mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
242 lines
8.9 KiB
242 lines
8.9 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef __OPENCV_TEST_UTILITY_HPP__ |
|
#define __OPENCV_TEST_UTILITY_HPP__ |
|
#define LOOP_TIMES 1 |
|
#define MWIDTH 256 |
|
#define MHEIGHT 256 |
|
//#define RANDOMROI |
|
int randomInt(int minVal, int maxVal); |
|
double randomDouble(double minVal, double maxVal); |
|
//std::string generateVarList(int first,...); |
|
std::string generateVarList(int &p1, int &p2); |
|
cv::Size randomSize(int minVal, int maxVal); |
|
cv::Scalar randomScalar(double minVal, double maxVal); |
|
cv::Mat randomMat(cv::Size size, int type, double minVal = 0.0, double maxVal = 255.0); |
|
|
|
void showDiff(cv::InputArray gold, cv::InputArray actual, double eps); |
|
|
|
//! return true if device supports specified feature and gpu module was built with support the feature. |
|
//bool supportFeature(const cv::gpu::DeviceInfo& info, cv::gpu::FeatureSet feature); |
|
|
|
//! return all devices compatible with current gpu module build. |
|
//const std::vector<cv::ocl::DeviceInfo>& devices(); |
|
//! return all devices compatible with current gpu module build which support specified feature. |
|
//std::vector<cv::ocl::DeviceInfo> devices(cv::gpu::FeatureSet feature); |
|
|
|
//! read image from testdata folder. |
|
cv::Mat readImage(const std::string &fileName, int flags = cv::IMREAD_COLOR); |
|
cv::Mat readImageType(const std::string &fname, int type); |
|
|
|
double checkNorm(const cv::Mat &m); |
|
double checkNorm(const cv::Mat &m1, const cv::Mat &m2); |
|
double checkSimilarity(const cv::Mat &m1, const cv::Mat &m2); |
|
|
|
#define EXPECT_MAT_NORM(mat, eps) \ |
|
{ \ |
|
EXPECT_LE(checkNorm(cv::Mat(mat)), eps) \ |
|
} |
|
|
|
//#define EXPECT_MAT_NEAR(mat1, mat2, eps) \ |
|
//{ \ |
|
// ASSERT_EQ(mat1.type(), mat2.type()); \ |
|
// ASSERT_EQ(mat1.size(), mat2.size()); \ |
|
// EXPECT_LE(checkNorm(cv::Mat(mat1), cv::Mat(mat2)), eps); \ |
|
//} |
|
|
|
#define EXPECT_MAT_NEAR(mat1, mat2, eps,s) \ |
|
{ \ |
|
ASSERT_EQ(mat1.type(), mat2.type()); \ |
|
ASSERT_EQ(mat1.size(), mat2.size()); \ |
|
EXPECT_LE(checkNorm(cv::Mat(mat1), cv::Mat(mat2)), eps)<<s; \ |
|
} |
|
|
|
#define EXPECT_MAT_SIMILAR(mat1, mat2, eps) \ |
|
{ \ |
|
ASSERT_EQ(mat1.type(), mat2.type()); \ |
|
ASSERT_EQ(mat1.size(), mat2.size()); \ |
|
EXPECT_LE(checkSimilarity(cv::Mat(mat1), cv::Mat(mat2)), eps); \ |
|
} |
|
|
|
namespace cv |
|
{ |
|
namespace ocl |
|
{ |
|
// void PrintTo(const DeviceInfo& info, std::ostream* os); |
|
} |
|
} |
|
|
|
using perf::MatDepth; |
|
using perf::MatType; |
|
|
|
//! return vector with types from specified range. |
|
std::vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end); |
|
|
|
//! return vector with all types (depth: CV_8U-CV_64F, channels: 1-4). |
|
const std::vector<MatType>& all_types(); |
|
|
|
class Inverse |
|
{ |
|
public: |
|
inline Inverse(bool val = false) : val_(val) {} |
|
|
|
inline operator bool() const |
|
{ |
|
return val_; |
|
} |
|
|
|
private: |
|
bool val_; |
|
}; |
|
|
|
void PrintTo(const Inverse &useRoi, std::ostream *os); |
|
|
|
CV_ENUM(CmpCode, cv::CMP_EQ, cv::CMP_GT, cv::CMP_GE, cv::CMP_LT, cv::CMP_LE, cv::CMP_NE) |
|
|
|
CV_ENUM(NormCode, cv::NORM_INF, cv::NORM_L1, cv::NORM_L2, cv::NORM_TYPE_MASK, cv::NORM_RELATIVE, cv::NORM_MINMAX) |
|
|
|
enum {FLIP_BOTH = 0, FLIP_X = 1, FLIP_Y = -1}; |
|
CV_ENUM(FlipCode, FLIP_BOTH, FLIP_X, FLIP_Y) |
|
|
|
CV_ENUM(ReduceOp, CV_REDUCE_SUM, CV_REDUCE_AVG, CV_REDUCE_MAX, CV_REDUCE_MIN) |
|
|
|
CV_FLAGS(GemmFlags, cv::GEMM_1_T, cv::GEMM_2_T, cv::GEMM_3_T); |
|
|
|
CV_ENUM(MorphOp, cv::MORPH_OPEN, cv::MORPH_CLOSE, cv::MORPH_GRADIENT, cv::MORPH_TOPHAT, cv::MORPH_BLACKHAT) |
|
|
|
CV_ENUM(ThreshOp, cv::THRESH_BINARY, cv::THRESH_BINARY_INV, cv::THRESH_TRUNC, cv::THRESH_TOZERO, cv::THRESH_TOZERO_INV) |
|
|
|
CV_ENUM(Interpolation, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC) |
|
|
|
CV_ENUM(Border, cv::BORDER_REFLECT101, cv::BORDER_REPLICATE, cv::BORDER_CONSTANT, cv::BORDER_REFLECT, cv::BORDER_WRAP) |
|
|
|
CV_FLAGS(WarpFlags, cv::INTER_NEAREST, cv::INTER_LINEAR, cv::INTER_CUBIC, cv::WARP_INVERSE_MAP) |
|
|
|
CV_ENUM(TemplateMethod, cv::TM_SQDIFF, cv::TM_SQDIFF_NORMED, cv::TM_CCORR, cv::TM_CCORR_NORMED, cv::TM_CCOEFF, cv::TM_CCOEFF_NORMED) |
|
|
|
CV_FLAGS(DftFlags, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX_OUTPUT, cv::DFT_REAL_OUTPUT) |
|
|
|
void run_perf_test(); |
|
|
|
#define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > > |
|
|
|
#define GET_PARAM(k) std::tr1::get< k >(GetParam()) |
|
|
|
#define ALL_DEVICES testing::ValuesIn(devices()) |
|
#define DEVICES(feature) testing::ValuesIn(devices(feature)) |
|
|
|
#define ALL_TYPES testing::ValuesIn(all_types()) |
|
#define TYPES(depth_start, depth_end, cn_start, cn_end) testing::ValuesIn(types(depth_start, depth_end, cn_start, cn_end)) |
|
|
|
#define DIFFERENT_SIZES testing::Values(cv::Size(128, 128), cv::Size(113, 113)) |
|
|
|
#define DIRECT_INVERSE testing::Values(Inverse(false), Inverse(true)) |
|
|
|
#ifndef ALL_DEPTH |
|
#define ALL_DEPTH testing::Values(MatDepth(CV_8U), MatDepth(CV_8S), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32S), MatDepth(CV_32F), MatDepth(CV_64F)) |
|
#endif |
|
#define REPEAT 1000 |
|
#define COUNT_U 0 // count the uploading execution time for ocl mat structures |
|
#define COUNT_D 0 |
|
// the following macro section tests the target function (kernel) performance |
|
// upload is the code snippet for converting cv::mat to cv::ocl::oclMat |
|
// downloading is the code snippet for converting cv::ocl::oclMat back to cv::mat |
|
// change COUNT_U and COUNT_D to take downloading and uploading time into account |
|
#define P_TEST_FULL( upload, kernel_call, download ) \ |
|
{ \ |
|
std::cout<< "\n" #kernel_call "\n----------------------"; \ |
|
{upload;} \ |
|
R_TEST( kernel_call, 2 ); \ |
|
double t = (double)cvGetTickCount(); \ |
|
R_T( { \ |
|
if( COUNT_U ) {upload;} \ |
|
kernel_call; \ |
|
if( COUNT_D ) {download;} \ |
|
} ); \ |
|
t = (double)cvGetTickCount() - t; \ |
|
std::cout << "runtime is " << t/((double)cvGetTickFrequency()* 1000.) << "ms" << std::endl; \ |
|
} |
|
|
|
#define R_T2( test ) \ |
|
{ \ |
|
std::cout<< "\n" #test "\n----------------------"; \ |
|
R_TEST( test, 15 ) \ |
|
clock_t st = clock(); \ |
|
R_T( test ) \ |
|
std::cout<< clock() - st << "ms\n"; \ |
|
} |
|
#define R_T( test ) \ |
|
R_TEST( test, REPEAT ) |
|
#define R_TEST( test, repeat ) \ |
|
try{ \ |
|
for( int i = 0; i < repeat; i ++ ) { test; } \ |
|
} catch( ... ) { std::cout << "||||| Exception catched! |||||\n"; return; } |
|
|
|
//////// Utility |
|
#ifndef DIFFERENT_SIZES |
|
#else |
|
#undef DIFFERENT_SIZES |
|
#endif |
|
#define DIFFERENT_SIZES testing::Values(cv::Size(256, 256), cv::Size(3000, 3000)) |
|
|
|
#define IMAGE_CHANNELS testing::Values(Channels(1), Channels(3), Channels(4)) |
|
#ifndef IMPLEMENT_PARAM_CLASS |
|
#define IMPLEMENT_PARAM_CLASS(name, type) \ |
|
class name \ |
|
{ \ |
|
public: \ |
|
name ( type arg = type ()) : val_(arg) {} \ |
|
operator type () const {return val_;} \ |
|
private: \ |
|
type val_; \ |
|
}; \ |
|
inline void PrintTo( name param, std::ostream* os) \ |
|
{ \ |
|
*os << #name << "(" << testing::PrintToString(static_cast< type >(param)) << ")"; \ |
|
} |
|
|
|
IMPLEMENT_PARAM_CLASS(Channels, int) |
|
#endif // IMPLEMENT_PARAM_CLASS |
|
|
|
cv::ocl::oclMat createMat(cv::Size size,int type,bool useRoi); |
|
cv::ocl::oclMat loadMat(const cv::Mat& m, bool useRoi); |
|
#endif // __OPENCV_TEST_UTILITY_HPP__
|
|
|