mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
750 lines
29 KiB
750 lines
29 KiB
Feature Detection and Description |
|
================================= |
|
|
|
.. highlight:: cpp |
|
|
|
FAST |
|
-------- |
|
Detects corners using the FAST algorithm |
|
|
|
.. ocv:function:: void FAST( const Mat& image, vector<KeyPoint>& keypoints, int threshold, bool nonmaxSupression=true ) |
|
|
|
:param image: Image where keypoints (corners) are detected. |
|
|
|
:param keypoints: Keypoints detected on the image. |
|
|
|
:param threshold: Threshold on difference between intensity of the central pixel and pixels on a circle around this pixel. See the algorithm description below. |
|
|
|
:param nonmaxSupression: If it is true, non-maximum supression is applied to detected corners (keypoints). |
|
|
|
Detects corners using the FAST algorithm by E. Rosten (*Machine Learning for High-speed Corner Detection*, 2006). |
|
|
|
|
|
MSER |
|
---- |
|
.. ocv:class:: MSER |
|
|
|
Maximally stable extremal region extractor. :: |
|
|
|
class MSER : public CvMSERParams |
|
{ |
|
public: |
|
// default constructor |
|
MSER(); |
|
// constructor that initializes all the algorithm parameters |
|
MSER( int _delta, int _min_area, int _max_area, |
|
float _max_variation, float _min_diversity, |
|
int _max_evolution, double _area_threshold, |
|
double _min_margin, int _edge_blur_size ); |
|
// runs the extractor on the specified image; returns the MSERs, |
|
// each encoded as a contour (vector<Point>, see findContours) |
|
// the optional mask marks the area where MSERs are searched for |
|
void operator()( const Mat& image, vector<vector<Point> >& msers, const Mat& mask ) const; |
|
}; |
|
|
|
The class encapsulates all the parameters of the MSER extraction algorithm (see |
|
http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions). Also see http://opencv.willowgarage.com/wiki/documentation/cpp/features2d/MSER for usefull comments and parameters description. |
|
|
|
|
|
StarDetector |
|
------------ |
|
.. ocv:class:: StarDetector |
|
|
|
Class implementing the ``Star`` keypoint detector, a modified version of the ``CenSurE`` keypoint detector described in [Agrawal08]_. |
|
|
|
.. [Agrawal08] Agrawal, M. and Konolige, K. and Blas, M.R. "CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching", ECCV08, 2008 |
|
|
|
StarDetector::StarDetector |
|
-------------------------- |
|
The Star Detector constructor |
|
|
|
.. ocv:function:: StarDetector::StarDetector() |
|
|
|
.. ocv:function:: StarDetector::StarDetector(int maxSize, int responseThreshold, int lineThresholdProjected, int lineThresholdBinarized, int suppressNonmaxSize) |
|
|
|
.. ocv:pyfunction:: cv2.StarDetector(maxSize, responseThreshold, lineThresholdProjected, lineThresholdBinarized, suppressNonmaxSize) -> <StarDetector object> |
|
|
|
:param maxSize: maximum size of the features. The following values are supported: 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128. In the case of a different value the result is undefined. |
|
|
|
:param responseThreshold: threshold for the approximated laplacian, used to eliminate weak features. The larger it is, the less features will be retrieved |
|
|
|
:param lineThresholdProjected: another threshold for the laplacian to eliminate edges |
|
|
|
:param lineThresholdBinarized: yet another threshold for the feature size to eliminate edges. The larger the 2nd threshold, the more points you get. |
|
|
|
StarDetector::operator() |
|
------------------------ |
|
Finds keypoints in an image |
|
|
|
.. ocv:function:: void StarDetector::operator()(const Mat& image, vector<KeyPoint>& keypoints) |
|
|
|
.. ocv:pyfunction:: cv2.StarDetector.detect(image) -> keypoints |
|
|
|
.. ocv:cfunction:: CvSeq* cvGetStarKeypoints( const CvArr* image, CvMemStorage* storage, CvStarDetectorParams params=cvStarDetectorParams() ) |
|
|
|
.. ocv:pyoldfunction:: cv.GetStarKeypoints(image, storage, params)-> keypoints |
|
|
|
:param image: The input 8-bit grayscale image |
|
|
|
:param keypoints: The output vector of keypoints |
|
|
|
:param storage: The memory storage used to store the keypoints (OpenCV 1.x API only) |
|
|
|
:param params: The algorithm parameters stored in ``CvStarDetectorParams`` (OpenCV 1.x API only) |
|
|
|
|
|
SIFT |
|
---- |
|
.. ocv:class:: SIFT |
|
|
|
Class for extracting keypoints and computing descriptors using the Scale Invariant Feature Transform (SIFT) approach. :: |
|
|
|
class CV_EXPORTS SIFT |
|
{ |
|
public: |
|
struct CommonParams |
|
{ |
|
static const int DEFAULT_NOCTAVES = 4; |
|
static const int DEFAULT_NOCTAVE_LAYERS = 3; |
|
static const int DEFAULT_FIRST_OCTAVE = -1; |
|
enum{ FIRST_ANGLE = 0, AVERAGE_ANGLE = 1 }; |
|
|
|
CommonParams(); |
|
CommonParams( int _nOctaves, int _nOctaveLayers, int _firstOctave, |
|
int _angleMode ); |
|
int nOctaves, nOctaveLayers, firstOctave; |
|
int angleMode; |
|
}; |
|
|
|
struct DetectorParams |
|
{ |
|
static double GET_DEFAULT_THRESHOLD() |
|
{ return 0.04 / SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS / 2.0; } |
|
static double GET_DEFAULT_EDGE_THRESHOLD() { return 10.0; } |
|
|
|
DetectorParams(); |
|
DetectorParams( double _threshold, double _edgeThreshold ); |
|
double threshold, edgeThreshold; |
|
}; |
|
|
|
struct DescriptorParams |
|
{ |
|
static double GET_DEFAULT_MAGNIFICATION() { return 3.0; } |
|
static const bool DEFAULT_IS_NORMALIZE = true; |
|
static const int DESCRIPTOR_SIZE = 128; |
|
|
|
DescriptorParams(); |
|
DescriptorParams( double _magnification, bool _isNormalize, |
|
bool _recalculateAngles ); |
|
double magnification; |
|
bool isNormalize; |
|
bool recalculateAngles; |
|
}; |
|
|
|
SIFT(); |
|
//! sift-detector constructor |
|
SIFT( double _threshold, double _edgeThreshold, |
|
int _nOctaves=CommonParams::DEFAULT_NOCTAVES, |
|
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS, |
|
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE, |
|
int _angleMode=CommonParams::FIRST_ANGLE ); |
|
//! sift-descriptor constructor |
|
SIFT( double _magnification, bool _isNormalize=true, |
|
bool _recalculateAngles = true, |
|
int _nOctaves=CommonParams::DEFAULT_NOCTAVES, |
|
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS, |
|
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE, |
|
int _angleMode=CommonParams::FIRST_ANGLE ); |
|
SIFT( const CommonParams& _commParams, |
|
const DetectorParams& _detectorParams = DetectorParams(), |
|
const DescriptorParams& _descriptorParams = DescriptorParams() ); |
|
|
|
//! returns the descriptor size in floats (128) |
|
int descriptorSize() const { return DescriptorParams::DESCRIPTOR_SIZE; } |
|
//! finds the keypoints using the SIFT algorithm |
|
void operator()(const Mat& img, const Mat& mask, |
|
vector<KeyPoint>& keypoints) const; |
|
//! finds the keypoints and computes descriptors for them using SIFT algorithm. |
|
//! Optionally it can compute descriptors for the user-provided keypoints |
|
void operator()(const Mat& img, const Mat& mask, |
|
vector<KeyPoint>& keypoints, |
|
Mat& descriptors, |
|
bool useProvidedKeypoints=false) const; |
|
|
|
CommonParams getCommonParams () const { return commParams; } |
|
DetectorParams getDetectorParams () const { return detectorParams; } |
|
DescriptorParams getDescriptorParams () const { return descriptorParams; } |
|
protected: |
|
... |
|
}; |
|
|
|
|
|
|
|
|
|
SURF |
|
---- |
|
.. ocv:class:: SURF |
|
|
|
Class for extracting Speeded Up Robust Features from an image [Bay06]_. The class is derived from ``CvSURFParams`` structure, which specifies the algorithm parameters: |
|
|
|
.. ocv:member:: int extended |
|
|
|
* 0 means that the basic descriptors (64 elements each) shall be computed |
|
* 1 means that the extended descriptors (128 elements each) shall be computed |
|
|
|
.. ocv:member:: int upright |
|
|
|
* 0 means that detector computes orientation of each feature. |
|
* 1 means that the orientation is not computed (which is much, much faster). For example, if you match images from a stereo pair, or do image stitching, the matched features likely have very similar angles, and you can speed up feature extraction by setting ``upright=1``. |
|
|
|
.. ocv:member:: double hessianThreshold |
|
|
|
Threshold for the keypoint detector. Only features, whose hessian is larger than ``hessianThreshold`` are retained by the detector. Therefore, the larger the value, the less keypoints you will get. A good default value could be from 300 to 500, depending from the image contrast. |
|
|
|
.. ocv:member:: int nOctaves |
|
|
|
The number of a gaussian pyramid octaves that the detector uses. It is set to 4 by default. If you want to get very large features, use the larger value. If you want just small features, decrease it. |
|
|
|
.. ocv:member:: int nOctaveLayers |
|
|
|
The number of images within each octave of a gaussian pyramid. It is set to 2 by default. |
|
|
|
|
|
.. [Bay06] Bay, H. and Tuytelaars, T. and Van Gool, L. "SURF: Speeded Up Robust Features", 9th European Conference on Computer Vision, 2006 |
|
|
|
|
|
SURF::SURF |
|
---------- |
|
The SURF extractor constructors. |
|
|
|
.. ocv:function:: SURF::SURF() |
|
|
|
.. ocv:function:: SURF::SURF(double hessianThreshold, int nOctaves=4, int nOctaveLayers=2, bool extended=false, bool upright=false) |
|
|
|
.. ocv:pyfunction:: cv2.SURF(_hessianThreshold[, _nOctaves[, _nOctaveLayers[, _extended[, _upright]]]]) -> <SURF object> |
|
|
|
:param hessianThreshold: Threshold for hessian keypoint detector used in SURF. |
|
|
|
:param nOctaves: Number of pyramid octaves the keypoint detector will use. |
|
|
|
:param nOctaveLayers: Number of octave layers within each octave. |
|
|
|
:param extended: Extended descriptor flag (true - use extended 128-element descriptors; false - use 64-element descriptors). |
|
|
|
:param upright: Up-right or rotated features flag (true - do not compute orientation of features; false - compute orientation). |
|
|
|
|
|
SURF::operator() |
|
---------------- |
|
Detects keypoints and computes SURF descriptors for them. |
|
|
|
.. ocv:function:: void SURF::operator()(const Mat& image, const Mat& mask, vector<KeyPoint>& keypoints) |
|
.. ocv:function:: void SURF::operator()(const Mat& image, const Mat& mask, vector<KeyPoint>& keypoints, vector<float>& descriptors, bool useProvidedKeypoints=false) |
|
|
|
.. ocv:pyfunction:: cv2.SURF.detect(img, mask) -> keypoints |
|
.. ocv:pyfunction:: cv2.SURF.detect(img, mask[, useProvidedKeypoints]) -> keypoints, descriptors |
|
|
|
.. ocv:cfunction:: void cvExtractSURF( const CvArr* image, const CvArr* mask, CvSeq** keypoints, CvSeq** descriptors, CvMemStorage* storage, CvSURFParams params ) |
|
|
|
.. ocv:pyoldfunction:: cv.ExtractSURF(image, mask, storage, params)-> (keypoints, descriptors) |
|
|
|
:param image: Input 8-bit grayscale image |
|
|
|
:param mask: Optional input mask that marks the regions where we should detect features. |
|
|
|
:param keypoints: The input/output vector of keypoints |
|
|
|
:param descriptors: The output concatenated vectors of descriptors. Each descriptor is 64- or 128-element vector, as returned by ``SURF::descriptorSize()``. So the total size of ``descriptors`` will be ``keypoints.size()*descriptorSize()``. |
|
|
|
:param useProvidedKeypoints: Boolean flag. If it is true, the keypoint detector is not run. Instead, the provided vector of keypoints is used and the algorithm just computes their descriptors. |
|
|
|
:param storage: Memory storage for the output keypoints and descriptors in OpenCV 1.x API. |
|
|
|
:param params: SURF algorithm parameters in OpenCV 1.x API. |
|
|
|
|
|
ORB |
|
---- |
|
.. ocv:class:: ORB |
|
|
|
Class for extracting ORB features and descriptors from an image. :: |
|
|
|
class ORB |
|
{ |
|
public: |
|
/** The patch sizes that can be used (only one right now) */ |
|
struct CommonParams |
|
{ |
|
enum { DEFAULT_N_LEVELS = 3, DEFAULT_FIRST_LEVEL = 0}; |
|
|
|
/** default constructor */ |
|
CommonParams(float scale_factor = 1.2f, unsigned int n_levels = DEFAULT_N_LEVELS, |
|
int edge_threshold = 31, unsigned int first_level = DEFAULT_FIRST_LEVEL); |
|
void read(const FileNode& fn); |
|
void write(FileStorage& fs) const; |
|
|
|
/** Coefficient by which we divide the dimensions from one scale pyramid level to the next */ |
|
float scale_factor_; |
|
/** The number of levels in the scale pyramid */ |
|
unsigned int n_levels_; |
|
/** The level at which the image is given |
|
* if 1, that means we will also look at the image scale_factor_ times bigger |
|
*/ |
|
unsigned int first_level_; |
|
/** How far from the boundary the points should be */ |
|
int edge_threshold_; |
|
}; |
|
|
|
// c:function::default constructor |
|
ORB(); |
|
// constructor that initializes all the algorithm parameters |
|
ORB( const CommonParams detector_params ); |
|
// returns the number of elements in each descriptor (32 bytes) |
|
int descriptorSize() const; |
|
// detects keypoints using ORB |
|
void operator()(const Mat& img, const Mat& mask, |
|
vector<KeyPoint>& keypoints) const; |
|
// detects ORB keypoints and computes the ORB descriptors for them; |
|
// output vector "descriptors" stores elements of descriptors and has size |
|
// equal descriptorSize()*keypoints.size() as each descriptor is |
|
// descriptorSize() elements of this vector. |
|
void operator()(const Mat& img, const Mat& mask, |
|
vector<KeyPoint>& keypoints, |
|
cv::Mat& descriptors, |
|
bool useProvidedKeypoints=false) const; |
|
}; |
|
|
|
The class implements ORB. |
|
|
|
|
|
|
|
|
|
|
|
RandomizedTree |
|
-------------- |
|
.. ocv:class:: RandomizedTree |
|
|
|
Class containing a base structure for ``RTreeClassifier``. :: |
|
|
|
class CV_EXPORTS RandomizedTree |
|
{ |
|
public: |
|
friend class RTreeClassifier; |
|
|
|
RandomizedTree(); |
|
~RandomizedTree(); |
|
|
|
void train(std::vector<BaseKeypoint> const& base_set, |
|
RNG &rng, int depth, int views, |
|
size_t reduced_num_dim, int num_quant_bits); |
|
void train(std::vector<BaseKeypoint> const& base_set, |
|
RNG &rng, PatchGenerator &make_patch, int depth, |
|
int views, size_t reduced_num_dim, int num_quant_bits); |
|
|
|
// next two functions are EXPERIMENTAL |
|
//(do not use unless you know exactly what you do) |
|
static void quantizeVector(float *vec, int dim, int N, float bnds[2], |
|
int clamp_mode=0); |
|
static void quantizeVector(float *src, int dim, int N, float bnds[2], |
|
uchar *dst); |
|
|
|
// patch_data must be a 32x32 array (no row padding) |
|
float* getPosterior(uchar* patch_data); |
|
const float* getPosterior(uchar* patch_data) const; |
|
uchar* getPosterior2(uchar* patch_data); |
|
|
|
void read(const char* file_name, int num_quant_bits); |
|
void read(std::istream &is, int num_quant_bits); |
|
void write(const char* file_name) const; |
|
void write(std::ostream &os) const; |
|
|
|
int classes() { return classes_; } |
|
int depth() { return depth_; } |
|
|
|
void discardFloatPosteriors() { freePosteriors(1); } |
|
|
|
inline void applyQuantization(int num_quant_bits) |
|
{ makePosteriors2(num_quant_bits); } |
|
|
|
private: |
|
int classes_; |
|
int depth_; |
|
int num_leaves_; |
|
std::vector<RTreeNode> nodes_; |
|
float **posteriors_; // 16-byte aligned posteriors |
|
uchar **posteriors2_; // 16-byte aligned posteriors |
|
std::vector<int> leaf_counts_; |
|
|
|
void createNodes(int num_nodes, RNG &rng); |
|
void allocPosteriorsAligned(int num_leaves, int num_classes); |
|
void freePosteriors(int which); |
|
// which: 1=posteriors_, 2=posteriors2_, 3=both |
|
void init(int classes, int depth, RNG &rng); |
|
void addExample(int class_id, uchar* patch_data); |
|
void finalize(size_t reduced_num_dim, int num_quant_bits); |
|
int getIndex(uchar* patch_data) const; |
|
inline float* getPosteriorByIndex(int index); |
|
inline uchar* getPosteriorByIndex2(int index); |
|
inline const float* getPosteriorByIndex(int index) const; |
|
void convertPosteriorsToChar(); |
|
void makePosteriors2(int num_quant_bits); |
|
void compressLeaves(size_t reduced_num_dim); |
|
void estimateQuantPercForPosteriors(float perc[2]); |
|
}; |
|
|
|
|
|
|
|
RandomizedTree::train |
|
------------------------- |
|
Trains a randomized tree using an input set of keypoints. |
|
|
|
.. ocv:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits) |
|
|
|
.. ocv:function:: void train(std::vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits) |
|
|
|
:param base_set: Vector of the ``BaseKeypoint`` type. It contains image keypoints used for training. |
|
|
|
:param rng: Random-number generator used for training. |
|
|
|
:param make_patch: Patch generator used for training. |
|
|
|
:param depth: Maximum tree depth. |
|
|
|
:param views: Number of random views of each keypoint neighborhood to generate. |
|
|
|
:param reduced_num_dim: Number of dimensions used in the compressed signature. |
|
|
|
:param num_quant_bits: Number of bits used for quantization. |
|
|
|
|
|
|
|
RandomizedTree::read |
|
------------------------ |
|
Reads a pre-saved randomized tree from a file or stream. |
|
|
|
.. ocv:function:: read(const char* file_name, int num_quant_bits) |
|
|
|
.. ocv:function:: read(std::istream &is, int num_quant_bits) |
|
|
|
:param file_name: Name of the file that contains randomized tree data. |
|
|
|
:param is: Input stream associated with the file that contains randomized tree data. |
|
|
|
:param num_quant_bits: Number of bits used for quantization. |
|
|
|
|
|
|
|
RandomizedTree::write |
|
------------------------- |
|
Writes the current randomized tree to a file or stream. |
|
|
|
.. ocv:function:: void write(const char* file_name) const |
|
|
|
.. ocv:function:: void write(std::ostream &os) const |
|
|
|
:param file_name: Name of the file where randomized tree data is stored. |
|
|
|
:param is: Output stream associated with the file where randomized tree data is stored. |
|
|
|
|
|
|
|
RandomizedTree::applyQuantization |
|
------------------------------------- |
|
.. ocv:function:: void applyQuantization(int num_quant_bits) |
|
|
|
Applies quantization to the current randomized tree. |
|
|
|
:param num_quant_bits: Number of bits used for quantization. |
|
|
|
|
|
RTreeNode |
|
--------- |
|
.. ocv:class:: RTreeNode |
|
|
|
Class containing a base structure for ``RandomizedTree``. :: |
|
|
|
struct RTreeNode |
|
{ |
|
short offset1, offset2; |
|
|
|
RTreeNode() {} |
|
|
|
RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2) |
|
: offset1(y1*PATCH_SIZE + x1), |
|
offset2(y2*PATCH_SIZE + x2) |
|
{} |
|
|
|
//! Left child on 0, right child on 1 |
|
inline bool operator() (uchar* patch_data) const |
|
{ |
|
return patch_data[offset1] > patch_data[offset2]; |
|
} |
|
}; |
|
|
|
|
|
|
|
RTreeClassifier |
|
--------------- |
|
.. ocv:class:: RTreeClassifier |
|
|
|
Class containing ``RTreeClassifier``. It represents the Calonder descriptor originally introduced by Michael Calonder. :: |
|
|
|
class CV_EXPORTS RTreeClassifier |
|
{ |
|
public: |
|
static const int DEFAULT_TREES = 48; |
|
static const size_t DEFAULT_NUM_QUANT_BITS = 4; |
|
|
|
RTreeClassifier(); |
|
|
|
void train(std::vector<BaseKeypoint> const& base_set, |
|
RNG &rng, |
|
int num_trees = RTreeClassifier::DEFAULT_TREES, |
|
int depth = DEFAULT_DEPTH, |
|
int views = DEFAULT_VIEWS, |
|
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, |
|
int num_quant_bits = DEFAULT_NUM_QUANT_BITS, |
|
bool print_status = true); |
|
void train(std::vector<BaseKeypoint> const& base_set, |
|
RNG &rng, |
|
PatchGenerator &make_patch, |
|
int num_trees = RTreeClassifier::DEFAULT_TREES, |
|
int depth = DEFAULT_DEPTH, |
|
int views = DEFAULT_VIEWS, |
|
size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, |
|
int num_quant_bits = DEFAULT_NUM_QUANT_BITS, |
|
bool print_status = true); |
|
|
|
// sig must point to a memory block of at least |
|
//classes()*sizeof(float|uchar) bytes |
|
void getSignature(IplImage *patch, uchar *sig); |
|
void getSignature(IplImage *patch, float *sig); |
|
void getSparseSignature(IplImage *patch, float *sig, |
|
float thresh); |
|
|
|
static int countNonZeroElements(float *vec, int n, double tol=1e-10); |
|
static inline void safeSignatureAlloc(uchar **sig, int num_sig=1, |
|
int sig_len=176); |
|
static inline uchar* safeSignatureAlloc(int num_sig=1, |
|
int sig_len=176); |
|
|
|
inline int classes() { return classes_; } |
|
inline int original_num_classes() |
|
{ return original_num_classes_; } |
|
|
|
void setQuantization(int num_quant_bits); |
|
void discardFloatPosteriors(); |
|
|
|
void read(const char* file_name); |
|
void read(std::istream &is); |
|
void write(const char* file_name) const; |
|
void write(std::ostream &os) const; |
|
|
|
std::vector<RandomizedTree> trees_; |
|
|
|
private: |
|
int classes_; |
|
int num_quant_bits_; |
|
uchar **posteriors_; |
|
ushort *ptemp_; |
|
int original_num_classes_; |
|
bool keep_floats_; |
|
}; |
|
|
|
|
|
|
|
RTreeClassifier::train |
|
-------------------------- |
|
Trains a randomized tree classifier using an input set of keypoints. |
|
|
|
.. ocv:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true) |
|
|
|
.. ocv:function:: void train(vector<BaseKeypoint> const& base_set, RNG& rng, PatchGenerator& make_patch, int num_trees = RTreeClassifier::DEFAULT_TREES, int depth = DEFAULT_DEPTH, int views = DEFAULT_VIEWS, size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM, int num_quant_bits = DEFAULT_NUM_QUANT_BITS, bool print_status = true) |
|
|
|
:param base_set: Vector of the ``BaseKeypoint`` type. It contains image keypoints used for training. |
|
|
|
:param rng: Random-number generator used for training. |
|
|
|
:param make_patch: Patch generator used for training. |
|
|
|
:param num_trees: Number of randomized trees used in ``RTreeClassificator`` . |
|
|
|
:param depth: Maximum tree depth. |
|
|
|
:param views: Number of random views of each keypoint neighborhood to generate. |
|
|
|
:param reduced_num_dim: Number of dimensions used in the compressed signature. |
|
|
|
:param num_quant_bits: Number of bits used for quantization. |
|
|
|
:param print_status: Current status of training printed on the console. |
|
|
|
|
|
|
|
RTreeClassifier::getSignature |
|
--------------------------------- |
|
Returns a signature for an image patch. |
|
|
|
.. ocv:function:: void getSignature(IplImage *patch, uchar *sig) |
|
|
|
.. ocv:function:: void getSignature(IplImage *patch, float *sig) |
|
|
|
:param patch: Image patch to calculate the signature for. |
|
:param sig: Output signature (array dimension is ``reduced_num_dim)`` . |
|
|
|
|
|
|
|
RTreeClassifier::getSparseSignature |
|
--------------------------------------- |
|
Returns a sparse signature for an image patch |
|
|
|
.. ocv:function:: void getSparseSignature(IplImage *patch, float *sig, float thresh) |
|
|
|
:param patch: Image patch to calculate the signature for. |
|
|
|
:param sig: Output signature (array dimension is ``reduced_num_dim)`` . |
|
|
|
:param thresh: Threshold used for compressing the signature. |
|
|
|
Returns a signature for an image patch similarly to ``getSignature`` but uses a threshold for removing all signature elements below the threshold so that the signature is compressed. |
|
|
|
|
|
RTreeClassifier::countNonZeroElements |
|
----------------------------------------- |
|
Returns the number of non-zero elements in an input array. |
|
|
|
.. ocv:function:: static int countNonZeroElements(float *vec, int n, double tol=1e-10) |
|
|
|
:param vec: Input vector containing float elements. |
|
|
|
:param n: Input vector size. |
|
|
|
:param tol: Threshold used for counting elements. All elements less than ``tol`` are considered as zero elements. |
|
|
|
|
|
|
|
RTreeClassifier::read |
|
------------------------- |
|
Reads a pre-saved ``RTreeClassifier`` from a file or stream. |
|
|
|
.. ocv:function:: read(const char* file_name) |
|
|
|
.. ocv:function:: read(std::istream& is) |
|
|
|
:param file_name: Name of the file that contains randomized tree data. |
|
|
|
:param is: Input stream associated with the file that contains randomized tree data. |
|
|
|
|
|
|
|
RTreeClassifier::write |
|
-------------------------- |
|
Writes the current ``RTreeClassifier`` to a file or stream. |
|
|
|
.. ocv:function:: void write(const char* file_name) const |
|
|
|
.. ocv:function:: void write(std::ostream &os) const |
|
|
|
:param file_name: Name of the file where randomized tree data is stored. |
|
|
|
:param os: Output stream associated with the file where randomized tree data is stored. |
|
|
|
|
|
|
|
RTreeClassifier::setQuantization |
|
------------------------------------ |
|
Applies quantization to the current randomized tree. |
|
|
|
.. ocv:function:: void setQuantization(int num_quant_bits) |
|
|
|
:param num_quant_bits: Number of bits used for quantization. |
|
|
|
The example below demonstrates the usage of ``RTreeClassifier`` for matching the features. The features are extracted from the test and train images with SURF. Output is |
|
:math:`best\_corr` and |
|
:math:`best\_corr\_idx` arrays that keep the best probabilities and corresponding features indices for every train feature. :: |
|
|
|
CvMemStorage* storage = cvCreateMemStorage(0); |
|
CvSeq *objectKeypoints = 0, *objectDescriptors = 0; |
|
CvSeq *imageKeypoints = 0, *imageDescriptors = 0; |
|
CvSURFParams params = cvSURFParams(500, 1); |
|
cvExtractSURF( test_image, 0, &imageKeypoints, &imageDescriptors, |
|
storage, params ); |
|
cvExtractSURF( train_image, 0, &objectKeypoints, &objectDescriptors, |
|
storage, params ); |
|
|
|
RTreeClassifier detector; |
|
int patch_width = PATCH_SIZE; |
|
iint patch_height = PATCH_SIZE; |
|
vector<BaseKeypoint> base_set; |
|
int i=0; |
|
CvSURFPoint* point; |
|
for (i=0;i<(n_points > 0 ? n_points : objectKeypoints->total);i++) |
|
{ |
|
point=(CvSURFPoint*)cvGetSeqElem(objectKeypoints,i); |
|
base_set.push_back( |
|
BaseKeypoint(point->pt.x,point->pt.y,train_image)); |
|
} |
|
|
|
//Detector training |
|
RNG rng( cvGetTickCount() ); |
|
PatchGenerator gen(0,255,2,false,0.7,1.3,-CV_PI/3,CV_PI/3, |
|
-CV_PI/3,CV_PI/3); |
|
|
|
printf("RTree Classifier training...n"); |
|
detector.train(base_set,rng,gen,24,DEFAULT_DEPTH,2000, |
|
(int)base_set.size(), detector.DEFAULT_NUM_QUANT_BITS); |
|
printf("Donen"); |
|
|
|
float* signature = new float[detector.original_num_classes()]; |
|
float* best_corr; |
|
int* best_corr_idx; |
|
if (imageKeypoints->total > 0) |
|
{ |
|
best_corr = new float[imageKeypoints->total]; |
|
best_corr_idx = new int[imageKeypoints->total]; |
|
} |
|
|
|
for(i=0; i < imageKeypoints->total; i++) |
|
{ |
|
point=(CvSURFPoint*)cvGetSeqElem(imageKeypoints,i); |
|
int part_idx = -1; |
|
float prob = 0.0f; |
|
|
|
CvRect roi = cvRect((int)(point->pt.x) - patch_width/2, |
|
(int)(point->pt.y) - patch_height/2, |
|
patch_width, patch_height); |
|
cvSetImageROI(test_image, roi); |
|
roi = cvGetImageROI(test_image); |
|
if(roi.width != patch_width || roi.height != patch_height) |
|
{ |
|
best_corr_idx[i] = part_idx; |
|
best_corr[i] = prob; |
|
} |
|
else |
|
{ |
|
cvSetImageROI(test_image, roi); |
|
IplImage* roi_image = |
|
cvCreateImage(cvSize(roi.width, roi.height), |
|
test_image->depth, test_image->nChannels); |
|
cvCopy(test_image,roi_image); |
|
|
|
detector.getSignature(roi_image, signature); |
|
for (int j = 0; j< detector.original_num_classes();j++) |
|
{ |
|
if (prob < signature[j]) |
|
{ |
|
part_idx = j; |
|
prob = signature[j]; |
|
} |
|
} |
|
|
|
best_corr_idx[i] = part_idx; |
|
best_corr[i] = prob; |
|
|
|
if (roi_image) |
|
cvReleaseImage(&roi_image); |
|
} |
|
cvResetImageROI(test_image); |
|
} |
|
|
|
..
|
|
|