mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
729 lines
26 KiB
729 lines
26 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
/* |
|
* File cvclassifier.h |
|
* |
|
* Classifier types |
|
*/ |
|
|
|
#ifndef _CVCLASSIFIER_H_ |
|
#define _CVCLASSIFIER_H_ |
|
|
|
#include <cmath> |
|
#include "cxcore.h" |
|
|
|
#define CV_BOOST_API |
|
|
|
/* Convert matrix to vector */ |
|
#define CV_MAT2VEC( mat, vdata, vstep, num ) \ |
|
assert( (mat).rows == 1 || (mat).cols == 1 ); \ |
|
(vdata) = ((mat).data.ptr); \ |
|
if( (mat).rows == 1 ) \ |
|
{ \ |
|
(vstep) = CV_ELEM_SIZE( (mat).type ); \ |
|
(num) = (mat).cols; \ |
|
} \ |
|
else \ |
|
{ \ |
|
(vstep) = (mat).step; \ |
|
(num) = (mat).rows; \ |
|
} |
|
|
|
/* Set up <sample> matrix header to be <num> sample of <trainData> samples matrix */ |
|
#define CV_GET_SAMPLE( trainData, tdflags, num, sample ) \ |
|
if( CV_IS_ROW_SAMPLE( tdflags ) ) \ |
|
{ \ |
|
cvInitMatHeader( &(sample), 1, (trainData).cols, \ |
|
CV_MAT_TYPE( (trainData).type ), \ |
|
((trainData).data.ptr + (num) * (trainData).step), \ |
|
(trainData).step ); \ |
|
} \ |
|
else \ |
|
{ \ |
|
cvInitMatHeader( &(sample), (trainData).rows, 1, \ |
|
CV_MAT_TYPE( (trainData).type ), \ |
|
((trainData).data.ptr + (num) * CV_ELEM_SIZE( (trainData).type )), \ |
|
(trainData).step ); \ |
|
} |
|
|
|
#define CV_GET_SAMPLE_STEP( trainData, tdflags, sstep ) \ |
|
(sstep) = ( ( CV_IS_ROW_SAMPLE( tdflags ) ) \ |
|
? (trainData).step : CV_ELEM_SIZE( (trainData).type ) ); |
|
|
|
|
|
#define CV_LOGRATIO_THRESHOLD 0.00001F |
|
|
|
/* log( val / (1 - val ) ) */ |
|
CV_INLINE float cvLogRatio( float val ); |
|
|
|
CV_INLINE float cvLogRatio( float val ) |
|
{ |
|
float tval; |
|
|
|
tval = MAX(CV_LOGRATIO_THRESHOLD, MIN( 1.0F - CV_LOGRATIO_THRESHOLD, (val) )); |
|
return logf( tval / (1.0F - tval) ); |
|
} |
|
|
|
|
|
/* flags values for classifier consturctor flags parameter */ |
|
|
|
/* each trainData matrix column is a sample */ |
|
#define CV_COL_SAMPLE 0 |
|
|
|
/* each trainData matrix row is a sample */ |
|
#define CV_ROW_SAMPLE 1 |
|
|
|
#ifndef CV_IS_ROW_SAMPLE |
|
# define CV_IS_ROW_SAMPLE( flags ) ( ( flags ) & CV_ROW_SAMPLE ) |
|
#endif |
|
|
|
/* Classifier supports tune function */ |
|
#define CV_TUNABLE (1 << 1) |
|
|
|
#define CV_IS_TUNABLE( flags ) ( (flags) & CV_TUNABLE ) |
|
|
|
|
|
/* classifier fields common to all classifiers */ |
|
#define CV_CLASSIFIER_FIELDS() \ |
|
int flags; \ |
|
float(*eval)( struct CvClassifier*, CvMat* ); \ |
|
void (*tune)( struct CvClassifier*, CvMat*, int flags, CvMat*, CvMat*, CvMat*, \ |
|
CvMat*, CvMat* ); \ |
|
int (*save)( struct CvClassifier*, const char* file_name ); \ |
|
void (*release)( struct CvClassifier** ); |
|
|
|
typedef struct CvClassifier |
|
{ |
|
CV_CLASSIFIER_FIELDS() |
|
} CvClassifier; |
|
|
|
#define CV_CLASSIFIER_TRAIN_PARAM_FIELDS() |
|
typedef struct CvClassifierTrainParams |
|
{ |
|
CV_CLASSIFIER_TRAIN_PARAM_FIELDS() |
|
} CvClassifierTrainParams; |
|
|
|
|
|
/* |
|
Common classifier constructor: |
|
CvClassifier* cvCreateMyClassifier( CvMat* trainData, |
|
int flags, |
|
CvMat* trainClasses, |
|
CvMat* typeMask, |
|
CvMat* missedMeasurementsMask CV_DEFAULT(0), |
|
CvCompIdx* compIdx CV_DEFAULT(0), |
|
CvMat* sampleIdx CV_DEFAULT(0), |
|
CvMat* weights CV_DEFAULT(0), |
|
CvClassifierTrainParams* trainParams CV_DEFAULT(0) |
|
) |
|
|
|
*/ |
|
|
|
typedef CvClassifier* (*CvClassifierConstructor)( CvMat*, int, CvMat*, CvMat*, CvMat*, |
|
CvMat*, CvMat*, CvMat*, |
|
CvClassifierTrainParams* ); |
|
|
|
typedef enum CvStumpType |
|
{ |
|
CV_CLASSIFICATION = 0, |
|
CV_CLASSIFICATION_CLASS = 1, |
|
CV_REGRESSION = 2 |
|
} CvStumpType; |
|
|
|
typedef enum CvStumpError |
|
{ |
|
CV_MISCLASSIFICATION = 0, |
|
CV_GINI = 1, |
|
CV_ENTROPY = 2, |
|
CV_SQUARE = 3 |
|
} CvStumpError; |
|
|
|
|
|
typedef struct CvStumpTrainParams |
|
{ |
|
CV_CLASSIFIER_TRAIN_PARAM_FIELDS() |
|
CvStumpType type; |
|
CvStumpError error; |
|
} CvStumpTrainParams; |
|
|
|
typedef struct CvMTStumpTrainParams |
|
{ |
|
CV_CLASSIFIER_TRAIN_PARAM_FIELDS() |
|
CvStumpType type; |
|
CvStumpError error; |
|
int portion; /* number of components calculated in each thread */ |
|
int numcomp; /* total number of components */ |
|
|
|
/* callback which fills <mat> with components [first, first+num[ */ |
|
void (*getTrainData)( CvMat* mat, CvMat* sampleIdx, CvMat* compIdx, |
|
int first, int num, void* userdata ); |
|
CvMat* sortedIdx; /* presorted samples indices */ |
|
void* userdata; /* passed to callback */ |
|
} CvMTStumpTrainParams; |
|
|
|
typedef struct CvStumpClassifier |
|
{ |
|
CV_CLASSIFIER_FIELDS() |
|
int compidx; |
|
|
|
float lerror; /* impurity of the right node */ |
|
float rerror; /* impurity of the left node */ |
|
|
|
float threshold; |
|
float left; |
|
float right; |
|
} CvStumpClassifier; |
|
|
|
typedef struct CvCARTTrainParams |
|
{ |
|
CV_CLASSIFIER_TRAIN_PARAM_FIELDS() |
|
/* desired number of internal nodes */ |
|
int count; |
|
CvClassifierTrainParams* stumpTrainParams; |
|
CvClassifierConstructor stumpConstructor; |
|
|
|
/* |
|
* Split sample indices <idx> |
|
* on the "left" indices <left> and "right" indices <right> |
|
* according to samples components <compidx> values and <threshold>. |
|
* |
|
* NOTE: Matrices <left> and <right> must be allocated using cvCreateMat function |
|
* since they are freed using cvReleaseMat function |
|
* |
|
* If it is NULL then the default implementation which evaluates training |
|
* samples from <trainData> passed to classifier constructor is used |
|
*/ |
|
void (*splitIdx)( int compidx, float threshold, |
|
CvMat* idx, CvMat** left, CvMat** right, |
|
void* userdata ); |
|
void* userdata; |
|
} CvCARTTrainParams; |
|
|
|
typedef struct CvCARTClassifier |
|
{ |
|
CV_CLASSIFIER_FIELDS() |
|
/* number of internal nodes */ |
|
int count; |
|
|
|
/* internal nodes (each array of <count> elements) */ |
|
int* compidx; |
|
float* threshold; |
|
int* left; |
|
int* right; |
|
|
|
/* leaves (array of <count>+1 elements) */ |
|
float* val; |
|
} CvCARTClassifier; |
|
|
|
CV_BOOST_API |
|
void cvGetSortedIndices( CvMat* val, CvMat* idx, int sortcols CV_DEFAULT( 0 ) ); |
|
|
|
CV_BOOST_API |
|
void cvReleaseStumpClassifier( CvClassifier** classifier ); |
|
|
|
CV_BOOST_API |
|
float cvEvalStumpClassifier( CvClassifier* classifier, CvMat* sample ); |
|
|
|
CV_BOOST_API |
|
CvClassifier* cvCreateStumpClassifier( CvMat* trainData, |
|
int flags, |
|
CvMat* trainClasses, |
|
CvMat* typeMask, |
|
CvMat* missedMeasurementsMask CV_DEFAULT(0), |
|
CvMat* compIdx CV_DEFAULT(0), |
|
CvMat* sampleIdx CV_DEFAULT(0), |
|
CvMat* weights CV_DEFAULT(0), |
|
CvClassifierTrainParams* trainParams CV_DEFAULT(0) ); |
|
|
|
/* |
|
* cvCreateMTStumpClassifier |
|
* |
|
* Multithreaded stump classifier constructor |
|
* Includes huge train data support through callback function |
|
*/ |
|
CV_BOOST_API |
|
CvClassifier* cvCreateMTStumpClassifier( CvMat* trainData, |
|
int flags, |
|
CvMat* trainClasses, |
|
CvMat* typeMask, |
|
CvMat* missedMeasurementsMask, |
|
CvMat* compIdx, |
|
CvMat* sampleIdx, |
|
CvMat* weights, |
|
CvClassifierTrainParams* trainParams ); |
|
|
|
/* |
|
* cvCreateCARTClassifier |
|
* |
|
* CART classifier constructor |
|
*/ |
|
CV_BOOST_API |
|
CvClassifier* cvCreateCARTClassifier( CvMat* trainData, |
|
int flags, |
|
CvMat* trainClasses, |
|
CvMat* typeMask, |
|
CvMat* missedMeasurementsMask, |
|
CvMat* compIdx, |
|
CvMat* sampleIdx, |
|
CvMat* weights, |
|
CvClassifierTrainParams* trainParams ); |
|
|
|
CV_BOOST_API |
|
void cvReleaseCARTClassifier( CvClassifier** classifier ); |
|
|
|
CV_BOOST_API |
|
float cvEvalCARTClassifier( CvClassifier* classifier, CvMat* sample ); |
|
|
|
/****************************************************************************************\ |
|
* Boosting * |
|
\****************************************************************************************/ |
|
|
|
/* |
|
* CvBoostType |
|
* |
|
* The CvBoostType enumeration specifies the boosting type. |
|
* |
|
* Remarks |
|
* Four different boosting variants for 2 class classification problems are supported: |
|
* Discrete AdaBoost, Real AdaBoost, LogitBoost and Gentle AdaBoost. |
|
* The L2 (2 class classification problems) and LK (K class classification problems) |
|
* algorithms are close to LogitBoost but more numerically stable than last one. |
|
* For regression three different loss functions are supported: |
|
* Least square, least absolute deviation and huber loss. |
|
*/ |
|
typedef enum CvBoostType |
|
{ |
|
CV_DABCLASS = 0, /* 2 class Discrete AdaBoost */ |
|
CV_RABCLASS = 1, /* 2 class Real AdaBoost */ |
|
CV_LBCLASS = 2, /* 2 class LogitBoost */ |
|
CV_GABCLASS = 3, /* 2 class Gentle AdaBoost */ |
|
CV_L2CLASS = 4, /* classification (2 class problem) */ |
|
CV_LKCLASS = 5, /* classification (K class problem) */ |
|
CV_LSREG = 6, /* least squares regression */ |
|
CV_LADREG = 7, /* least absolute deviation regression */ |
|
CV_MREG = 8, /* M-regression (Huber loss) */ |
|
} CvBoostType; |
|
|
|
/****************************************************************************************\ |
|
* Iterative training functions * |
|
\****************************************************************************************/ |
|
|
|
/* |
|
* CvBoostTrainer |
|
* |
|
* The CvBoostTrainer structure represents internal boosting trainer. |
|
*/ |
|
typedef struct CvBoostTrainer CvBoostTrainer; |
|
|
|
/* |
|
* cvBoostStartTraining |
|
* |
|
* The cvBoostStartTraining function starts training process and calculates |
|
* response values and weights for the first weak classifier training. |
|
* |
|
* Parameters |
|
* trainClasses |
|
* Vector of classes of training samples classes. Each element must be 0 or 1 and |
|
* of type CV_32FC1. |
|
* weakTrainVals |
|
* Vector of response values for the first trained weak classifier. |
|
* Must be of type CV_32FC1. |
|
* weights |
|
* Weight vector of training samples for the first trained weak classifier. |
|
* Must be of type CV_32FC1. |
|
* type |
|
* Boosting type. CV_DABCLASS, CV_RABCLASS, CV_LBCLASS, CV_GABCLASS |
|
* types are supported. |
|
* |
|
* Return Values |
|
* The return value is a pointer to internal trainer structure which is used |
|
* to perform next training iterations. |
|
* |
|
* Remarks |
|
* weakTrainVals and weights must be allocated before calling the function |
|
* and of the same size as trainingClasses. Usually weights should be initialized |
|
* with 1.0 value. |
|
* The function calculates response values and weights for the first weak |
|
* classifier training and stores them into weakTrainVals and weights |
|
* respectively. |
|
* Note, the training of the weak classifier using weakTrainVals, weight, |
|
* trainingData is outside of this function. |
|
*/ |
|
CV_BOOST_API |
|
CvBoostTrainer* cvBoostStartTraining( CvMat* trainClasses, |
|
CvMat* weakTrainVals, |
|
CvMat* weights, |
|
CvMat* sampleIdx, |
|
CvBoostType type ); |
|
/* |
|
* cvBoostNextWeakClassifier |
|
* |
|
* The cvBoostNextWeakClassifier function performs next training |
|
* iteration and caluclates response values and weights for the next weak |
|
* classifier training. |
|
* |
|
* Parameters |
|
* weakEvalVals |
|
* Vector of values obtained by evaluation of each sample with |
|
* the last trained weak classifier (iteration i). Must be of CV_32FC1 type. |
|
* trainClasses |
|
* Vector of classes of training samples. Each element must be 0 or 1, |
|
* and of type CV_32FC1. |
|
* weakTrainVals |
|
* Vector of response values for the next weak classifier training |
|
* (iteration i+1). Must be of type CV_32FC1. |
|
* weights |
|
* Weight vector of training samples for the next weak classifier training |
|
* (iteration i+1). Must be of type CV_32FC1. |
|
* trainer |
|
* A pointer to internal trainer returned by the cvBoostStartTraining |
|
* function call. |
|
* |
|
* Return Values |
|
* The return value is the coefficient for the last trained weak classifier. |
|
* |
|
* Remarks |
|
* weakTrainVals and weights must be exactly the same vectors as used in |
|
* the cvBoostStartTraining function call and should not be modified. |
|
* The function calculates response values and weights for the next weak |
|
* classifier training and stores them into weakTrainVals and weights |
|
* respectively. |
|
* Note, the training of the weak classifier of iteration i+1 using |
|
* weakTrainVals, weight, trainingData is outside of this function. |
|
*/ |
|
CV_BOOST_API |
|
float cvBoostNextWeakClassifier( CvMat* weakEvalVals, |
|
CvMat* trainClasses, |
|
CvMat* weakTrainVals, |
|
CvMat* weights, |
|
CvBoostTrainer* trainer ); |
|
|
|
/* |
|
* cvBoostEndTraining |
|
* |
|
* The cvBoostEndTraining function finishes training process and releases |
|
* internally allocated memory. |
|
* |
|
* Parameters |
|
* trainer |
|
* A pointer to a pointer to internal trainer returned by the cvBoostStartTraining |
|
* function call. |
|
*/ |
|
CV_BOOST_API |
|
void cvBoostEndTraining( CvBoostTrainer** trainer ); |
|
|
|
/****************************************************************************************\ |
|
* Boosted tree models * |
|
\****************************************************************************************/ |
|
|
|
/* |
|
* CvBtClassifier |
|
* |
|
* The CvBtClassifier structure represents boosted tree model. |
|
* |
|
* Members |
|
* flags |
|
* Flags. If CV_IS_TUNABLE( flags ) != 0 then the model supports tuning. |
|
* eval |
|
* Evaluation function. Returns sample predicted class (0, 1, etc.) |
|
* for classification or predicted value for regression. |
|
* tune |
|
* Tune function. If the model supports tuning then tune call performs |
|
* one more boosting iteration if passed to the function flags parameter |
|
* is CV_TUNABLE otherwise releases internally allocated for tuning memory |
|
* and makes the model untunable. |
|
* NOTE: Since tuning uses the pointers to parameters, |
|
* passed to the cvCreateBtClassifier function, they should not be modified |
|
* or released between tune calls. |
|
* save |
|
* This function stores the model into given file. |
|
* release |
|
* This function releases the model. |
|
* type |
|
* Boosted tree model type. |
|
* numclasses |
|
* Number of classes for CV_LKCLASS type or 1 for all other types. |
|
* numiter |
|
* Number of iterations. Number of weak classifiers is equal to number |
|
* of iterations for all types except CV_LKCLASS. For CV_LKCLASS type |
|
* number of weak classifiers is (numiter * numclasses). |
|
* numfeatures |
|
* Number of features in sample. |
|
* trees |
|
* Stores weak classifiers when the model does not support tuning. |
|
* seq |
|
* Stores weak classifiers when the model supports tuning. |
|
* trainer |
|
* Pointer to internal tuning parameters if the model supports tuning. |
|
*/ |
|
typedef struct CvBtClassifier |
|
{ |
|
CV_CLASSIFIER_FIELDS() |
|
|
|
CvBoostType type; |
|
int numclasses; |
|
int numiter; |
|
int numfeatures; |
|
union |
|
{ |
|
CvCARTClassifier** trees; |
|
CvSeq* seq; |
|
}; |
|
void* trainer; |
|
} CvBtClassifier; |
|
|
|
/* |
|
* CvBtClassifierTrainParams |
|
* |
|
* The CvBtClassifierTrainParams structure stores training parameters for |
|
* boosted tree model. |
|
* |
|
* Members |
|
* type |
|
* Boosted tree model type. |
|
* numiter |
|
* Desired number of iterations. |
|
* param |
|
* Parameter Model Type Parameter Meaning |
|
* param[0] Any Shrinkage factor |
|
* param[1] CV_MREG alpha. (1-alpha) determines "break-down" point of |
|
* the training procedure, i.e. the fraction of samples |
|
* that can be arbitrary modified without serious |
|
* degrading the quality of the result. |
|
* CV_DABCLASS, Weight trimming factor. |
|
* CV_RABCLASS, |
|
* CV_LBCLASS, |
|
* CV_GABCLASS, |
|
* CV_L2CLASS, |
|
* CV_LKCLASS |
|
* numsplits |
|
* Desired number of splits in each tree. |
|
*/ |
|
typedef struct CvBtClassifierTrainParams |
|
{ |
|
CV_CLASSIFIER_TRAIN_PARAM_FIELDS() |
|
|
|
CvBoostType type; |
|
int numiter; |
|
float param[2]; |
|
int numsplits; |
|
} CvBtClassifierTrainParams; |
|
|
|
/* |
|
* cvCreateBtClassifier |
|
* |
|
* The cvCreateBtClassifier function creates boosted tree model. |
|
* |
|
* Parameters |
|
* trainData |
|
* Matrix of feature values. Must have CV_32FC1 type. |
|
* flags |
|
* Determines how samples are stored in trainData. |
|
* One of CV_ROW_SAMPLE or CV_COL_SAMPLE. |
|
* Optionally may be combined with CV_TUNABLE to make tunable model. |
|
* trainClasses |
|
* Vector of responses for regression or classes (0, 1, 2, etc.) for classification. |
|
* typeMask, |
|
* missedMeasurementsMask, |
|
* compIdx |
|
* Not supported. Must be NULL. |
|
* sampleIdx |
|
* Indices of samples used in training. If NULL then all samples are used. |
|
* For CV_DABCLASS, CV_RABCLASS, CV_LBCLASS and CV_GABCLASS must be NULL. |
|
* weights |
|
* Not supported. Must be NULL. |
|
* trainParams |
|
* A pointer to CvBtClassifierTrainParams structure. Training parameters. |
|
* See CvBtClassifierTrainParams description for details. |
|
* |
|
* Return Values |
|
* The return value is a pointer to created boosted tree model of type CvBtClassifier. |
|
* |
|
* Remarks |
|
* The function performs trainParams->numiter training iterations. |
|
* If CV_TUNABLE flag is specified then created model supports tuning. |
|
* In this case additional training iterations may be performed by |
|
* tune function call. |
|
*/ |
|
CV_BOOST_API |
|
CvClassifier* cvCreateBtClassifier( CvMat* trainData, |
|
int flags, |
|
CvMat* trainClasses, |
|
CvMat* typeMask, |
|
CvMat* missedMeasurementsMask, |
|
CvMat* compIdx, |
|
CvMat* sampleIdx, |
|
CvMat* weights, |
|
CvClassifierTrainParams* trainParams ); |
|
|
|
/* |
|
* cvCreateBtClassifierFromFile |
|
* |
|
* The cvCreateBtClassifierFromFile function restores previously saved |
|
* boosted tree model from file. |
|
* |
|
* Parameters |
|
* filename |
|
* The name of the file with boosted tree model. |
|
* |
|
* Remarks |
|
* The restored model does not support tuning. |
|
*/ |
|
CV_BOOST_API |
|
CvClassifier* cvCreateBtClassifierFromFile( const char* filename ); |
|
|
|
/****************************************************************************************\ |
|
* Utility functions * |
|
\****************************************************************************************/ |
|
|
|
/* |
|
* cvTrimWeights |
|
* |
|
* The cvTrimWeights function performs weight trimming. |
|
* |
|
* Parameters |
|
* weights |
|
* Weights vector. |
|
* idx |
|
* Indices vector of weights that should be considered. |
|
* If it is NULL then all weights are used. |
|
* factor |
|
* Weight trimming factor. Must be in [0, 1] range. |
|
* |
|
* Return Values |
|
* The return value is a vector of indices. If all samples should be used then |
|
* it is equal to idx. In other case the cvReleaseMat function should be called |
|
* to release it. |
|
* |
|
* Remarks |
|
*/ |
|
CV_BOOST_API |
|
CvMat* cvTrimWeights( CvMat* weights, CvMat* idx, float factor ); |
|
|
|
/* |
|
* cvReadTrainData |
|
* |
|
* The cvReadTrainData function reads feature values and responses from file. |
|
* |
|
* Parameters |
|
* filename |
|
* The name of the file to be read. |
|
* flags |
|
* One of CV_ROW_SAMPLE or CV_COL_SAMPLE. Determines how feature values |
|
* will be stored. |
|
* trainData |
|
* A pointer to a pointer to created matrix with feature values. |
|
* cvReleaseMat function should be used to destroy created matrix. |
|
* trainClasses |
|
* A pointer to a pointer to created matrix with response values. |
|
* cvReleaseMat function should be used to destroy created matrix. |
|
* |
|
* Remarks |
|
* File format: |
|
* ============================================ |
|
* m n |
|
* value_1_1 value_1_2 ... value_1_n response_1 |
|
* value_2_1 value_2_2 ... value_2_n response_2 |
|
* ... |
|
* value_m_1 value_m_2 ... value_m_n response_m |
|
* ============================================ |
|
* m |
|
* Number of samples |
|
* n |
|
* Number of features in each sample |
|
* value_i_j |
|
* Value of j-th feature of i-th sample |
|
* response_i |
|
* Response value of i-th sample |
|
* For classification problems responses represent classes (0, 1, etc.) |
|
* All values and classes are integer or real numbers. |
|
*/ |
|
CV_BOOST_API |
|
void cvReadTrainData( const char* filename, |
|
int flags, |
|
CvMat** trainData, |
|
CvMat** trainClasses ); |
|
|
|
|
|
/* |
|
* cvWriteTrainData |
|
* |
|
* The cvWriteTrainData function stores feature values and responses into file. |
|
* |
|
* Parameters |
|
* filename |
|
* The name of the file. |
|
* flags |
|
* One of CV_ROW_SAMPLE or CV_COL_SAMPLE. Determines how feature values |
|
* are stored. |
|
* trainData |
|
* Feature values matrix. |
|
* trainClasses |
|
* Response values vector. |
|
* sampleIdx |
|
* Vector of idicies of the samples that should be stored. If it is NULL |
|
* then all samples will be stored. |
|
* |
|
* Remarks |
|
* See the cvReadTrainData function for file format description. |
|
*/ |
|
CV_BOOST_API |
|
void cvWriteTrainData( const char* filename, |
|
int flags, |
|
CvMat* trainData, |
|
CvMat* trainClasses, |
|
CvMat* sampleIdx ); |
|
|
|
/* |
|
* cvRandShuffle |
|
* |
|
* The cvRandShuffle function perfroms random shuffling of given vector. |
|
* |
|
* Parameters |
|
* vector |
|
* Vector that should be shuffled. |
|
* Must have CV_8UC1, CV_16SC1, CV_32SC1 or CV_32FC1 type. |
|
*/ |
|
CV_BOOST_API |
|
void cvRandShuffleVec( CvMat* vector ); |
|
|
|
#endif /* _CVCLASSIFIER_H_ */
|
|
|