mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
194 lines
5.8 KiB
194 lines
5.8 KiB
/*********************************************************************** |
|
* Software License Agreement (BSD License) |
|
* |
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. |
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. |
|
* |
|
* THE BSD LICENSE |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*************************************************************************/ |
|
|
|
#ifndef OPENCV_FLANN_COMPOSITE_INDEX_H_ |
|
#define OPENCV_FLANN_COMPOSITE_INDEX_H_ |
|
|
|
#include "general.h" |
|
#include "nn_index.h" |
|
#include "kdtree_index.h" |
|
#include "kmeans_index.h" |
|
|
|
namespace cvflann |
|
{ |
|
|
|
/** |
|
* Index parameters for the CompositeIndex. |
|
*/ |
|
struct CompositeIndexParams : public IndexParams |
|
{ |
|
CompositeIndexParams(int trees = 4, int branching = 32, int iterations = 11, |
|
flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 ) |
|
{ |
|
(*this)["algorithm"] = FLANN_INDEX_KMEANS; |
|
// number of randomized trees to use (for kdtree) |
|
(*this)["trees"] = trees; |
|
// branching factor |
|
(*this)["branching"] = branching; |
|
// max iterations to perform in one kmeans clustering (kmeans tree) |
|
(*this)["iterations"] = iterations; |
|
// algorithm used for picking the initial cluster centers for kmeans tree |
|
(*this)["centers_init"] = centers_init; |
|
// cluster boundary index. Used when searching the kmeans tree |
|
(*this)["cb_index"] = cb_index; |
|
} |
|
}; |
|
|
|
|
|
/** |
|
* This index builds a kd-tree index and a k-means index and performs nearest |
|
* neighbour search both indexes. This gives a slight boost in search performance |
|
* as some of the neighbours that are missed by one index are found by the other. |
|
*/ |
|
template <typename Distance> |
|
class CompositeIndex : public NNIndex<Distance> |
|
{ |
|
public: |
|
typedef typename Distance::ElementType ElementType; |
|
typedef typename Distance::ResultType DistanceType; |
|
|
|
/** |
|
* Index constructor |
|
* @param inputData dataset containing the points to index |
|
* @param params Index parameters |
|
* @param d Distance functor |
|
* @return |
|
*/ |
|
CompositeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = CompositeIndexParams(), |
|
Distance d = Distance()) : index_params_(params) |
|
{ |
|
kdtree_index_ = new KDTreeIndex<Distance>(inputData, params, d); |
|
kmeans_index_ = new KMeansIndex<Distance>(inputData, params, d); |
|
|
|
} |
|
|
|
CompositeIndex(const CompositeIndex&); |
|
CompositeIndex& operator=(const CompositeIndex&); |
|
|
|
virtual ~CompositeIndex() |
|
{ |
|
delete kdtree_index_; |
|
delete kmeans_index_; |
|
} |
|
|
|
/** |
|
* @return The index type |
|
*/ |
|
flann_algorithm_t getType() const |
|
{ |
|
return FLANN_INDEX_COMPOSITE; |
|
} |
|
|
|
/** |
|
* @return Size of the index |
|
*/ |
|
size_t size() const |
|
{ |
|
return kdtree_index_->size(); |
|
} |
|
|
|
/** |
|
* \returns The dimensionality of the features in this index. |
|
*/ |
|
size_t veclen() const |
|
{ |
|
return kdtree_index_->veclen(); |
|
} |
|
|
|
/** |
|
* \returns The amount of memory (in bytes) used by the index. |
|
*/ |
|
int usedMemory() const |
|
{ |
|
return kmeans_index_->usedMemory() + kdtree_index_->usedMemory(); |
|
} |
|
|
|
/** |
|
* \brief Builds the index |
|
*/ |
|
void buildIndex() |
|
{ |
|
Logger::info("Building kmeans tree...\n"); |
|
kmeans_index_->buildIndex(); |
|
Logger::info("Building kdtree tree...\n"); |
|
kdtree_index_->buildIndex(); |
|
} |
|
|
|
/** |
|
* \brief Saves the index to a stream |
|
* \param stream The stream to save the index to |
|
*/ |
|
void saveIndex(FILE* stream) |
|
{ |
|
kmeans_index_->saveIndex(stream); |
|
kdtree_index_->saveIndex(stream); |
|
} |
|
|
|
/** |
|
* \brief Loads the index from a stream |
|
* \param stream The stream from which the index is loaded |
|
*/ |
|
void loadIndex(FILE* stream) |
|
{ |
|
kmeans_index_->loadIndex(stream); |
|
kdtree_index_->loadIndex(stream); |
|
} |
|
|
|
/** |
|
* \returns The index parameters |
|
*/ |
|
IndexParams getParameters() const |
|
{ |
|
return index_params_; |
|
} |
|
|
|
/** |
|
* \brief Method that searches for nearest-neighbours |
|
*/ |
|
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) |
|
{ |
|
kmeans_index_->findNeighbors(result, vec, searchParams); |
|
kdtree_index_->findNeighbors(result, vec, searchParams); |
|
} |
|
|
|
private: |
|
/** The k-means index */ |
|
KMeansIndex<Distance>* kmeans_index_; |
|
|
|
/** The kd-tree index */ |
|
KDTreeIndex<Distance>* kdtree_index_; |
|
|
|
/** The index parameters */ |
|
const IndexParams index_params_; |
|
}; |
|
|
|
} |
|
|
|
#endif //OPENCV_FLANN_COMPOSITE_INDEX_H_
|
|
|