mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
74 lines
2.1 KiB
74 lines
2.1 KiB
/* |
|
* shape_context.cpp -- Shape context demo for shape matching |
|
*/ |
|
|
|
#include "opencv2/shape.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/features2d/features2d.hpp" |
|
#include "opencv2/nonfree/nonfree.hpp" |
|
#include <opencv2/core/utility.hpp> |
|
#include <iostream> |
|
#include <string> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
static void help() |
|
{ |
|
printf("\nThis program demonstrates how to use common interface for shape transformers\n" |
|
"Call\n" |
|
"shape_transformation [image1] [image2]\n"); |
|
} |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
help(); |
|
Mat img1 = imread(argv[1], IMREAD_GRAYSCALE); |
|
Mat img2 = imread(argv[2], IMREAD_GRAYSCALE); |
|
if(img1.empty() || img2.empty() || argc<2) |
|
{ |
|
printf("Can't read one of the images\n"); |
|
return -1; |
|
} |
|
|
|
// detecting keypoints |
|
SurfFeatureDetector detector(5000); |
|
vector<KeyPoint> keypoints1, keypoints2; |
|
detector.detect(img1, keypoints1); |
|
detector.detect(img2, keypoints2); |
|
|
|
// computing descriptors |
|
SurfDescriptorExtractor extractor; |
|
Mat descriptors1, descriptors2; |
|
extractor.compute(img1, keypoints1, descriptors1); |
|
extractor.compute(img2, keypoints2, descriptors2); |
|
|
|
// matching descriptors |
|
BFMatcher matcher(NORM_L2); |
|
vector<DMatch> matches; |
|
matcher.match(descriptors1, descriptors2, matches); |
|
|
|
// drawing the results |
|
namedWindow("matches", 1); |
|
Mat img_matches; |
|
drawMatches(img1, keypoints1, img2, keypoints2, matches, img_matches); |
|
imshow("matches", img_matches); |
|
|
|
// extract points |
|
vector<Point2f> pts1, pts2; |
|
for (size_t ii=0; ii<keypoints1.size(); ii++) |
|
pts1.push_back( keypoints1[ii].pt ); |
|
for (size_t ii=0; ii<keypoints2.size(); ii++) |
|
pts2.push_back( keypoints2[ii].pt ); |
|
|
|
// Apply TPS |
|
Ptr<ThinPlateSplineShapeTransformer> mytps = createThinPlateSplineShapeTransformer(25000); //TPS with a relaxed constraint |
|
mytps->estimateTransformation(pts1, pts2, matches); |
|
mytps->warpImage(img2, img2); |
|
|
|
imshow("Tranformed", img2); |
|
waitKey(0); |
|
|
|
return 0; |
|
}
|
|
|