mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
233 lines
6.3 KiB
233 lines
6.3 KiB
/* |
|
* video_homography.cpp |
|
* |
|
* Created on: Oct 18, 2010 |
|
* Author: erublee |
|
*/ |
|
|
|
#include "opencv2/calib3d/calib3d.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/imgproc/imgproc.hpp" |
|
#include "opencv2/features2d/features2d.hpp" |
|
#include <iostream> |
|
#include <list> |
|
#include <vector> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
static void help(char **av) |
|
{ |
|
cout << "\nThis program demonstrated the use of features2d with the Fast corner detector and brief descriptors\n" |
|
<< "to track planar objects by computing their homography from the key (training) image to the query (test) image\n\n" << endl; |
|
cout << "usage: " << av[0] << " <video device number>\n" << endl; |
|
cout << "The following keys do stuff:" << endl; |
|
cout << " t : grabs a reference frame to match against" << endl; |
|
cout << " l : makes the reference frame new every frame" << endl; |
|
cout << " q or escape: quit" << endl; |
|
} |
|
|
|
namespace |
|
{ |
|
void drawMatchesRelative(const vector<KeyPoint>& train, const vector<KeyPoint>& query, |
|
std::vector<cv::DMatch>& matches, Mat& img, const vector<unsigned char>& mask = vector< |
|
unsigned char> ()) |
|
{ |
|
for (int i = 0; i < (int)matches.size(); i++) |
|
{ |
|
if (mask.empty() || mask[i]) |
|
{ |
|
Point2f pt_new = query[matches[i].queryIdx].pt; |
|
Point2f pt_old = train[matches[i].trainIdx].pt; |
|
|
|
cv::line(img, pt_new, pt_old, Scalar(125, 255, 125), 1); |
|
cv::circle(img, pt_new, 2, Scalar(255, 0, 125), 1); |
|
|
|
} |
|
} |
|
} |
|
|
|
//Takes a descriptor and turns it into an xy point |
|
void keypoints2points(const vector<KeyPoint>& in, vector<Point2f>& out) |
|
{ |
|
out.clear(); |
|
out.reserve(in.size()); |
|
for (size_t i = 0; i < in.size(); ++i) |
|
{ |
|
out.push_back(in[i].pt); |
|
} |
|
} |
|
|
|
//Takes an xy point and appends that to a keypoint structure |
|
void points2keypoints(const vector<Point2f>& in, vector<KeyPoint>& out) |
|
{ |
|
out.clear(); |
|
out.reserve(in.size()); |
|
for (size_t i = 0; i < in.size(); ++i) |
|
{ |
|
out.push_back(KeyPoint(in[i], 1)); |
|
} |
|
} |
|
|
|
//Uses computed homography H to warp original input points to new planar position |
|
void warpKeypoints(const Mat& H, const vector<KeyPoint>& in, vector<KeyPoint>& out) |
|
{ |
|
vector<Point2f> pts; |
|
keypoints2points(in, pts); |
|
vector<Point2f> pts_w(pts.size()); |
|
Mat m_pts_w(pts_w); |
|
perspectiveTransform(Mat(pts), m_pts_w, H); |
|
points2keypoints(pts_w, out); |
|
} |
|
|
|
//Converts matching indices to xy points |
|
void matches2points(const vector<KeyPoint>& train, const vector<KeyPoint>& query, |
|
const std::vector<cv::DMatch>& matches, std::vector<cv::Point2f>& pts_train, |
|
std::vector<Point2f>& pts_query) |
|
{ |
|
|
|
pts_train.clear(); |
|
pts_query.clear(); |
|
pts_train.reserve(matches.size()); |
|
pts_query.reserve(matches.size()); |
|
|
|
size_t i = 0; |
|
|
|
for (; i < matches.size(); i++) |
|
{ |
|
|
|
const DMatch & dmatch = matches[i]; |
|
|
|
pts_query.push_back(query[dmatch.queryIdx].pt); |
|
pts_train.push_back(train[dmatch.trainIdx].pt); |
|
|
|
} |
|
|
|
} |
|
|
|
void resetH(Mat&H) |
|
{ |
|
H = Mat::eye(3, 3, CV_32FC1); |
|
} |
|
} |
|
|
|
int main(int ac, char ** av) |
|
{ |
|
|
|
if (ac != 2) |
|
{ |
|
help(av); |
|
return 1; |
|
} |
|
|
|
BriefDescriptorExtractor brief(32); |
|
|
|
VideoCapture capture; |
|
capture.open(atoi(av[1])); |
|
if (!capture.isOpened()) |
|
{ |
|
help(av); |
|
cout << "capture device " << atoi(av[1]) << " failed to open!" << endl; |
|
return 1; |
|
} |
|
|
|
cout << "following keys do stuff:" << endl; |
|
cout << "t : grabs a reference frame to match against" << endl; |
|
cout << "l : makes the reference frame new every frame" << endl; |
|
cout << "q or escape: quit" << endl; |
|
|
|
Mat frame; |
|
|
|
vector<DMatch> matches; |
|
|
|
BFMatcher desc_matcher(NORM_HAMMING); |
|
|
|
vector<Point2f> train_pts, query_pts; |
|
vector<KeyPoint> train_kpts, query_kpts; |
|
vector<unsigned char> match_mask; |
|
|
|
Mat gray; |
|
|
|
bool ref_live = true; |
|
|
|
Mat train_desc, query_desc; |
|
const int DESIRED_FTRS = 500; |
|
GridAdaptedFeatureDetector detector(makePtr<FastFeatureDetector>(10, true), DESIRED_FTRS, 4, 4); |
|
|
|
Mat H_prev = Mat::eye(3, 3, CV_32FC1); |
|
for (;;) |
|
{ |
|
capture >> frame; |
|
if (frame.empty()) |
|
break; |
|
|
|
cvtColor(frame, gray, COLOR_RGB2GRAY); |
|
|
|
detector.detect(gray, query_kpts); //Find interest points |
|
|
|
brief.compute(gray, query_kpts, query_desc); //Compute brief descriptors at each keypoint location |
|
|
|
if (!train_kpts.empty()) |
|
{ |
|
|
|
vector<KeyPoint> test_kpts; |
|
warpKeypoints(H_prev.inv(), query_kpts, test_kpts); |
|
|
|
Mat mask = windowedMatchingMask(test_kpts, train_kpts, 25, 25); |
|
desc_matcher.match(query_desc, train_desc, matches, mask); |
|
drawKeypoints(frame, test_kpts, frame, Scalar(255, 0, 0), DrawMatchesFlags::DRAW_OVER_OUTIMG); |
|
|
|
matches2points(train_kpts, query_kpts, matches, train_pts, query_pts); |
|
|
|
if (matches.size() > 5) |
|
{ |
|
Mat H = findHomography(train_pts, query_pts, RANSAC, 4, match_mask); |
|
if (countNonZero(Mat(match_mask)) > 15) |
|
{ |
|
H_prev = H; |
|
} |
|
else |
|
resetH(H_prev); |
|
drawMatchesRelative(train_kpts, query_kpts, matches, frame, match_mask); |
|
} |
|
else |
|
resetH(H_prev); |
|
|
|
} |
|
else |
|
{ |
|
H_prev = Mat::eye(3, 3, CV_32FC1); |
|
Mat out; |
|
drawKeypoints(gray, query_kpts, out); |
|
frame = out; |
|
} |
|
|
|
imshow("frame", frame); |
|
|
|
if (ref_live) |
|
{ |
|
train_kpts = query_kpts; |
|
query_desc.copyTo(train_desc); |
|
} |
|
char key = (char)waitKey(2); |
|
switch (key) |
|
{ |
|
case 'l': |
|
ref_live = true; |
|
resetH(H_prev); |
|
break; |
|
case 't': |
|
ref_live = false; |
|
train_kpts = query_kpts; |
|
query_desc.copyTo(train_desc); |
|
resetH(H_prev); |
|
break; |
|
case 27: |
|
case 'q': |
|
return 0; |
|
break; |
|
} |
|
|
|
} |
|
return 0; |
|
}
|
|
|