(faces[idx].bbox.x2, faces[tmpIdx].bbox.x2)); |
|
const float interY2 = static_cast<float>(std::min(faces[idx].bbox.y2, faces[tmpIdx].bbox.y2)); |
|
|
|
const float bboxWidth = std::max(0.0f, (interX2 - interX1 + 1)); |
|
const float bboxHeight = std::max(0.0f, (interY2 - interY1 + 1)); |
|
|
|
const float interArea = bboxWidth * bboxHeight; |
|
const float area2 = static_cast<float>(faces[tmpIdx].bbox.x2 - faces[tmpIdx].bbox.x1 + 1) * |
|
static_cast<float>(faces[tmpIdx].bbox.y2 - faces[tmpIdx].bbox.y1 + 1); |
|
float overlap = 0.0; |
|
if (useMin) { |
|
overlap = interArea / std::min(area1, area2); |
|
} else { |
|
overlap = interArea / (area1 + area2 - interArea); |
|
} |
|
if (overlap <= threshold) { |
|
indices.push_back(tmpIdx); |
|
} |
|
} |
|
} |
|
return facesNMS; |
|
} |
|
}; |
|
|
|
const float P_NET_WINDOW_SIZE = 12.0f; |
|
|
|
std::vector<Face> buildFaces(const cv::Mat& scores, |
|
const cv::Mat& regressions, |
|
const float scaleFactor, |
|
const float threshold) { |
|
|
|
auto w = scores.size[3]; |
|
auto h = scores.size[2]; |
|
auto size = w * h; |
|
|
|
const float* scores_data = scores.ptr<float>(); |
|
scores_data += size; |
|
|
|
const float* reg_data = regressions.ptr<float>(); |
|
|
|
auto out_side = std::max(h, w); |
|
auto in_side = 2 * out_side + 11; |
|
float stride = 0.0f; |
|
if (out_side != 1) |
|
{ |
|
stride = static_cast<float>(in_side - P_NET_WINDOW_SIZE) / static_cast<float>(out_side - 1); |
|
} |
|
|
|
std::vector<Face> boxes; |
|
|
|
for (int i = 0; i < size; i++) { |
|
if (scores_data[i] >= (threshold)) { |
|
float y = static_cast<float>(i / w); |
|
float x = static_cast<float>(i - w * y); |
|
|
|
Face faceInfo; |
|
BBox& faceBox = faceInfo.bbox; |
|
|
|
faceBox.x1 = std::max(0, static_cast<int>((x * stride) / scaleFactor)); |
|
faceBox.y1 = std::max(0, static_cast<int>((y * stride) / scaleFactor)); |
|
faceBox.x2 = static_cast<int>((x * stride + P_NET_WINDOW_SIZE - 1.0f) / scaleFactor); |
|
faceBox.y2 = static_cast<int>((y * stride + P_NET_WINDOW_SIZE - 1.0f) / scaleFactor); |
|
faceInfo.regression[0] = reg_data[i]; |
|
faceInfo.regression[1] = reg_data[i + size]; |
|
faceInfo.regression[2] = reg_data[i + 2 * size]; |
|
faceInfo.regression[3] = reg_data[i + 3 * size]; |
|
faceInfo.score = scores_data[i]; |
|
boxes.push_back(faceInfo); |
|
} |
|
} |
|
|
|
return boxes; |
|
} |
|
|
|
// Define networks for this sample |
|
using GMat2 = std::tuple<cv::GMat, cv::GMat>; |
|
using GMat3 = std::tuple<cv::GMat, cv::GMat, cv::GMat>; |
|
using GMats = cv::GArray<cv::GMat>; |
|
using GRects = cv::GArray<cv::Rect>; |
|
using GSize = cv::GOpaque<cv::Size>; |
|
|
|
G_API_NET(MTCNNRefinement, |
|
<GMat2(cv::GMat)>, |
|
"sample.custom.mtcnn_refinement"); |
|
|
|
G_API_NET(MTCNNOutput, |
|
<GMat3(cv::GMat)>, |
|
"sample.custom.mtcnn_output"); |
|
|
|
using GFaces = cv::GArray<Face>; |
|
G_API_OP(BuildFaces, |
|
<GFaces(cv::GMat, cv::GMat, float, float)>, |
|
"sample.custom.mtcnn.build_faces") { |
|
static cv::GArrayDesc outMeta(const cv::GMatDesc&, |
|
const cv::GMatDesc&, |
|
const float, |
|
const float) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
G_API_OP(RunNMS, |
|
<GFaces(GFaces, float, bool)>, |
|
"sample.custom.mtcnn.run_nms") { |
|
static cv::GArrayDesc outMeta(const cv::GArrayDesc&, |
|
const float, const bool) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
G_API_OP(AccumulatePyramidOutputs, |
|
<GFaces(GFaces, GFaces)>, |
|
"sample.custom.mtcnn.accumulate_pyramid_outputs") { |
|
static cv::GArrayDesc outMeta(const cv::GArrayDesc&, |
|
const cv::GArrayDesc&) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
G_API_OP(ApplyRegression, |
|
<GFaces(GFaces, bool)>, |
|
"sample.custom.mtcnn.apply_regression") { |
|
static cv::GArrayDesc outMeta(const cv::GArrayDesc&, const bool) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
G_API_OP(BBoxesToSquares, |
|
<GFaces(GFaces)>, |
|
"sample.custom.mtcnn.bboxes_to_squares") { |
|
static cv::GArrayDesc outMeta(const cv::GArrayDesc&) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
G_API_OP(R_O_NetPreProcGetROIs, |
|
<GRects(GFaces, GSize)>, |
|
"sample.custom.mtcnn.bboxes_r_o_net_preproc_get_rois") { |
|
static cv::GArrayDesc outMeta(const cv::GArrayDesc&, const cv::GOpaqueDesc&) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
|
|
G_API_OP(RNetPostProc, |
|
<GFaces(GFaces, GMats, GMats, float)>, |
|
"sample.custom.mtcnn.rnet_postproc") { |
|
static cv::GArrayDesc outMeta(const cv::GArrayDesc&, |
|
const cv::GArrayDesc&, |
|
const cv::GArrayDesc&, |
|
const float) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
G_API_OP(ONetPostProc, |
|
<GFaces(GFaces, GMats, GMats, GMats, float)>, |
|
"sample.custom.mtcnn.onet_postproc") { |
|
static cv::GArrayDesc outMeta(const cv::GArrayDesc&, |
|
const cv::GArrayDesc&, |
|
const cv::GArrayDesc&, |
|
const cv::GArrayDesc&, |
|
const float) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
G_API_OP(SwapFaces, |
|
<GFaces(GFaces)>, |
|
"sample.custom.mtcnn.swap_faces") { |
|
static cv::GArrayDesc outMeta(const cv::GArrayDesc&) { |
|
return cv::empty_array_desc(); |
|
} |
|
}; |
|
|
|
//Custom kernels implementation |
|
GAPI_OCV_KERNEL(OCVBuildFaces, BuildFaces) { |
|
static void run(const cv::Mat & in_scores, |
|
const cv::Mat & in_regresssions, |
|
const float scaleFactor, |
|
const float threshold, |
|
std::vector<Face> &out_faces) { |
|
out_faces = buildFaces(in_scores, in_regresssions, scaleFactor, threshold); |
|
} |
|
};// GAPI_OCV_KERNEL(BuildFaces) |
|
|
|
GAPI_OCV_KERNEL(OCVRunNMS, RunNMS) { |
|
static void run(const std::vector<Face> &in_faces, |
|
const float threshold, |
|
const bool useMin, |
|
std::vector<Face> &out_faces) { |
|
std::vector<Face> in_faces_copy = in_faces; |
|
out_faces = Face::runNMS(in_faces_copy, threshold, useMin); |
|
} |
|
};// GAPI_OCV_KERNEL(RunNMS) |
|
|
|
GAPI_OCV_KERNEL(OCVAccumulatePyramidOutputs, AccumulatePyramidOutputs) { |
|
static void run(const std::vector<Face> &total_faces, |
|
const std::vector<Face> &in_faces, |
|
std::vector<Face> &out_faces) { |
|
out_faces = total_faces; |
|
out_faces.insert(out_faces.end(), in_faces.begin(), in_faces.end()); |
|
} |
|
};// GAPI_OCV_KERNEL(AccumulatePyramidOutputs) |
|
|
|
GAPI_OCV_KERNEL(OCVApplyRegression, ApplyRegression) { |
|
static void run(const std::vector<Face> &in_faces, |
|
const bool addOne, |
|
std::vector<Face> &out_faces) { |
|
std::vector<Face> in_faces_copy = in_faces; |
|
Face::applyRegression(in_faces_copy, addOne); |
|
out_faces.clear(); |
|
out_faces.insert(out_faces.end(), in_faces_copy.begin(), in_faces_copy.end()); |
|
} |
|
};// GAPI_OCV_KERNEL(ApplyRegression) |
|
|
|
GAPI_OCV_KERNEL(OCVBBoxesToSquares, BBoxesToSquares) { |
|
static void run(const std::vector<Face> &in_faces, |
|
std::vector<Face> &out_faces) { |
|
std::vector<Face> in_faces_copy = in_faces; |
|
Face::bboxes2Squares(in_faces_copy); |
|
out_faces.clear(); |
|
out_faces.insert(out_faces.end(), in_faces_copy.begin(), in_faces_copy.end()); |
|
} |
|
};// GAPI_OCV_KERNEL(BBoxesToSquares) |
|
|
|
GAPI_OCV_KERNEL(OCVR_O_NetPreProcGetROIs, R_O_NetPreProcGetROIs) { |
|
static void run(const std::vector<Face> &in_faces, |
|
const cv::Size & in_image_size, |
|
std::vector<cv::Rect> &outs) { |
|
outs.clear(); |
|
for (const auto& face : in_faces) { |
|
cv::Rect tmp_rect = face.bbox.getRect(); |
|
//Compare to transposed sizes width<->height |
|
tmp_rect &= cv::Rect(tmp_rect.x, tmp_rect.y, in_image_size.height - tmp_rect.x, in_image_size.width - tmp_rect.y) & |
|
cv::Rect(0, 0, in_image_size.height, in_image_size.width); |
|
outs.push_back(tmp_rect); |
|
} |
|
} |
|
};// GAPI_OCV_KERNEL(R_O_NetPreProcGetROIs) |
|
|
|
|
|
GAPI_OCV_KERNEL(OCVRNetPostProc, RNetPostProc) { |
|
static void run(const std::vector<Face> &in_faces, |
|
const std::vector<cv::Mat> &in_scores, |
|
const std::vector<cv::Mat> &in_regresssions, |
|
const float threshold, |
|
std::vector<Face> &out_faces) { |
|
out_faces.clear(); |
|
for (unsigned int k = 0; k < in_faces.size(); ++k) { |
|
const float* scores_data = in_scores[k].ptr<float>(); |
|
const float* reg_data = in_regresssions[k].ptr<float>(); |
|
if (scores_data[1] >= threshold) { |
|
Face info = in_faces[k]; |
|
info.score = scores_data[1]; |
|
std::copy_n(reg_data, NUM_REGRESSIONS, info.regression.begin()); |
|
out_faces.push_back(info); |
|
} |
|
} |
|
} |
|
};// GAPI_OCV_KERNEL(RNetPostProc) |
|
|
|
GAPI_OCV_KERNEL(OCVONetPostProc, ONetPostProc) { |
|
static void run(const std::vector<Face> &in_faces, |
|
const std::vector<cv::Mat> &in_scores, |
|
const std::vector<cv::Mat> &in_regresssions, |
|
const std::vector<cv::Mat> &in_landmarks, |
|
const float threshold, |
|
std::vector<Face> &out_faces) { |
|
out_faces.clear(); |
|
for (unsigned int k = 0; k < in_faces.size(); ++k) { |
|
const float* scores_data = in_scores[k].ptr<float>(); |
|
const float* reg_data = in_regresssions[k].ptr<float>(); |
|
const float* landmark_data = in_landmarks[k].ptr<float>(); |
|
if (scores_data[1] >= threshold) { |
|
Face info = in_faces[k]; |
|
info.score = scores_data[1]; |
|
for (size_t i = 0; i < 4; ++i) { |
|
info.regression[i] = reg_data[i]; |
|
} |
|
float w = info.bbox.x2 - info.bbox.x1 + 1.0f; |
|
float h = info.bbox.y2 - info.bbox.y1 + 1.0f; |
|
|
|
for (size_t p = 0; p < NUM_PTS; ++p) { |
|
info.ptsCoords[2 * p] = |
|
info.bbox.x1 + static_cast<float>(landmark_data[NUM_PTS + p]) * w - 1; |
|
info.ptsCoords[2 * p + 1] = info.bbox.y1 + static_cast<float>(landmark_data[p]) * h - 1; |
|
} |
|
|
|
out_faces.push_back(info); |
|
} |
|
} |
|
} |
|
};// GAPI_OCV_KERNEL(ONetPostProc) |
|
|
|
GAPI_OCV_KERNEL(OCVSwapFaces, SwapFaces) { |
|
static void run(const std::vector<Face> &in_faces, |
|
std::vector<Face> &out_faces) { |
|
std::vector<Face> in_faces_copy = in_faces; |
|
out_faces.clear(); |
|
if (!in_faces_copy.empty()) { |
|
for (size_t i = 0; i < in_faces_copy.size(); ++i) { |
|
std::swap(in_faces_copy[i].bbox.x1, in_faces_copy[i].bbox.y1); |
|
std::swap(in_faces_copy[i].bbox.x2, in_faces_copy[i].bbox.y2); |
|
for (size_t p = 0; p < NUM_PTS; ++p) { |
|
std::swap(in_faces_copy[i].ptsCoords[2 * p], in_faces_copy[i].ptsCoords[2 * p + 1]); |
|
} |
|
} |
|
out_faces = in_faces_copy; |
|
} |
|
} |
|
};// GAPI_OCV_KERNEL(SwapFaces) |
|
|
|
} // anonymous namespace |
|
} // namespace custom |
|
|
|
namespace vis { |
|
namespace { |
|
void bbox(const cv::Mat& m, const cv::Rect& rc) { |
|
cv::rectangle(m, rc, cv::Scalar{ 0,255,0 }, 2, cv::LINE_8, 0); |
|
}; |
|
|
|
using rectPoints = std::pair<cv::Rect, std::vector<cv::Point>>; |
|
|
|
static cv::Mat drawRectsAndPoints(const cv::Mat& img, |
|
const std::vector<rectPoints> data) { |
|
cv::Mat outImg; |
|
img.copyTo(outImg); |
|
|
|
for (const auto& el : data) { |
|
vis::bbox(outImg, el.first); |
|
auto pts = el.second; |
|
for (size_t i = 0; i < pts.size(); ++i) { |
|
cv::circle(outImg, pts[i], 3, cv::Scalar(0, 255, 255), 1); |
|
} |
|
} |
|
return outImg; |
|
} |
|
} // anonymous namespace |
|
} // namespace vis |
|
|
|
|
|
//Infer helper function |
|
namespace { |
|
static inline std::tuple<cv::GMat, cv::GMat> run_mtcnn_p(cv::GMat &in, const std::string &id) { |
|
cv::GInferInputs inputs; |
|
inputs["data"] = in; |
|
auto outputs = cv::gapi::infer<cv::gapi::Generic>(id, inputs); |
|
auto regressions = outputs.at("conv4-2"); |
|
auto scores = outputs.at("prob1"); |
|
return std::make_tuple(regressions, scores); |
|
} |
|
|
|
static inline std::string get_pnet_level_name(const cv::Size &in_size) { |
|
return "MTCNNProposal_" + std::to_string(in_size.width) + "x" + std::to_string(in_size.height); |
|
} |
|
|
|
int calculate_scales(const cv::Size &input_size, std::vector<double> &out_scales, std::vector<cv::Size> &out_sizes ) { |
|
//calculate multi - scale and limit the maxinum side to 1000 |
|
//pr_scale: limit the maxinum side to 1000, < 1.0 |
|
double pr_scale = 1.0; |
|
double h = static_cast<double>(input_size.height); |
|
double w = static_cast<double>(input_size.width); |
|
if (std::min(w, h) > 1000) |
|
{ |
|
pr_scale = 1000.0 / std::min(h, w); |
|
w = w * pr_scale; |
|
h = h * pr_scale; |
|
} |
|
else if (std::max(w, h) < 1000) |
|
{ |
|
w = w * pr_scale; |
|
h = h * pr_scale; |
|
} |
|
//multi - scale |
|
out_scales.clear(); |
|
out_sizes.clear(); |
|
const double factor = 0.709; |
|
int factor_count = 0; |
|
double minl = std::min(h, w); |
|
while (minl >= 12) |
|
{ |
|
const double current_scale = pr_scale * std::pow(factor, factor_count); |
|
cv::Size current_size(static_cast<int>(static_cast<double>(input_size.width) * current_scale), |
|
static_cast<int>(static_cast<double>(input_size.height) * current_scale)); |
|
out_scales.push_back(current_scale); |
|
out_sizes.push_back(current_size); |
|
minl *= factor; |
|
factor_count += 1; |
|
} |
|
return factor_count; |
|
} |
|
|
|
int calculate_half_scales(const cv::Size &input_size, std::vector<double>& out_scales, std::vector<cv::Size>& out_sizes) { |
|
double pr_scale = 0.5; |
|
const double h = static_cast<double>(input_size.height); |
|
const double w = static_cast<double>(input_size.width); |
|
//multi - scale |
|
out_scales.clear(); |
|
out_sizes.clear(); |
|
const double factor = 0.5; |
|
int factor_count = 0; |
|
double minl = std::min(h, w); |
|
while (minl >= 12.0*2.0) |
|
{ |
|
const double current_scale = pr_scale; |
|
cv::Size current_size(static_cast<int>(static_cast<double>(input_size.width) * current_scale), |
|
static_cast<int>(static_cast<double>(input_size.height) * current_scale)); |
|
out_scales.push_back(current_scale); |
|
out_sizes.push_back(current_size); |
|
minl *= factor; |
|
factor_count += 1; |
|
pr_scale *= 0.5; |
|
} |
|
return factor_count; |
|
} |
|
|
|
const int MAX_PYRAMID_LEVELS = 13; |
|
////////////////////////////////////////////////////////////////////// |
|
} // anonymous namespace |
|
|
|
int main(int argc, char* argv[]) { |
|
cv::CommandLineParser cmd(argc, argv, keys); |
|
cmd.about(about); |
|
if (cmd.has("help")) { |
|
cmd.printMessage(); |
|
return 0; |
|
} |
|
const auto input_file_name = cmd.get<std::string>("input"); |
|
const auto model_path_p = cmd.get<std::string>("mtcnnpm"); |
|
const auto target_dev_p = cmd.get<std::string>("mtcnnpd"); |
|
const auto conf_thresh_p = cmd.get<float>("thrp"); |
|
const auto model_path_r = cmd.get<std::string>("mtcnnrm"); |
|
const auto target_dev_r = cmd.get<std::string>("mtcnnrd"); |
|
const auto conf_thresh_r = cmd.get<float>("thrr"); |
|
const auto model_path_o = cmd.get<std::string>("mtcnnom"); |
|
const auto target_dev_o = cmd.get<std::string>("mtcnnod"); |
|
const auto conf_thresh_o = cmd.get<float>("thro"); |
|
const auto use_half_scale = cmd.get<bool>("half_scale"); |
|
const auto streaming_queue_capacity = cmd.get<unsigned int>("queue_capacity"); |
|
|
|
std::vector<cv::Size> level_size; |
|
std::vector<double> scales; |
|
//MTCNN input size |
|
cv::VideoCapture cap; |
|
cap.open(input_file_name); |
|
if (!cap.isOpened()) |
|
CV_Assert(false); |
|
auto in_rsz = cv::Size{ static_cast<int>(cap.get(cv::CAP_PROP_FRAME_WIDTH)), |
|
static_cast<int>(cap.get(cv::CAP_PROP_FRAME_HEIGHT)) }; |
|
//Calculate scales, number of pyramid levels and sizes for PNet pyramid |
|
auto pyramid_levels = use_half_scale ? calculate_half_scales(in_rsz, scales, level_size) : |
|
calculate_scales(in_rsz, scales, level_size); |
|
CV_Assert(pyramid_levels <= MAX_PYRAMID_LEVELS); |
|
|
|
//Proposal part of MTCNN graph |
|
//Preprocessing BGR2RGB + transpose (NCWH is expected instead of NCHW) |
|
cv::GMat in_original; |
|
cv::GMat in_originalRGB = cv::gapi::BGR2RGB(in_original); |
|
cv::GOpaque<cv::Size> in_sz = cv::gapi::streaming::size(in_original); |
|
cv::GMat in_resized[MAX_PYRAMID_LEVELS]; |
|
cv::GMat in_transposed[MAX_PYRAMID_LEVELS]; |
|
cv::GMat regressions[MAX_PYRAMID_LEVELS]; |
|
cv::GMat scores[MAX_PYRAMID_LEVELS]; |
|
cv::GArray<custom::Face> nms_p_faces[MAX_PYRAMID_LEVELS]; |
|
cv::GArray<custom::Face> total_faces[MAX_PYRAMID_LEVELS]; |
|
cv::GArray<custom::Face> faces_init(std::vector<custom::Face>{}); |
|
|
|
//The very first PNet pyramid layer to init total_faces[0] |
|
in_resized[0] = cv::gapi::resize(in_originalRGB, level_size[0]); |
|
in_transposed[0] = cv::gapi::transpose(in_resized[0]); |
|
std::tie(regressions[0], scores[0]) = run_mtcnn_p(in_transposed[0], get_pnet_level_name(level_size[0])); |
|
cv::GArray<custom::Face> faces0 = custom::BuildFaces::on(scores[0], regressions[0], static_cast<float>(scales[0]), conf_thresh_p); |
|
cv::GArray<custom::Face> final_p_faces_for_bb2squares = custom::ApplyRegression::on(faces0, true); |
|
cv::GArray<custom::Face> final_faces_pnet0 = custom::BBoxesToSquares::on(final_p_faces_for_bb2squares); |
|
nms_p_faces[0] = custom::RunNMS::on(final_faces_pnet0, 0.5f, false); |
|
total_faces[0] = custom::AccumulatePyramidOutputs::on(faces_init, nms_p_faces[0]); |
|
//The rest PNet pyramid layers to accumlate all layers result in total_faces[PYRAMID_LEVELS - 1]] |
|
for (int i = 1; i < pyramid_levels; ++i) |
|
{ |
|
in_resized[i] = cv::gapi::resize(in_originalRGB, level_size[i]); |
|
in_transposed[i] = cv::gapi::transpose(in_resized[i]); |
|
std::tie(regressions[i], scores[i]) = run_mtcnn_p(in_transposed[i], get_pnet_level_name(level_size[i])); |
|
cv::GArray<custom::Face> faces = custom::BuildFaces::on(scores[i], regressions[i], static_cast<float>(scales[i]), conf_thresh_p); |
|
cv::GArray<custom::Face> final_p_faces_for_bb2squares_i = custom::ApplyRegression::on(faces, true); |
|
cv::GArray<custom::Face> final_faces_pnet_i = custom::BBoxesToSquares::on(final_p_faces_for_bb2squares_i); |
|
nms_p_faces[i] = custom::RunNMS::on(final_faces_pnet_i, 0.5f, false); |
|
total_faces[i] = custom::AccumulatePyramidOutputs::on(total_faces[i - 1], nms_p_faces[i]); |
|
} |
|
|
|
//Proposal post-processing |
|
cv::GArray<custom::Face> final_faces_pnet = custom::RunNMS::on(total_faces[pyramid_levels - 1], 0.7f, true); |
|
|
|
//Refinement part of MTCNN graph |
|
cv::GArray<cv::Rect> faces_roi_pnet = custom::R_O_NetPreProcGetROIs::on(final_faces_pnet, in_sz); |
|
cv::GArray<cv::GMat> regressionsRNet, scoresRNet; |
|
cv::GMat in_originalRGB_transposed = cv::gapi::transpose(in_originalRGB); |
|
std::tie(regressionsRNet, scoresRNet) = cv::gapi::infer<custom::MTCNNRefinement>(faces_roi_pnet, in_originalRGB_transposed); |
|
|
|
//Refinement post-processing |
|
cv::GArray<custom::Face> rnet_post_proc_faces = custom::RNetPostProc::on(final_faces_pnet, scoresRNet, regressionsRNet, conf_thresh_r); |
|
cv::GArray<custom::Face> nms07_r_faces_total = custom::RunNMS::on(rnet_post_proc_faces, 0.7f, false); |
|
cv::GArray<custom::Face> final_r_faces_for_bb2squares = custom::ApplyRegression::on(nms07_r_faces_total, true); |
|
cv::GArray<custom::Face> final_faces_rnet = custom::BBoxesToSquares::on(final_r_faces_for_bb2squares); |
|
|
|
//Output part of MTCNN graph |
|
cv::GArray<cv::Rect> faces_roi_rnet = custom::R_O_NetPreProcGetROIs::on(final_faces_rnet, in_sz); |
|
cv::GArray<cv::GMat> regressionsONet, scoresONet, landmarksONet; |
|
std::tie(regressionsONet, landmarksONet, scoresONet) = cv::gapi::infer<custom::MTCNNOutput>(faces_roi_rnet, in_originalRGB_transposed); |
|
|
|
//Output post-processing |
|
cv::GArray<custom::Face> onet_post_proc_faces = custom::ONetPostProc::on(final_faces_rnet, scoresONet, regressionsONet, landmarksONet, conf_thresh_o); |
|
cv::GArray<custom::Face> final_o_faces_for_nms07 = custom::ApplyRegression::on(onet_post_proc_faces, true); |
|
cv::GArray<custom::Face> nms07_o_faces_total = custom::RunNMS::on(final_o_faces_for_nms07, 0.7f, true); |
|
cv::GArray<custom::Face> final_faces_onet = custom::SwapFaces::on(nms07_o_faces_total); |
|
|
|
cv::GComputation graph_mtcnn(cv::GIn(in_original), cv::GOut(cv::gapi::copy(in_original), final_faces_onet)); |
|
|
|
// MTCNN Refinement detection network |
|
auto mtcnnr_net = cv::gapi::ie::Params<custom::MTCNNRefinement>{ |
|
model_path_r, // path to topology IR |
|
weights_path(model_path_r), // path to weights |
|
target_dev_r, // device specifier |
|
}.cfgOutputLayers({ "conv5-2", "prob1" }).cfgInputLayers({ "data" }); |
|
|
|
// MTCNN Output detection network |
|
auto mtcnno_net = cv::gapi::ie::Params<custom::MTCNNOutput>{ |
|
model_path_o, // path to topology IR |
|
weights_path(model_path_o), // path to weights |
|
target_dev_o, // device specifier |
|
}.cfgOutputLayers({ "conv6-2", "conv6-3", "prob1" }).cfgInputLayers({ "data" }); |
|
|
|
auto networks_mtcnn = cv::gapi::networks(mtcnnr_net, mtcnno_net); |
|
|
|
// MTCNN Proposal detection network |
|
for (int i = 0; i < pyramid_levels; ++i) |
|
{ |
|
std::string net_id = get_pnet_level_name(level_size[i]); |
|
std::vector<size_t> reshape_dims = { 1, 3, (size_t)level_size[i].width, (size_t)level_size[i].height }; |
|
cv::gapi::ie::Params<cv::gapi::Generic> mtcnnp_net{ |
|
net_id, // tag |
|
model_path_p, // path to topology IR |
|
weights_path(model_path_p), // path to weights |
|
target_dev_p, // device specifier |
|
}; |
|
mtcnnp_net.cfgInputReshape({ {"data", reshape_dims} }); |
|
networks_mtcnn += cv::gapi::networks(mtcnnp_net); |
|
} |
|
|
|
auto kernels_mtcnn = cv::gapi::kernels< custom::OCVBuildFaces |
|
, custom::OCVRunNMS |
|
, custom::OCVAccumulatePyramidOutputs |
|
, custom::OCVApplyRegression |
|
, custom::OCVBBoxesToSquares |
|
, custom::OCVR_O_NetPreProcGetROIs |
|
, custom::OCVRNetPostProc |
|
, custom::OCVONetPostProc |
|
, custom::OCVSwapFaces |
|
>(); |
|
auto mtcnn_args = cv::compile_args(networks_mtcnn, kernels_mtcnn); |
|
if (streaming_queue_capacity != 0) |
|
mtcnn_args += cv::compile_args(cv::gapi::streaming::queue_capacity{ streaming_queue_capacity }); |
|
auto pipeline_mtcnn = graph_mtcnn.compileStreaming(std::move(mtcnn_args)); |
|
|
|
std::cout << "Reading " << input_file_name << std::endl; |
|
// Input stream |
|
auto in_src = cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input_file_name); |
|
|
|
// Set the pipeline source & start the pipeline |
|
pipeline_mtcnn.setSource(cv::gin(in_src)); |
|
pipeline_mtcnn.start(); |
|
|
|
// Declare the output data & run the processing loop |
|
cv::TickMeter tm; |
|
cv::Mat image; |
|
std::vector<custom::Face> out_faces; |
|
|
|
tm.start(); |
|
int frames = 0; |
|
while (pipeline_mtcnn.pull(cv::gout(image, out_faces))) { |
|
frames++; |
|
std::cout << "Final Faces Size " << out_faces.size() << std::endl; |
|
std::vector<vis::rectPoints> data; |
|
// show the image with faces in it |
|
for (const auto& out_face : out_faces) { |
|
std::vector<cv::Point> pts; |
|
for (size_t p = 0; p < NUM_PTS; ++p) { |
|
pts.push_back( |
|
cv::Point(static_cast<int>(out_face.ptsCoords[2 * p]), static_cast<int>(out_face.ptsCoords[2 * p + 1]))); |
|
} |
|
auto rect = out_face.bbox.getRect(); |
|
auto d = std::make_pair(rect, pts); |
|
data.push_back(d); |
|
} |
|
// Visualize results on the frame |
|
auto resultImg = vis::drawRectsAndPoints(image, data); |
|
tm.stop(); |
|
const auto fps_str = std::to_string(frames / tm.getTimeSec()) + " FPS"; |
|
cv::putText(resultImg, fps_str, { 0,32 }, cv::FONT_HERSHEY_SIMPLEX, 1.0, { 0,255,0 }, 2); |
|
cv::imshow("Out", resultImg); |
|
cv::waitKey(1); |
|
out_faces.clear(); |
|
tm.start(); |
|
} |
|
tm.stop(); |
|
std::cout << "Processed " << frames << " frames" |
|
<< " (" << frames / tm.getTimeSec() << " FPS)" << std::endl; |
|
return 0; |
|
}
|
|
|