mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1433 lines
31 KiB
1433 lines
31 KiB
#include <stdexcept> |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/calib3d.hpp" |
|
#include "opencv2/video.hpp" |
|
#include "opencv2/cuda.hpp" |
|
#include "opencv2/cudaimgproc.hpp" |
|
#include "opencv2/cudaarithm.hpp" |
|
#include "opencv2/cudawarping.hpp" |
|
#include "opencv2/cudafeatures2d.hpp" |
|
#include "opencv2/cudafilters.hpp" |
|
#include "opencv2/cudaoptflow.hpp" |
|
#include "opencv2/cudabgsegm.hpp" |
|
|
|
#include "opencv2/legacy.hpp" |
|
#include "performance.h" |
|
|
|
#include "opencv2/opencv_modules.hpp" |
|
|
|
#ifdef HAVE_OPENCV_NONFREE |
|
#include "opencv2/nonfree/cuda.hpp" |
|
#include "opencv2/nonfree/nonfree.hpp" |
|
#endif |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
|
|
TEST(matchTemplate) |
|
{ |
|
Mat src, templ, dst; |
|
gen(src, 3000, 3000, CV_32F, 0, 1); |
|
|
|
cuda::GpuMat d_src(src), d_templ, d_dst; |
|
|
|
Ptr<cuda::TemplateMatching> alg = cuda::createTemplateMatching(src.type(), TM_CCORR); |
|
|
|
for (int templ_size = 5; templ_size < 200; templ_size *= 5) |
|
{ |
|
SUBTEST << src.cols << 'x' << src.rows << ", 32FC1" << ", templ " << templ_size << 'x' << templ_size << ", CCORR"; |
|
|
|
gen(templ, templ_size, templ_size, CV_32F, 0, 1); |
|
matchTemplate(src, templ, dst, TM_CCORR); |
|
|
|
CPU_ON; |
|
matchTemplate(src, templ, dst, TM_CCORR); |
|
CPU_OFF; |
|
|
|
d_templ.upload(templ); |
|
alg->match(d_src, d_templ, d_dst); |
|
|
|
CUDA_ON; |
|
alg->match(d_src, d_templ, d_dst); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(minMaxLoc) |
|
{ |
|
Mat src; |
|
cuda::GpuMat d_src; |
|
|
|
double min_val, max_val; |
|
Point min_loc, max_loc; |
|
|
|
for (int size = 2000; size <= 8000; size *= 2) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 32F"; |
|
|
|
gen(src, size, size, CV_32F, 0, 1); |
|
|
|
CPU_ON; |
|
minMaxLoc(src, &min_val, &max_val, &min_loc, &max_loc); |
|
CPU_OFF; |
|
|
|
d_src.upload(src); |
|
|
|
CUDA_ON; |
|
cuda::minMaxLoc(d_src, &min_val, &max_val, &min_loc, &max_loc); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(remap) |
|
{ |
|
Mat src, dst, xmap, ymap; |
|
cuda::GpuMat d_src, d_dst, d_xmap, d_ymap; |
|
|
|
int interpolation = INTER_LINEAR; |
|
int borderMode = BORDER_REPLICATE; |
|
|
|
for (int size = 1000; size <= 4000; size *= 2) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 8UC4, INTER_LINEAR, BORDER_REPLICATE"; |
|
|
|
gen(src, size, size, CV_8UC4, 0, 256); |
|
|
|
xmap.create(size, size, CV_32F); |
|
ymap.create(size, size, CV_32F); |
|
for (int i = 0; i < size; ++i) |
|
{ |
|
float* xmap_row = xmap.ptr<float>(i); |
|
float* ymap_row = ymap.ptr<float>(i); |
|
for (int j = 0; j < size; ++j) |
|
{ |
|
xmap_row[j] = (j - size * 0.5f) * 0.75f + size * 0.5f; |
|
ymap_row[j] = (i - size * 0.5f) * 0.75f + size * 0.5f; |
|
} |
|
} |
|
|
|
remap(src, dst, xmap, ymap, interpolation, borderMode); |
|
|
|
CPU_ON; |
|
remap(src, dst, xmap, ymap, interpolation, borderMode); |
|
CPU_OFF; |
|
|
|
d_src.upload(src); |
|
d_xmap.upload(xmap); |
|
d_ymap.upload(ymap); |
|
|
|
cuda::remap(d_src, d_dst, d_xmap, d_ymap, interpolation, borderMode); |
|
|
|
CUDA_ON; |
|
cuda::remap(d_src, d_dst, d_xmap, d_ymap, interpolation, borderMode); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(dft) |
|
{ |
|
Mat src, dst; |
|
cuda::GpuMat d_src, d_dst; |
|
|
|
for (int size = 1000; size <= 4000; size *= 2) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 32FC2, complex-to-complex"; |
|
|
|
gen(src, size, size, CV_32FC2, Scalar::all(0), Scalar::all(1)); |
|
|
|
dft(src, dst); |
|
|
|
CPU_ON; |
|
dft(src, dst); |
|
CPU_OFF; |
|
|
|
d_src.upload(src); |
|
|
|
cuda::dft(d_src, d_dst, Size(size, size)); |
|
|
|
CUDA_ON; |
|
cuda::dft(d_src, d_dst, Size(size, size)); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(cornerHarris) |
|
{ |
|
Mat src, dst; |
|
cuda::GpuMat d_src, d_dst; |
|
|
|
for (int size = 1000; size <= 4000; size *= 2) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 32FC1, BORDER_REFLECT101"; |
|
|
|
gen(src, size, size, CV_32F, 0, 1); |
|
|
|
cornerHarris(src, dst, 5, 7, 0.1, BORDER_REFLECT101); |
|
|
|
CPU_ON; |
|
cornerHarris(src, dst, 5, 7, 0.1, BORDER_REFLECT101); |
|
CPU_OFF; |
|
|
|
d_src.upload(src); |
|
|
|
Ptr<cuda::CornernessCriteria> harris = cuda::createHarrisCorner(src.type(), 5, 7, 0.1, BORDER_REFLECT101); |
|
|
|
harris->compute(d_src, d_dst); |
|
|
|
CUDA_ON; |
|
harris->compute(d_src, d_dst); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(integral) |
|
{ |
|
Mat src, sum; |
|
cuda::GpuMat d_src, d_sum, d_buf; |
|
|
|
for (int size = 1000; size <= 4000; size *= 2) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 8UC1"; |
|
|
|
gen(src, size, size, CV_8U, 0, 256); |
|
|
|
integral(src, sum); |
|
|
|
CPU_ON; |
|
integral(src, sum); |
|
CPU_OFF; |
|
|
|
d_src.upload(src); |
|
|
|
cuda::integralBuffered(d_src, d_sum, d_buf); |
|
|
|
CUDA_ON; |
|
cuda::integralBuffered(d_src, d_sum, d_buf); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(norm) |
|
{ |
|
Mat src; |
|
cuda::GpuMat d_src, d_buf; |
|
|
|
for (int size = 2000; size <= 4000; size += 1000) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 32FC4, NORM_INF"; |
|
|
|
gen(src, size, size, CV_32FC4, Scalar::all(0), Scalar::all(1)); |
|
|
|
norm(src, NORM_INF); |
|
|
|
CPU_ON; |
|
norm(src, NORM_INF); |
|
CPU_OFF; |
|
|
|
d_src.upload(src); |
|
|
|
cuda::norm(d_src, NORM_INF, d_buf); |
|
|
|
CUDA_ON; |
|
cuda::norm(d_src, NORM_INF, d_buf); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(meanShift) |
|
{ |
|
int sp = 10, sr = 10; |
|
|
|
Mat src, dst; |
|
cuda::GpuMat d_src, d_dst; |
|
|
|
for (int size = 400; size <= 800; size *= 2) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 8UC3 vs 8UC4"; |
|
|
|
gen(src, size, size, CV_8UC3, Scalar::all(0), Scalar::all(256)); |
|
|
|
pyrMeanShiftFiltering(src, dst, sp, sr); |
|
|
|
CPU_ON; |
|
pyrMeanShiftFiltering(src, dst, sp, sr); |
|
CPU_OFF; |
|
|
|
gen(src, size, size, CV_8UC4, Scalar::all(0), Scalar::all(256)); |
|
|
|
d_src.upload(src); |
|
|
|
cuda::meanShiftFiltering(d_src, d_dst, sp, sr); |
|
|
|
CUDA_ON; |
|
cuda::meanShiftFiltering(d_src, d_dst, sp, sr); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCV_NONFREE |
|
|
|
TEST(SURF) |
|
{ |
|
Mat src = imread(abspath("aloeL.jpg"), IMREAD_GRAYSCALE); |
|
if (src.empty()) throw runtime_error("can't open aloeL.jpg"); |
|
|
|
SURF surf; |
|
vector<KeyPoint> keypoints; |
|
Mat descriptors; |
|
|
|
surf(src, Mat(), keypoints, descriptors); |
|
|
|
CPU_ON; |
|
surf(src, Mat(), keypoints, descriptors); |
|
CPU_OFF; |
|
|
|
cuda::SURF_CUDA d_surf; |
|
cuda::GpuMat d_src(src); |
|
cuda::GpuMat d_keypoints; |
|
cuda::GpuMat d_descriptors; |
|
|
|
d_surf(d_src, cuda::GpuMat(), d_keypoints, d_descriptors); |
|
|
|
CUDA_ON; |
|
d_surf(d_src, cuda::GpuMat(), d_keypoints, d_descriptors); |
|
CUDA_OFF; |
|
} |
|
|
|
#endif |
|
|
|
|
|
TEST(FAST) |
|
{ |
|
Mat src = imread(abspath("aloeL.jpg"), IMREAD_GRAYSCALE); |
|
if (src.empty()) throw runtime_error("can't open aloeL.jpg"); |
|
|
|
vector<KeyPoint> keypoints; |
|
|
|
FAST(src, keypoints, 20); |
|
|
|
CPU_ON; |
|
FAST(src, keypoints, 20); |
|
CPU_OFF; |
|
|
|
cuda::FAST_CUDA d_FAST(20); |
|
cuda::GpuMat d_src(src); |
|
cuda::GpuMat d_keypoints; |
|
|
|
d_FAST(d_src, cuda::GpuMat(), d_keypoints); |
|
|
|
CUDA_ON; |
|
d_FAST(d_src, cuda::GpuMat(), d_keypoints); |
|
CUDA_OFF; |
|
} |
|
|
|
|
|
TEST(ORB) |
|
{ |
|
Mat src = imread(abspath("aloeL.jpg"), IMREAD_GRAYSCALE); |
|
if (src.empty()) throw runtime_error("can't open aloeL.jpg"); |
|
|
|
ORB orb(4000); |
|
vector<KeyPoint> keypoints; |
|
Mat descriptors; |
|
|
|
orb(src, Mat(), keypoints, descriptors); |
|
|
|
CPU_ON; |
|
orb(src, Mat(), keypoints, descriptors); |
|
CPU_OFF; |
|
|
|
cuda::ORB_CUDA d_orb; |
|
cuda::GpuMat d_src(src); |
|
cuda::GpuMat d_keypoints; |
|
cuda::GpuMat d_descriptors; |
|
|
|
d_orb(d_src, cuda::GpuMat(), d_keypoints, d_descriptors); |
|
|
|
CUDA_ON; |
|
d_orb(d_src, cuda::GpuMat(), d_keypoints, d_descriptors); |
|
CUDA_OFF; |
|
} |
|
|
|
|
|
TEST(BruteForceMatcher) |
|
{ |
|
// Init CPU matcher |
|
|
|
int desc_len = 64; |
|
|
|
BFMatcher matcher(NORM_L2); |
|
|
|
Mat query; |
|
gen(query, 3000, desc_len, CV_32F, 0, 1); |
|
|
|
Mat train; |
|
gen(train, 3000, desc_len, CV_32F, 0, 1); |
|
|
|
// Init CUDA matcher |
|
|
|
cuda::BFMatcher_CUDA d_matcher(NORM_L2); |
|
|
|
cuda::GpuMat d_query(query); |
|
cuda::GpuMat d_train(train); |
|
|
|
// Output |
|
vector< vector<DMatch> > matches(2); |
|
cuda::GpuMat d_trainIdx, d_distance, d_allDist, d_nMatches; |
|
|
|
SUBTEST << "match"; |
|
|
|
matcher.match(query, train, matches[0]); |
|
|
|
CPU_ON; |
|
matcher.match(query, train, matches[0]); |
|
CPU_OFF; |
|
|
|
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance); |
|
|
|
CUDA_ON; |
|
d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance); |
|
CUDA_OFF; |
|
|
|
SUBTEST << "knnMatch"; |
|
|
|
matcher.knnMatch(query, train, matches, 2); |
|
|
|
CPU_ON; |
|
matcher.knnMatch(query, train, matches, 2); |
|
CPU_OFF; |
|
|
|
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, 2); |
|
|
|
CUDA_ON; |
|
d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, 2); |
|
CUDA_OFF; |
|
|
|
SUBTEST << "radiusMatch"; |
|
|
|
float max_distance = 2.0f; |
|
|
|
matcher.radiusMatch(query, train, matches, max_distance); |
|
|
|
CPU_ON; |
|
matcher.radiusMatch(query, train, matches, max_distance); |
|
CPU_OFF; |
|
|
|
d_trainIdx.release(); |
|
|
|
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, max_distance); |
|
|
|
CUDA_ON; |
|
d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, max_distance); |
|
CUDA_OFF; |
|
} |
|
|
|
|
|
TEST(magnitude) |
|
{ |
|
Mat x, y, mag; |
|
cuda::GpuMat d_x, d_y, d_mag; |
|
|
|
for (int size = 2000; size <= 4000; size += 1000) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 32FC1"; |
|
|
|
gen(x, size, size, CV_32F, 0, 1); |
|
gen(y, size, size, CV_32F, 0, 1); |
|
|
|
magnitude(x, y, mag); |
|
|
|
CPU_ON; |
|
magnitude(x, y, mag); |
|
CPU_OFF; |
|
|
|
d_x.upload(x); |
|
d_y.upload(y); |
|
|
|
cuda::magnitude(d_x, d_y, d_mag); |
|
|
|
CUDA_ON; |
|
cuda::magnitude(d_x, d_y, d_mag); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(add) |
|
{ |
|
Mat src1, src2, dst; |
|
cuda::GpuMat d_src1, d_src2, d_dst; |
|
|
|
for (int size = 2000; size <= 4000; size += 1000) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 32FC1"; |
|
|
|
gen(src1, size, size, CV_32F, 0, 1); |
|
gen(src2, size, size, CV_32F, 0, 1); |
|
|
|
add(src1, src2, dst); |
|
|
|
CPU_ON; |
|
add(src1, src2, dst); |
|
CPU_OFF; |
|
|
|
d_src1.upload(src1); |
|
d_src2.upload(src2); |
|
|
|
cuda::add(d_src1, d_src2, d_dst); |
|
|
|
CUDA_ON; |
|
cuda::add(d_src1, d_src2, d_dst); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(log) |
|
{ |
|
Mat src, dst; |
|
cuda::GpuMat d_src, d_dst; |
|
|
|
for (int size = 2000; size <= 4000; size += 1000) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 32F"; |
|
|
|
gen(src, size, size, CV_32F, 1, 10); |
|
|
|
log(src, dst); |
|
|
|
CPU_ON; |
|
log(src, dst); |
|
CPU_OFF; |
|
|
|
d_src.upload(src); |
|
|
|
cuda::log(d_src, d_dst); |
|
|
|
CUDA_ON; |
|
cuda::log(d_src, d_dst); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(mulSpectrums) |
|
{ |
|
Mat src1, src2, dst; |
|
cuda::GpuMat d_src1, d_src2, d_dst; |
|
|
|
for (int size = 2000; size <= 4000; size += 1000) |
|
{ |
|
SUBTEST << size << 'x' << size; |
|
|
|
gen(src1, size, size, CV_32FC2, Scalar::all(0), Scalar::all(1)); |
|
gen(src2, size, size, CV_32FC2, Scalar::all(0), Scalar::all(1)); |
|
|
|
mulSpectrums(src1, src2, dst, 0, true); |
|
|
|
CPU_ON; |
|
mulSpectrums(src1, src2, dst, 0, true); |
|
CPU_OFF; |
|
|
|
d_src1.upload(src1); |
|
d_src2.upload(src2); |
|
|
|
cuda::mulSpectrums(d_src1, d_src2, d_dst, 0, true); |
|
|
|
CUDA_ON; |
|
cuda::mulSpectrums(d_src1, d_src2, d_dst, 0, true); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(resize) |
|
{ |
|
Mat src, dst; |
|
cuda::GpuMat d_src, d_dst; |
|
|
|
for (int size = 1000; size <= 3000; size += 1000) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 8UC4, up"; |
|
|
|
gen(src, size, size, CV_8UC4, 0, 256); |
|
|
|
resize(src, dst, Size(), 2.0, 2.0); |
|
|
|
CPU_ON; |
|
resize(src, dst, Size(), 2.0, 2.0); |
|
CPU_OFF; |
|
|
|
d_src.upload(src); |
|
|
|
cuda::resize(d_src, d_dst, Size(), 2.0, 2.0); |
|
|
|
CUDA_ON; |
|
cuda::resize(d_src, d_dst, Size(), 2.0, 2.0); |
|
CUDA_OFF; |
|
} |
|
|
|
for (int size = 1000; size <= 3000; size += 1000) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 8UC4, down"; |
|
|
|
gen(src, size, size, CV_8UC4, 0, 256); |
|
|
|
resize(src, dst, Size(), 0.5, 0.5); |
|
|
|
CPU_ON; |
|
resize(src, dst, Size(), 0.5, 0.5); |
|
CPU_OFF; |
|
|
|
d_src.upload(src); |
|
|
|
cuda::resize(d_src, d_dst, Size(), 0.5, 0.5); |
|
|
|
CUDA_ON; |
|
cuda::resize(d_src, d_dst, Size(), 0.5, 0.5); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(cvtColor) |
|
{ |
|
Mat src, dst; |
|
cuda::GpuMat d_src, d_dst; |
|
|
|
gen(src, 4000, 4000, CV_8UC1, 0, 255); |
|
d_src.upload(src); |
|
|
|
SUBTEST << "4000x4000, 8UC1, COLOR_GRAY2BGRA"; |
|
|
|
cvtColor(src, dst, COLOR_GRAY2BGRA, 4); |
|
|
|
CPU_ON; |
|
cvtColor(src, dst, COLOR_GRAY2BGRA, 4); |
|
CPU_OFF; |
|
|
|
cuda::cvtColor(d_src, d_dst, COLOR_GRAY2BGRA, 4); |
|
|
|
CUDA_ON; |
|
cuda::cvtColor(d_src, d_dst, COLOR_GRAY2BGRA, 4); |
|
CUDA_OFF; |
|
|
|
cv::swap(src, dst); |
|
d_src.swap(d_dst); |
|
|
|
SUBTEST << "4000x4000, 8UC3 vs 8UC4, COLOR_BGR2YCrCb"; |
|
|
|
cvtColor(src, dst, COLOR_BGR2YCrCb); |
|
|
|
CPU_ON; |
|
cvtColor(src, dst, COLOR_BGR2YCrCb); |
|
CPU_OFF; |
|
|
|
cuda::cvtColor(d_src, d_dst, COLOR_BGR2YCrCb, 4); |
|
|
|
CUDA_ON; |
|
cuda::cvtColor(d_src, d_dst, COLOR_BGR2YCrCb, 4); |
|
CUDA_OFF; |
|
|
|
cv::swap(src, dst); |
|
d_src.swap(d_dst); |
|
|
|
SUBTEST << "4000x4000, 8UC4, COLOR_YCrCb2BGR"; |
|
|
|
cvtColor(src, dst, COLOR_YCrCb2BGR, 4); |
|
|
|
CPU_ON; |
|
cvtColor(src, dst, COLOR_YCrCb2BGR, 4); |
|
CPU_OFF; |
|
|
|
cuda::cvtColor(d_src, d_dst, COLOR_YCrCb2BGR, 4); |
|
|
|
CUDA_ON; |
|
cuda::cvtColor(d_src, d_dst, COLOR_YCrCb2BGR, 4); |
|
CUDA_OFF; |
|
|
|
cv::swap(src, dst); |
|
d_src.swap(d_dst); |
|
|
|
SUBTEST << "4000x4000, 8UC3 vs 8UC4, COLOR_BGR2XYZ"; |
|
|
|
cvtColor(src, dst, COLOR_BGR2XYZ); |
|
|
|
CPU_ON; |
|
cvtColor(src, dst, COLOR_BGR2XYZ); |
|
CPU_OFF; |
|
|
|
cuda::cvtColor(d_src, d_dst, COLOR_BGR2XYZ, 4); |
|
|
|
CUDA_ON; |
|
cuda::cvtColor(d_src, d_dst, COLOR_BGR2XYZ, 4); |
|
CUDA_OFF; |
|
|
|
cv::swap(src, dst); |
|
d_src.swap(d_dst); |
|
|
|
SUBTEST << "4000x4000, 8UC4, COLOR_XYZ2BGR"; |
|
|
|
cvtColor(src, dst, COLOR_XYZ2BGR, 4); |
|
|
|
CPU_ON; |
|
cvtColor(src, dst, COLOR_XYZ2BGR, 4); |
|
CPU_OFF; |
|
|
|
cuda::cvtColor(d_src, d_dst, COLOR_XYZ2BGR, 4); |
|
|
|
CUDA_ON; |
|
cuda::cvtColor(d_src, d_dst, COLOR_XYZ2BGR, 4); |
|
CUDA_OFF; |
|
|
|
cv::swap(src, dst); |
|
d_src.swap(d_dst); |
|
|
|
SUBTEST << "4000x4000, 8UC3 vs 8UC4, COLOR_BGR2HSV"; |
|
|
|
cvtColor(src, dst, COLOR_BGR2HSV); |
|
|
|
CPU_ON; |
|
cvtColor(src, dst, COLOR_BGR2HSV); |
|
CPU_OFF; |
|
|
|
cuda::cvtColor(d_src, d_dst, COLOR_BGR2HSV, 4); |
|
|
|
CUDA_ON; |
|
cuda::cvtColor(d_src, d_dst, COLOR_BGR2HSV, 4); |
|
CUDA_OFF; |
|
|
|
cv::swap(src, dst); |
|
d_src.swap(d_dst); |
|
|
|
SUBTEST << "4000x4000, 8UC4, COLOR_HSV2BGR"; |
|
|
|
cvtColor(src, dst, COLOR_HSV2BGR, 4); |
|
|
|
CPU_ON; |
|
cvtColor(src, dst, COLOR_HSV2BGR, 4); |
|
CPU_OFF; |
|
|
|
cuda::cvtColor(d_src, d_dst, COLOR_HSV2BGR, 4); |
|
|
|
CUDA_ON; |
|
cuda::cvtColor(d_src, d_dst, COLOR_HSV2BGR, 4); |
|
CUDA_OFF; |
|
|
|
cv::swap(src, dst); |
|
d_src.swap(d_dst); |
|
} |
|
|
|
|
|
TEST(erode) |
|
{ |
|
Mat src, dst, ker; |
|
cuda::GpuMat d_src, d_buf, d_dst; |
|
|
|
for (int size = 2000; size <= 4000; size += 1000) |
|
{ |
|
SUBTEST << size << 'x' << size; |
|
|
|
gen(src, size, size, CV_8UC4, Scalar::all(0), Scalar::all(256)); |
|
ker = getStructuringElement(MORPH_RECT, Size(3, 3)); |
|
|
|
erode(src, dst, ker); |
|
|
|
CPU_ON; |
|
erode(src, dst, ker); |
|
CPU_OFF; |
|
|
|
d_src.upload(src); |
|
|
|
Ptr<cuda::Filter> erode = cuda::createMorphologyFilter(MORPH_ERODE, d_src.type(), ker); |
|
|
|
erode->apply(d_src, d_dst); |
|
|
|
CUDA_ON; |
|
erode->apply(d_src, d_dst); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
TEST(threshold) |
|
{ |
|
Mat src, dst; |
|
cuda::GpuMat d_src, d_dst; |
|
|
|
for (int size = 2000; size <= 4000; size += 1000) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 8UC1, THRESH_BINARY"; |
|
|
|
gen(src, size, size, CV_8U, 0, 100); |
|
|
|
threshold(src, dst, 50.0, 0.0, THRESH_BINARY); |
|
|
|
CPU_ON; |
|
threshold(src, dst, 50.0, 0.0, THRESH_BINARY); |
|
CPU_OFF; |
|
|
|
d_src.upload(src); |
|
|
|
cuda::threshold(d_src, d_dst, 50.0, 0.0, THRESH_BINARY); |
|
|
|
CUDA_ON; |
|
cuda::threshold(d_src, d_dst, 50.0, 0.0, THRESH_BINARY); |
|
CUDA_OFF; |
|
} |
|
|
|
for (int size = 2000; size <= 4000; size += 1000) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 32FC1, THRESH_TRUNC [NPP]"; |
|
|
|
gen(src, size, size, CV_32FC1, 0, 100); |
|
|
|
threshold(src, dst, 50.0, 0.0, THRESH_TRUNC); |
|
|
|
CPU_ON; |
|
threshold(src, dst, 50.0, 0.0, THRESH_TRUNC); |
|
CPU_OFF; |
|
|
|
d_src.upload(src); |
|
|
|
cuda::threshold(d_src, d_dst, 50.0, 0.0, THRESH_TRUNC); |
|
|
|
CUDA_ON; |
|
cuda::threshold(d_src, d_dst, 50.0, 0.0, THRESH_TRUNC); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
TEST(pow) |
|
{ |
|
Mat src, dst; |
|
cuda::GpuMat d_src, d_dst; |
|
|
|
for (int size = 1000; size <= 4000; size += 1000) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 32F"; |
|
|
|
gen(src, size, size, CV_32F, 0, 100); |
|
|
|
pow(src, -2.0, dst); |
|
|
|
CPU_ON; |
|
pow(src, -2.0, dst); |
|
CPU_OFF; |
|
|
|
d_src.upload(src); |
|
|
|
cuda::pow(d_src, -2.0, d_dst); |
|
|
|
CUDA_ON; |
|
cuda::pow(d_src, -2.0, d_dst); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(projectPoints) |
|
{ |
|
Mat src; |
|
vector<Point2f> dst; |
|
cuda::GpuMat d_src, d_dst; |
|
|
|
Mat rvec; gen(rvec, 1, 3, CV_32F, 0, 1); |
|
Mat tvec; gen(tvec, 1, 3, CV_32F, 0, 1); |
|
Mat camera_mat; gen(camera_mat, 3, 3, CV_32F, 0, 1); |
|
camera_mat.at<float>(0, 1) = 0.f; |
|
camera_mat.at<float>(1, 0) = 0.f; |
|
camera_mat.at<float>(2, 0) = 0.f; |
|
camera_mat.at<float>(2, 1) = 0.f; |
|
|
|
for (int size = (int)1e6, count = 0; size >= 1e5 && count < 5; size = int(size / 1.4), count++) |
|
{ |
|
SUBTEST << size; |
|
|
|
gen(src, 1, size, CV_32FC3, Scalar::all(0), Scalar::all(10)); |
|
|
|
projectPoints(src, rvec, tvec, camera_mat, Mat::zeros(1, 8, CV_32F), dst); |
|
|
|
CPU_ON; |
|
projectPoints(src, rvec, tvec, camera_mat, Mat::zeros(1, 8, CV_32F), dst); |
|
CPU_OFF; |
|
|
|
d_src.upload(src); |
|
|
|
cuda::projectPoints(d_src, rvec, tvec, camera_mat, Mat(), d_dst); |
|
|
|
CUDA_ON; |
|
cuda::projectPoints(d_src, rvec, tvec, camera_mat, Mat(), d_dst); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
static void InitSolvePnpRansac() |
|
{ |
|
Mat object; gen(object, 1, 4, CV_32FC3, Scalar::all(0), Scalar::all(100)); |
|
Mat image; gen(image, 1, 4, CV_32FC2, Scalar::all(0), Scalar::all(100)); |
|
Mat rvec, tvec; |
|
cuda::solvePnPRansac(object, image, Mat::eye(3, 3, CV_32F), Mat(), rvec, tvec); |
|
} |
|
|
|
|
|
TEST(solvePnPRansac) |
|
{ |
|
InitSolvePnpRansac(); |
|
|
|
for (int num_points = 5000; num_points <= 300000; num_points = int(num_points * 3.76)) |
|
{ |
|
SUBTEST << num_points; |
|
|
|
Mat object; gen(object, 1, num_points, CV_32FC3, Scalar::all(10), Scalar::all(100)); |
|
Mat image; gen(image, 1, num_points, CV_32FC2, Scalar::all(10), Scalar::all(100)); |
|
Mat camera_mat; gen(camera_mat, 3, 3, CV_32F, 0.5, 1); |
|
camera_mat.at<float>(0, 1) = 0.f; |
|
camera_mat.at<float>(1, 0) = 0.f; |
|
camera_mat.at<float>(2, 0) = 0.f; |
|
camera_mat.at<float>(2, 1) = 0.f; |
|
|
|
Mat rvec, tvec; |
|
const int num_iters = 200; |
|
const float max_dist = 2.0f; |
|
vector<int> inliers_cpu, inliers_gpu; |
|
|
|
CPU_ON; |
|
solvePnPRansac(object, image, camera_mat, Mat::zeros(1, 8, CV_32F), rvec, tvec, false, num_iters, |
|
max_dist, int(num_points * 0.05), inliers_cpu); |
|
CPU_OFF; |
|
|
|
CUDA_ON; |
|
cuda::solvePnPRansac(object, image, camera_mat, Mat::zeros(1, 8, CV_32F), rvec, tvec, false, num_iters, |
|
max_dist, int(num_points * 0.05), &inliers_gpu); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
TEST(GaussianBlur) |
|
{ |
|
for (int size = 1000; size <= 4000; size += 1000) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 8UC4"; |
|
|
|
Mat src, dst; |
|
|
|
gen(src, size, size, CV_8UC4, 0, 256); |
|
|
|
GaussianBlur(src, dst, Size(3, 3), 1); |
|
|
|
CPU_ON; |
|
GaussianBlur(src, dst, Size(3, 3), 1); |
|
CPU_OFF; |
|
|
|
cuda::GpuMat d_src(src); |
|
cuda::GpuMat d_dst(src.size(), src.type()); |
|
cuda::GpuMat d_buf; |
|
|
|
cv::Ptr<cv::cuda::Filter> gauss = cv::cuda::createGaussianFilter(d_src.type(), -1, cv::Size(3, 3), 1); |
|
|
|
gauss->apply(d_src, d_dst); |
|
|
|
CUDA_ON; |
|
gauss->apply(d_src, d_dst); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
TEST(filter2D) |
|
{ |
|
for (int size = 512; size <= 2048; size *= 2) |
|
{ |
|
Mat src; |
|
gen(src, size, size, CV_8UC4, 0, 256); |
|
|
|
for (int ksize = 3; ksize <= 16; ksize += 2) |
|
{ |
|
SUBTEST << "ksize = " << ksize << ", " << size << 'x' << size << ", 8UC4"; |
|
|
|
Mat kernel; |
|
gen(kernel, ksize, ksize, CV_32FC1, 0.0, 1.0); |
|
|
|
Mat dst; |
|
cv::filter2D(src, dst, -1, kernel); |
|
|
|
CPU_ON; |
|
cv::filter2D(src, dst, -1, kernel); |
|
CPU_OFF; |
|
|
|
cuda::GpuMat d_src(src); |
|
cuda::GpuMat d_dst; |
|
|
|
Ptr<cuda::Filter> filter2D = cuda::createLinearFilter(d_src.type(), -1, kernel); |
|
filter2D->apply(d_src, d_dst); |
|
|
|
CUDA_ON; |
|
filter2D->apply(d_src, d_dst); |
|
CUDA_OFF; |
|
} |
|
} |
|
} |
|
|
|
TEST(pyrDown) |
|
{ |
|
for (int size = 4000; size >= 1000; size -= 1000) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 8UC4"; |
|
|
|
Mat src, dst; |
|
gen(src, size, size, CV_8UC4, 0, 256); |
|
|
|
pyrDown(src, dst); |
|
|
|
CPU_ON; |
|
pyrDown(src, dst); |
|
CPU_OFF; |
|
|
|
cuda::GpuMat d_src(src); |
|
cuda::GpuMat d_dst; |
|
|
|
cuda::pyrDown(d_src, d_dst); |
|
|
|
CUDA_ON; |
|
cuda::pyrDown(d_src, d_dst); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
TEST(pyrUp) |
|
{ |
|
for (int size = 2000; size >= 1000; size -= 1000) |
|
{ |
|
SUBTEST << size << 'x' << size << ", 8UC4"; |
|
|
|
Mat src, dst; |
|
|
|
gen(src, size, size, CV_8UC4, 0, 256); |
|
|
|
pyrUp(src, dst); |
|
|
|
CPU_ON; |
|
pyrUp(src, dst); |
|
CPU_OFF; |
|
|
|
cuda::GpuMat d_src(src); |
|
cuda::GpuMat d_dst; |
|
|
|
cuda::pyrUp(d_src, d_dst); |
|
|
|
CUDA_ON; |
|
cuda::pyrUp(d_src, d_dst); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(equalizeHist) |
|
{ |
|
for (int size = 1000; size < 4000; size += 1000) |
|
{ |
|
SUBTEST << size << 'x' << size; |
|
|
|
Mat src, dst; |
|
|
|
gen(src, size, size, CV_8UC1, 0, 256); |
|
|
|
equalizeHist(src, dst); |
|
|
|
CPU_ON; |
|
equalizeHist(src, dst); |
|
CPU_OFF; |
|
|
|
cuda::GpuMat d_src(src); |
|
cuda::GpuMat d_dst; |
|
cuda::GpuMat d_buf; |
|
|
|
cuda::equalizeHist(d_src, d_dst, d_buf); |
|
|
|
CUDA_ON; |
|
cuda::equalizeHist(d_src, d_dst, d_buf); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(Canny) |
|
{ |
|
Mat img = imread(abspath("aloeL.jpg"), IMREAD_GRAYSCALE); |
|
|
|
if (img.empty()) throw runtime_error("can't open aloeL.jpg"); |
|
|
|
Mat edges(img.size(), CV_8UC1); |
|
|
|
CPU_ON; |
|
Canny(img, edges, 50.0, 100.0); |
|
CPU_OFF; |
|
|
|
cuda::GpuMat d_img(img); |
|
cuda::GpuMat d_edges; |
|
|
|
Ptr<cuda::CannyEdgeDetector> canny = cuda::createCannyEdgeDetector(50.0, 100.0); |
|
|
|
canny->detect(d_img, d_edges); |
|
|
|
CUDA_ON; |
|
canny->detect(d_img, d_edges); |
|
CUDA_OFF; |
|
} |
|
|
|
|
|
TEST(reduce) |
|
{ |
|
for (int size = 1000; size < 4000; size += 1000) |
|
{ |
|
Mat src; |
|
gen(src, size, size, CV_32F, 0, 255); |
|
|
|
Mat dst0; |
|
Mat dst1; |
|
|
|
cuda::GpuMat d_src(src); |
|
cuda::GpuMat d_dst0; |
|
cuda::GpuMat d_dst1; |
|
|
|
SUBTEST << size << 'x' << size << ", dim = 0"; |
|
|
|
reduce(src, dst0, 0, REDUCE_MIN); |
|
|
|
CPU_ON; |
|
reduce(src, dst0, 0, REDUCE_MIN); |
|
CPU_OFF; |
|
|
|
cuda::reduce(d_src, d_dst0, 0, REDUCE_MIN); |
|
|
|
CUDA_ON; |
|
cuda::reduce(d_src, d_dst0, 0, REDUCE_MIN); |
|
CUDA_OFF; |
|
|
|
SUBTEST << size << 'x' << size << ", dim = 1"; |
|
|
|
reduce(src, dst1, 1, REDUCE_MIN); |
|
|
|
CPU_ON; |
|
reduce(src, dst1, 1, REDUCE_MIN); |
|
CPU_OFF; |
|
|
|
cuda::reduce(d_src, d_dst1, 1, REDUCE_MIN); |
|
|
|
CUDA_ON; |
|
cuda::reduce(d_src, d_dst1, 1, REDUCE_MIN); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(gemm) |
|
{ |
|
Mat src1, src2, src3, dst; |
|
cuda::GpuMat d_src1, d_src2, d_src3, d_dst; |
|
|
|
for (int size = 512; size <= 1024; size *= 2) |
|
{ |
|
SUBTEST << size << 'x' << size; |
|
|
|
gen(src1, size, size, CV_32FC1, Scalar::all(-10), Scalar::all(10)); |
|
gen(src2, size, size, CV_32FC1, Scalar::all(-10), Scalar::all(10)); |
|
gen(src3, size, size, CV_32FC1, Scalar::all(-10), Scalar::all(10)); |
|
|
|
gemm(src1, src2, 1.0, src3, 1.0, dst); |
|
|
|
CPU_ON; |
|
gemm(src1, src2, 1.0, src3, 1.0, dst); |
|
CPU_OFF; |
|
|
|
d_src1.upload(src1); |
|
d_src2.upload(src2); |
|
d_src3.upload(src3); |
|
|
|
cuda::gemm(d_src1, d_src2, 1.0, d_src3, 1.0, d_dst); |
|
|
|
CUDA_ON; |
|
cuda::gemm(d_src1, d_src2, 1.0, d_src3, 1.0, d_dst); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
TEST(GoodFeaturesToTrack) |
|
{ |
|
Mat src = imread(abspath("aloeL.jpg"), IMREAD_GRAYSCALE); |
|
if (src.empty()) throw runtime_error("can't open aloeL.jpg"); |
|
|
|
vector<Point2f> pts; |
|
|
|
goodFeaturesToTrack(src, pts, 8000, 0.01, 0.0); |
|
|
|
CPU_ON; |
|
goodFeaturesToTrack(src, pts, 8000, 0.01, 0.0); |
|
CPU_OFF; |
|
|
|
Ptr<cuda::CornersDetector> detector = cuda::createGoodFeaturesToTrackDetector(src.type(), 8000, 0.01, 0.0); |
|
|
|
cuda::GpuMat d_src(src); |
|
cuda::GpuMat d_pts; |
|
|
|
detector->detect(d_src, d_pts); |
|
|
|
CUDA_ON; |
|
detector->detect(d_src, d_pts); |
|
CUDA_OFF; |
|
} |
|
|
|
TEST(PyrLKOpticalFlow) |
|
{ |
|
Mat frame0 = imread(abspath("rubberwhale1.png")); |
|
if (frame0.empty()) throw runtime_error("can't open rubberwhale1.png"); |
|
|
|
Mat frame1 = imread(abspath("rubberwhale2.png")); |
|
if (frame1.empty()) throw runtime_error("can't open rubberwhale2.png"); |
|
|
|
Mat gray_frame; |
|
cvtColor(frame0, gray_frame, COLOR_BGR2GRAY); |
|
|
|
for (int points = 1000; points <= 8000; points *= 2) |
|
{ |
|
SUBTEST << points; |
|
|
|
vector<Point2f> pts; |
|
goodFeaturesToTrack(gray_frame, pts, points, 0.01, 0.0); |
|
|
|
vector<Point2f> nextPts; |
|
vector<unsigned char> status; |
|
|
|
vector<float> err; |
|
|
|
calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err); |
|
|
|
CPU_ON; |
|
calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err); |
|
CPU_OFF; |
|
|
|
cuda::PyrLKOpticalFlow d_pyrLK; |
|
|
|
cuda::GpuMat d_frame0(frame0); |
|
cuda::GpuMat d_frame1(frame1); |
|
|
|
cuda::GpuMat d_pts; |
|
Mat pts_mat(1, (int)pts.size(), CV_32FC2, (void*)&pts[0]); |
|
d_pts.upload(pts_mat); |
|
|
|
cuda::GpuMat d_nextPts; |
|
cuda::GpuMat d_status; |
|
cuda::GpuMat d_err; |
|
|
|
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err); |
|
|
|
CUDA_ON; |
|
d_pyrLK.sparse(d_frame0, d_frame1, d_pts, d_nextPts, d_status, &d_err); |
|
CUDA_OFF; |
|
} |
|
} |
|
|
|
|
|
TEST(FarnebackOpticalFlow) |
|
{ |
|
const string datasets[] = {"rubberwhale", "basketball"}; |
|
for (size_t i = 0; i < sizeof(datasets)/sizeof(*datasets); ++i) { |
|
for (int fastPyramids = 0; fastPyramids < 2; ++fastPyramids) { |
|
for (int useGaussianBlur = 0; useGaussianBlur < 2; ++useGaussianBlur) { |
|
|
|
SUBTEST << "dataset=" << datasets[i] << ", fastPyramids=" << fastPyramids << ", useGaussianBlur=" << useGaussianBlur; |
|
Mat frame0 = imread(abspath(datasets[i] + "1.png"), IMREAD_GRAYSCALE); |
|
Mat frame1 = imread(abspath(datasets[i] + "2.png"), IMREAD_GRAYSCALE); |
|
if (frame0.empty()) throw runtime_error("can't open " + datasets[i] + "1.png"); |
|
if (frame1.empty()) throw runtime_error("can't open " + datasets[i] + "2.png"); |
|
|
|
cuda::FarnebackOpticalFlow calc; |
|
calc.fastPyramids = fastPyramids != 0; |
|
calc.flags |= useGaussianBlur ? OPTFLOW_FARNEBACK_GAUSSIAN : 0; |
|
|
|
cuda::GpuMat d_frame0(frame0), d_frame1(frame1), d_flowx, d_flowy; |
|
CUDA_ON; |
|
calc(d_frame0, d_frame1, d_flowx, d_flowy); |
|
CUDA_OFF; |
|
|
|
Mat flow; |
|
CPU_ON; |
|
calcOpticalFlowFarneback(frame0, frame1, flow, calc.pyrScale, calc.numLevels, calc.winSize, calc.numIters, calc.polyN, calc.polySigma, calc.flags); |
|
CPU_OFF; |
|
|
|
}}} |
|
} |
|
|
|
namespace cv |
|
{ |
|
template<> void DefaultDeleter<CvBGStatModel>::operator ()(CvBGStatModel* obj) const |
|
{ |
|
cvReleaseBGStatModel(&obj); |
|
} |
|
} |
|
|
|
TEST(FGDStatModel) |
|
{ |
|
const std::string inputFile = abspath("768x576.avi"); |
|
|
|
VideoCapture cap(inputFile); |
|
if (!cap.isOpened()) throw runtime_error("can't open 768x576.avi"); |
|
|
|
Mat frame; |
|
cap >> frame; |
|
|
|
IplImage ipl_frame = frame; |
|
Ptr<CvBGStatModel> model(cvCreateFGDStatModel(&ipl_frame)); |
|
|
|
while (!TestSystem::instance().stop()) |
|
{ |
|
cap >> frame; |
|
ipl_frame = frame; |
|
|
|
TestSystem::instance().cpuOn(); |
|
|
|
cvUpdateBGStatModel(&ipl_frame, model); |
|
|
|
TestSystem::instance().cpuOff(); |
|
} |
|
TestSystem::instance().cpuComplete(); |
|
|
|
cap.open(inputFile); |
|
|
|
cap >> frame; |
|
|
|
cuda::GpuMat d_frame(frame), d_fgmask; |
|
Ptr<BackgroundSubtractor> d_fgd = cuda::createBackgroundSubtractorFGD(); |
|
|
|
d_fgd->apply(d_frame, d_fgmask); |
|
|
|
while (!TestSystem::instance().stop()) |
|
{ |
|
cap >> frame; |
|
d_frame.upload(frame); |
|
|
|
TestSystem::instance().gpuOn(); |
|
|
|
d_fgd->apply(d_frame, d_fgmask); |
|
|
|
TestSystem::instance().gpuOff(); |
|
} |
|
TestSystem::instance().gpuComplete(); |
|
} |
|
|
|
TEST(MOG) |
|
{ |
|
const std::string inputFile = abspath("768x576.avi"); |
|
|
|
cv::VideoCapture cap(inputFile); |
|
if (!cap.isOpened()) throw runtime_error("can't open 768x576.avi"); |
|
|
|
cv::Mat frame; |
|
cap >> frame; |
|
|
|
cv::Ptr<cv::BackgroundSubtractor> mog = cv::createBackgroundSubtractorMOG(); |
|
cv::Mat foreground; |
|
|
|
mog->apply(frame, foreground, 0.01); |
|
|
|
while (!TestSystem::instance().stop()) |
|
{ |
|
cap >> frame; |
|
|
|
TestSystem::instance().cpuOn(); |
|
|
|
mog->apply(frame, foreground, 0.01); |
|
|
|
TestSystem::instance().cpuOff(); |
|
} |
|
TestSystem::instance().cpuComplete(); |
|
|
|
cap.open(inputFile); |
|
|
|
cap >> frame; |
|
|
|
cv::cuda::GpuMat d_frame(frame); |
|
cv::Ptr<cv::BackgroundSubtractor> d_mog = cv::cuda::createBackgroundSubtractorMOG(); |
|
cv::cuda::GpuMat d_foreground; |
|
|
|
d_mog->apply(d_frame, d_foreground, 0.01); |
|
|
|
while (!TestSystem::instance().stop()) |
|
{ |
|
cap >> frame; |
|
d_frame.upload(frame); |
|
|
|
TestSystem::instance().gpuOn(); |
|
|
|
d_mog->apply(d_frame, d_foreground, 0.01); |
|
|
|
TestSystem::instance().gpuOff(); |
|
} |
|
TestSystem::instance().gpuComplete(); |
|
} |
|
|
|
TEST(MOG2) |
|
{ |
|
const std::string inputFile = abspath("768x576.avi"); |
|
|
|
cv::VideoCapture cap(inputFile); |
|
if (!cap.isOpened()) throw runtime_error("can't open 768x576.avi"); |
|
|
|
cv::Mat frame; |
|
cap >> frame; |
|
|
|
cv::Ptr<cv::BackgroundSubtractor> mog2 = cv::createBackgroundSubtractorMOG2(); |
|
cv::Mat foreground; |
|
cv::Mat background; |
|
|
|
mog2->apply(frame, foreground); |
|
mog2->getBackgroundImage(background); |
|
|
|
while (!TestSystem::instance().stop()) |
|
{ |
|
cap >> frame; |
|
|
|
TestSystem::instance().cpuOn(); |
|
|
|
mog2->apply(frame, foreground); |
|
mog2->getBackgroundImage(background); |
|
|
|
TestSystem::instance().cpuOff(); |
|
} |
|
TestSystem::instance().cpuComplete(); |
|
|
|
cap.open(inputFile); |
|
|
|
cap >> frame; |
|
|
|
cv::Ptr<cv::BackgroundSubtractor> d_mog2 = cv::cuda::createBackgroundSubtractorMOG2(); |
|
cv::cuda::GpuMat d_frame(frame); |
|
cv::cuda::GpuMat d_foreground; |
|
cv::cuda::GpuMat d_background; |
|
|
|
d_mog2->apply(d_frame, d_foreground); |
|
d_mog2->getBackgroundImage(d_background); |
|
|
|
while (!TestSystem::instance().stop()) |
|
{ |
|
cap >> frame; |
|
d_frame.upload(frame); |
|
|
|
TestSystem::instance().gpuOn(); |
|
|
|
d_mog2->apply(d_frame, d_foreground); |
|
d_mog2->getBackgroundImage(d_background); |
|
|
|
TestSystem::instance().gpuOff(); |
|
} |
|
TestSystem::instance().gpuComplete(); |
|
}
|
|
|