mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
643 lines
19 KiB
643 lines
19 KiB
#include "opencv2/opencv_modules.hpp" |
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/ml/ml.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
#ifdef HAVE_OPENCV_OCL |
|
#define _OCL_KNN_ 1 // select whether using ocl::KNN method or not, default is using |
|
#define _OCL_SVM_ 1 // select whether using ocl::svm method or not, default is using |
|
#include "opencv2/ocl/ocl.hpp" |
|
#endif |
|
|
|
#include <stdio.h> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
const Scalar WHITE_COLOR = Scalar(255,255,255); |
|
const string winName = "points"; |
|
const int testStep = 5; |
|
|
|
Mat img, imgDst; |
|
RNG rng; |
|
|
|
vector<Point> trainedPoints; |
|
vector<int> trainedPointsMarkers; |
|
vector<Scalar> classColors; |
|
|
|
#define _NBC_ 0 // normal Bayessian classifier |
|
#define _KNN_ 0 // k nearest neighbors classifier |
|
#define _SVM_ 0 // support vectors machine |
|
#define _DT_ 1 // decision tree |
|
#define _BT_ 0 // ADA Boost |
|
#define _GBT_ 0 // gradient boosted trees |
|
#define _RF_ 0 // random forest |
|
#define _ERT_ 0 // extremely randomized trees |
|
#define _ANN_ 0 // artificial neural networks |
|
#define _EM_ 0 // expectation-maximization |
|
|
|
static void on_mouse( int event, int x, int y, int /*flags*/, void* ) |
|
{ |
|
if( img.empty() ) |
|
return; |
|
|
|
int updateFlag = 0; |
|
|
|
if( event == EVENT_LBUTTONUP ) |
|
{ |
|
if( classColors.empty() ) |
|
return; |
|
|
|
trainedPoints.push_back( Point(x,y) ); |
|
trainedPointsMarkers.push_back( (int)(classColors.size()-1) ); |
|
updateFlag = true; |
|
} |
|
else if( event == EVENT_RBUTTONUP ) |
|
{ |
|
#if _BT_ |
|
if( classColors.size() < 2 ) |
|
{ |
|
#endif |
|
classColors.push_back( Scalar((uchar)rng(256), (uchar)rng(256), (uchar)rng(256)) ); |
|
updateFlag = true; |
|
#if _BT_ |
|
} |
|
else |
|
cout << "New class can not be added, because CvBoost can only be used for 2-class classification" << endl; |
|
#endif |
|
|
|
} |
|
|
|
//draw |
|
if( updateFlag ) |
|
{ |
|
img = Scalar::all(0); |
|
|
|
// put the text |
|
stringstream text; |
|
text << "current class " << classColors.size()-1; |
|
putText( img, text.str(), Point(10,25), FONT_HERSHEY_SIMPLEX, 0.8f, WHITE_COLOR, 2 ); |
|
|
|
text.str(""); |
|
text << "total classes " << classColors.size(); |
|
putText( img, text.str(), Point(10,50), FONT_HERSHEY_SIMPLEX, 0.8f, WHITE_COLOR, 2 ); |
|
|
|
text.str(""); |
|
text << "total points " << trainedPoints.size(); |
|
putText(img, text.str(), Point(10,75), FONT_HERSHEY_SIMPLEX, 0.8f, WHITE_COLOR, 2 ); |
|
|
|
// draw points |
|
for( size_t i = 0; i < trainedPoints.size(); i++ ) |
|
circle( img, trainedPoints[i], 5, classColors[trainedPointsMarkers[i]], -1 ); |
|
|
|
imshow( winName, img ); |
|
} |
|
} |
|
|
|
static void prepare_train_data( Mat& samples, Mat& classes ) |
|
{ |
|
Mat( trainedPoints ).copyTo( samples ); |
|
Mat( trainedPointsMarkers ).copyTo( classes ); |
|
|
|
// reshape trainData and change its type |
|
samples = samples.reshape( 1, samples.rows ); |
|
samples.convertTo( samples, CV_32FC1 ); |
|
} |
|
|
|
#if _NBC_ |
|
static void find_decision_boundary_NBC() |
|
{ |
|
img.copyTo( imgDst ); |
|
|
|
Mat trainSamples, trainClasses; |
|
prepare_train_data( trainSamples, trainClasses ); |
|
|
|
// learn classifier |
|
CvNormalBayesClassifier normalBayesClassifier( trainSamples, trainClasses ); |
|
|
|
Mat testSample( 1, 2, CV_32FC1 ); |
|
for( int y = 0; y < img.rows; y += testStep ) |
|
{ |
|
for( int x = 0; x < img.cols; x += testStep ) |
|
{ |
|
testSample.at<float>(0) = (float)x; |
|
testSample.at<float>(1) = (float)y; |
|
|
|
int response = (int)normalBayesClassifier.predict( testSample ); |
|
circle( imgDst, Point(x,y), 1, classColors[response] ); |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
|
|
#if _KNN_ |
|
static void find_decision_boundary_KNN( int K ) |
|
{ |
|
img.copyTo( imgDst ); |
|
|
|
Mat trainSamples, trainClasses; |
|
prepare_train_data( trainSamples, trainClasses ); |
|
|
|
// learn classifier |
|
#if defined HAVE_OPENCV_OCL && _OCL_KNN_ |
|
cv::ocl::KNearestNeighbour knnClassifier; |
|
Mat temp, result; |
|
knnClassifier.train(trainSamples, trainClasses, temp, false, K); |
|
cv::ocl::oclMat testSample_ocl, reslut_ocl; |
|
#else |
|
CvKNearest knnClassifier( trainSamples, trainClasses, Mat(), false, K ); |
|
#endif |
|
|
|
Mat testSample( 1, 2, CV_32FC1 ); |
|
for( int y = 0; y < img.rows; y += testStep ) |
|
{ |
|
for( int x = 0; x < img.cols; x += testStep ) |
|
{ |
|
testSample.at<float>(0) = (float)x; |
|
testSample.at<float>(1) = (float)y; |
|
#if defined HAVE_OPENCV_OCL && _OCL_KNN_ |
|
testSample_ocl.upload(testSample); |
|
|
|
knnClassifier.find_nearest(testSample_ocl, K, reslut_ocl); |
|
|
|
reslut_ocl.download(result); |
|
int response = saturate_cast<int>(result.at<float>(0)); |
|
circle(imgDst, Point(x, y), 1, classColors[response]); |
|
#else |
|
|
|
int response = (int)knnClassifier.find_nearest( testSample, K ); |
|
circle( imgDst, Point(x,y), 1, classColors[response] ); |
|
#endif |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
#if _SVM_ |
|
static void find_decision_boundary_SVM( CvSVMParams params ) |
|
{ |
|
img.copyTo( imgDst ); |
|
|
|
Mat trainSamples, trainClasses; |
|
prepare_train_data( trainSamples, trainClasses ); |
|
|
|
// learn classifier |
|
#if defined HAVE_OPENCV_OCL && _OCL_SVM_ |
|
cv::ocl::CvSVM_OCL svmClassifier(trainSamples, trainClasses, Mat(), Mat(), params); |
|
#else |
|
CvSVM svmClassifier( trainSamples, trainClasses, Mat(), Mat(), params ); |
|
#endif |
|
|
|
Mat testSample( 1, 2, CV_32FC1 ); |
|
for( int y = 0; y < img.rows; y += testStep ) |
|
{ |
|
for( int x = 0; x < img.cols; x += testStep ) |
|
{ |
|
testSample.at<float>(0) = (float)x; |
|
testSample.at<float>(1) = (float)y; |
|
|
|
int response = (int)svmClassifier.predict( testSample ); |
|
circle( imgDst, Point(x,y), 2, classColors[response], 1 ); |
|
} |
|
} |
|
|
|
|
|
for( int i = 0; i < svmClassifier.get_support_vector_count(); i++ ) |
|
{ |
|
const float* supportVector = svmClassifier.get_support_vector(i); |
|
circle( imgDst, Point(saturate_cast<int>(supportVector[0]),saturate_cast<int>(supportVector[1])), 5, CV_RGB(255,255,255), -1 ); |
|
} |
|
|
|
} |
|
#endif |
|
|
|
#if _DT_ |
|
static void find_decision_boundary_DT() |
|
{ |
|
img.copyTo( imgDst ); |
|
|
|
Mat trainSamples, trainClasses; |
|
prepare_train_data( trainSamples, trainClasses ); |
|
|
|
// learn classifier |
|
CvDTree dtree; |
|
|
|
Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) ); |
|
var_types.at<uchar>( trainSamples.cols ) = CV_VAR_CATEGORICAL; |
|
|
|
CvDTreeParams params; |
|
params.max_depth = 8; |
|
params.min_sample_count = 2; |
|
params.use_surrogates = false; |
|
params.cv_folds = 0; // the number of cross-validation folds |
|
params.use_1se_rule = false; |
|
params.truncate_pruned_tree = false; |
|
|
|
dtree.train( trainSamples, CV_ROW_SAMPLE, trainClasses, |
|
Mat(), Mat(), var_types, Mat(), params ); |
|
|
|
Mat testSample(1, 2, CV_32FC1 ); |
|
for( int y = 0; y < img.rows; y += testStep ) |
|
{ |
|
for( int x = 0; x < img.cols; x += testStep ) |
|
{ |
|
testSample.at<float>(0) = (float)x; |
|
testSample.at<float>(1) = (float)y; |
|
|
|
int response = (int)dtree.predict( testSample )->value; |
|
circle( imgDst, Point(x,y), 2, classColors[response], 1 ); |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
#if _BT_ |
|
void find_decision_boundary_BT() |
|
{ |
|
img.copyTo( imgDst ); |
|
|
|
Mat trainSamples, trainClasses; |
|
prepare_train_data( trainSamples, trainClasses ); |
|
|
|
// learn classifier |
|
CvBoost boost; |
|
|
|
Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) ); |
|
var_types.at<uchar>( trainSamples.cols ) = CV_VAR_CATEGORICAL; |
|
|
|
CvBoostParams params( CvBoost::DISCRETE, // boost_type |
|
100, // weak_count |
|
0.95, // weight_trim_rate |
|
2, // max_depth |
|
false, //use_surrogates |
|
0 // priors |
|
); |
|
|
|
boost.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params ); |
|
|
|
Mat testSample(1, 2, CV_32FC1 ); |
|
for( int y = 0; y < img.rows; y += testStep ) |
|
{ |
|
for( int x = 0; x < img.cols; x += testStep ) |
|
{ |
|
testSample.at<float>(0) = (float)x; |
|
testSample.at<float>(1) = (float)y; |
|
|
|
int response = (int)boost.predict( testSample ); |
|
circle( imgDst, Point(x,y), 2, classColors[response], 1 ); |
|
} |
|
} |
|
} |
|
|
|
#endif |
|
|
|
#if _GBT_ |
|
void find_decision_boundary_GBT() |
|
{ |
|
img.copyTo( imgDst ); |
|
|
|
Mat trainSamples, trainClasses; |
|
prepare_train_data( trainSamples, trainClasses ); |
|
|
|
// learn classifier |
|
CvGBTrees gbtrees; |
|
|
|
Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) ); |
|
var_types.at<uchar>( trainSamples.cols ) = CV_VAR_CATEGORICAL; |
|
|
|
CvGBTreesParams params( CvGBTrees::DEVIANCE_LOSS, // loss_function_type |
|
100, // weak_count |
|
0.1f, // shrinkage |
|
1.0f, // subsample_portion |
|
2, // max_depth |
|
false // use_surrogates ) |
|
); |
|
|
|
gbtrees.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params ); |
|
|
|
Mat testSample(1, 2, CV_32FC1 ); |
|
for( int y = 0; y < img.rows; y += testStep ) |
|
{ |
|
for( int x = 0; x < img.cols; x += testStep ) |
|
{ |
|
testSample.at<float>(0) = (float)x; |
|
testSample.at<float>(1) = (float)y; |
|
|
|
int response = (int)gbtrees.predict( testSample ); |
|
circle( imgDst, Point(x,y), 2, classColors[response], 1 ); |
|
} |
|
} |
|
} |
|
|
|
#endif |
|
|
|
#if _RF_ |
|
void find_decision_boundary_RF() |
|
{ |
|
img.copyTo( imgDst ); |
|
|
|
Mat trainSamples, trainClasses; |
|
prepare_train_data( trainSamples, trainClasses ); |
|
|
|
// learn classifier |
|
CvRTrees rtrees; |
|
CvRTParams params( 4, // max_depth, |
|
2, // min_sample_count, |
|
0.f, // regression_accuracy, |
|
false, // use_surrogates, |
|
16, // max_categories, |
|
0, // priors, |
|
false, // calc_var_importance, |
|
1, // nactive_vars, |
|
5, // max_num_of_trees_in_the_forest, |
|
0, // forest_accuracy, |
|
CV_TERMCRIT_ITER // termcrit_type |
|
); |
|
|
|
rtrees.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), Mat(), Mat(), params ); |
|
|
|
Mat testSample(1, 2, CV_32FC1 ); |
|
for( int y = 0; y < img.rows; y += testStep ) |
|
{ |
|
for( int x = 0; x < img.cols; x += testStep ) |
|
{ |
|
testSample.at<float>(0) = (float)x; |
|
testSample.at<float>(1) = (float)y; |
|
|
|
int response = (int)rtrees.predict( testSample ); |
|
circle( imgDst, Point(x,y), 2, classColors[response], 1 ); |
|
} |
|
} |
|
} |
|
|
|
#endif |
|
|
|
#if _ERT_ |
|
void find_decision_boundary_ERT() |
|
{ |
|
img.copyTo( imgDst ); |
|
|
|
Mat trainSamples, trainClasses; |
|
prepare_train_data( trainSamples, trainClasses ); |
|
|
|
// learn classifier |
|
CvERTrees ertrees; |
|
|
|
Mat var_types( 1, trainSamples.cols + 1, CV_8UC1, Scalar(CV_VAR_ORDERED) ); |
|
var_types.at<uchar>( trainSamples.cols ) = CV_VAR_CATEGORICAL; |
|
|
|
CvRTParams params( 4, // max_depth, |
|
2, // min_sample_count, |
|
0.f, // regression_accuracy, |
|
false, // use_surrogates, |
|
16, // max_categories, |
|
0, // priors, |
|
false, // calc_var_importance, |
|
1, // nactive_vars, |
|
5, // max_num_of_trees_in_the_forest, |
|
0, // forest_accuracy, |
|
CV_TERMCRIT_ITER // termcrit_type |
|
); |
|
|
|
ertrees.train( trainSamples, CV_ROW_SAMPLE, trainClasses, Mat(), Mat(), var_types, Mat(), params ); |
|
|
|
Mat testSample(1, 2, CV_32FC1 ); |
|
for( int y = 0; y < img.rows; y += testStep ) |
|
{ |
|
for( int x = 0; x < img.cols; x += testStep ) |
|
{ |
|
testSample.at<float>(0) = (float)x; |
|
testSample.at<float>(1) = (float)y; |
|
|
|
int response = (int)ertrees.predict( testSample ); |
|
circle( imgDst, Point(x,y), 2, classColors[response], 1 ); |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
#if _ANN_ |
|
void find_decision_boundary_ANN( const Mat& layer_sizes ) |
|
{ |
|
img.copyTo( imgDst ); |
|
|
|
Mat trainSamples, trainClasses; |
|
prepare_train_data( trainSamples, trainClasses ); |
|
|
|
// prerare trainClasses |
|
trainClasses.create( trainedPoints.size(), classColors.size(), CV_32FC1 ); |
|
for( int i = 0; i < trainClasses.rows; i++ ) |
|
{ |
|
for( int k = 0; k < trainClasses.cols; k++ ) |
|
{ |
|
if( k == trainedPointsMarkers[i] ) |
|
trainClasses.at<float>(i,k) = 1; |
|
else |
|
trainClasses.at<float>(i,k) = 0; |
|
} |
|
} |
|
|
|
Mat weights( 1, trainedPoints.size(), CV_32FC1, Scalar::all(1) ); |
|
|
|
// learn classifier |
|
CvANN_MLP ann( layer_sizes, CvANN_MLP::SIGMOID_SYM, 1, 1 ); |
|
ann.train( trainSamples, trainClasses, weights ); |
|
|
|
Mat testSample( 1, 2, CV_32FC1 ); |
|
for( int y = 0; y < img.rows; y += testStep ) |
|
{ |
|
for( int x = 0; x < img.cols; x += testStep ) |
|
{ |
|
testSample.at<float>(0) = (float)x; |
|
testSample.at<float>(1) = (float)y; |
|
|
|
Mat outputs( 1, classColors.size(), CV_32FC1, testSample.data ); |
|
ann.predict( testSample, outputs ); |
|
Point maxLoc; |
|
minMaxLoc( outputs, 0, 0, 0, &maxLoc ); |
|
circle( imgDst, Point(x,y), 2, classColors[maxLoc.x], 1 ); |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
#if _EM_ |
|
void find_decision_boundary_EM() |
|
{ |
|
img.copyTo( imgDst ); |
|
|
|
Mat trainSamples, trainClasses; |
|
prepare_train_data( trainSamples, trainClasses ); |
|
|
|
vector<cv::EM> em_models(classColors.size()); |
|
|
|
CV_Assert((int)trainClasses.total() == trainSamples.rows); |
|
CV_Assert((int)trainClasses.type() == CV_32SC1); |
|
|
|
for(size_t modelIndex = 0; modelIndex < em_models.size(); modelIndex++) |
|
{ |
|
const int componentCount = 3; |
|
em_models[modelIndex] = EM(componentCount, cv::EM::COV_MAT_DIAGONAL); |
|
|
|
Mat modelSamples; |
|
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++) |
|
{ |
|
if(trainClasses.at<int>(sampleIndex) == (int)modelIndex) |
|
modelSamples.push_back(trainSamples.row(sampleIndex)); |
|
} |
|
|
|
// learn models |
|
if(!modelSamples.empty()) |
|
em_models[modelIndex].train(modelSamples); |
|
} |
|
|
|
// classify coordinate plane points using the bayes classifier, i.e. |
|
// y(x) = arg max_i=1_modelsCount likelihoods_i(x) |
|
Mat testSample(1, 2, CV_32FC1 ); |
|
for( int y = 0; y < img.rows; y += testStep ) |
|
{ |
|
for( int x = 0; x < img.cols; x += testStep ) |
|
{ |
|
testSample.at<float>(0) = (float)x; |
|
testSample.at<float>(1) = (float)y; |
|
|
|
Mat logLikelihoods(1, em_models.size(), CV_64FC1, Scalar(-DBL_MAX)); |
|
for(size_t modelIndex = 0; modelIndex < em_models.size(); modelIndex++) |
|
{ |
|
if(em_models[modelIndex].isTrained()) |
|
logLikelihoods.at<double>(modelIndex) = em_models[modelIndex].predict(testSample)[0]; |
|
} |
|
Point maxLoc; |
|
minMaxLoc(logLikelihoods, 0, 0, 0, &maxLoc); |
|
|
|
int response = maxLoc.x; |
|
circle( imgDst, Point(x,y), 2, classColors[response], 1 ); |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
int main() |
|
{ |
|
cout << "Use:" << endl |
|
<< " right mouse button - to add new class;" << endl |
|
<< " left mouse button - to add new point;" << endl |
|
<< " key 'r' - to run the ML model;" << endl |
|
<< " key 'i' - to init (clear) the data." << endl << endl; |
|
|
|
cv::namedWindow( "points", 1 ); |
|
img.create( 480, 640, CV_8UC3 ); |
|
imgDst.create( 480, 640, CV_8UC3 ); |
|
|
|
imshow( "points", img ); |
|
setMouseCallback( "points", on_mouse ); |
|
|
|
for(;;) |
|
{ |
|
uchar key = (uchar)waitKey(); |
|
|
|
if( key == 27 ) break; |
|
|
|
if( key == 'i' ) // init |
|
{ |
|
img = Scalar::all(0); |
|
|
|
classColors.clear(); |
|
trainedPoints.clear(); |
|
trainedPointsMarkers.clear(); |
|
|
|
imshow( winName, img ); |
|
} |
|
|
|
if( key == 'r' ) // run |
|
{ |
|
#if _NBC_ |
|
find_decision_boundary_NBC(); |
|
namedWindow( "NormalBayesClassifier", WINDOW_AUTOSIZE ); |
|
imshow( "NormalBayesClassifier", imgDst ); |
|
#endif |
|
#if _KNN_ |
|
int K = 3; |
|
find_decision_boundary_KNN( K ); |
|
namedWindow( "kNN", WINDOW_AUTOSIZE ); |
|
imshow( "kNN", imgDst ); |
|
|
|
K = 15; |
|
find_decision_boundary_KNN( K ); |
|
namedWindow( "kNN2", WINDOW_AUTOSIZE ); |
|
imshow( "kNN2", imgDst ); |
|
#endif |
|
|
|
#if _SVM_ |
|
//(1)-(2)separable and not sets |
|
CvSVMParams params; |
|
params.svm_type = CvSVM::C_SVC; |
|
params.kernel_type = CvSVM::POLY; //CvSVM::LINEAR; |
|
params.degree = 0.5; |
|
params.gamma = 1; |
|
params.coef0 = 1; |
|
params.C = 1; |
|
params.nu = 0.5; |
|
params.p = 0; |
|
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 1000, 0.01); |
|
|
|
find_decision_boundary_SVM( params ); |
|
namedWindow( "classificationSVM1", WINDOW_AUTOSIZE ); |
|
imshow( "classificationSVM1", imgDst ); |
|
|
|
params.C = 10; |
|
find_decision_boundary_SVM( params ); |
|
namedWindow( "classificationSVM2", WINDOW_AUTOSIZE ); |
|
imshow( "classificationSVM2", imgDst ); |
|
#endif |
|
|
|
#if _DT_ |
|
find_decision_boundary_DT(); |
|
namedWindow( "DT", WINDOW_AUTOSIZE ); |
|
imshow( "DT", imgDst ); |
|
#endif |
|
|
|
#if _BT_ |
|
find_decision_boundary_BT(); |
|
namedWindow( "BT", WINDOW_AUTOSIZE ); |
|
imshow( "BT", imgDst); |
|
#endif |
|
|
|
#if _GBT_ |
|
find_decision_boundary_GBT(); |
|
namedWindow( "GBT", WINDOW_AUTOSIZE ); |
|
imshow( "GBT", imgDst); |
|
#endif |
|
|
|
#if _RF_ |
|
find_decision_boundary_RF(); |
|
namedWindow( "RF", WINDOW_AUTOSIZE ); |
|
imshow( "RF", imgDst); |
|
#endif |
|
|
|
#if _ERT_ |
|
find_decision_boundary_ERT(); |
|
namedWindow( "ERT", WINDOW_AUTOSIZE ); |
|
imshow( "ERT", imgDst); |
|
#endif |
|
|
|
#if _ANN_ |
|
Mat layer_sizes1( 1, 3, CV_32SC1 ); |
|
layer_sizes1.at<int>(0) = 2; |
|
layer_sizes1.at<int>(1) = 5; |
|
layer_sizes1.at<int>(2) = classColors.size(); |
|
find_decision_boundary_ANN( layer_sizes1 ); |
|
namedWindow( "ANN", WINDOW_AUTOSIZE ); |
|
imshow( "ANN", imgDst ); |
|
#endif |
|
|
|
#if _EM_ |
|
find_decision_boundary_EM(); |
|
namedWindow( "EM", WINDOW_AUTOSIZE ); |
|
imshow( "EM", imgDst ); |
|
#endif |
|
} |
|
} |
|
|
|
return 1; |
|
}
|
|
|