Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

175 lines
5.2 KiB

#include "perf_precomp.hpp"
using namespace std;
using namespace cv;
using namespace perf;
using std::tr1::make_tuple;
using std::tr1::get;
CV_FLAGS(NormType, NORM_L1, NORM_L2, NORM_L2SQR, NORM_HAMMING, NORM_HAMMING2)
CV_ENUM(SourceType, CV_32F, CV_8U)
CV_ENUM(DestinationType, CV_32F, CV_32S)
typedef std::tr1::tuple<NormType, DestinationType, bool> Norm_Destination_CrossCheck_t;
typedef perf::TestBaseWithParam<Norm_Destination_CrossCheck_t> Norm_Destination_CrossCheck;
typedef std::tr1::tuple<NormType, bool> Norm_CrossCheck_t;
typedef perf::TestBaseWithParam<Norm_CrossCheck_t> Norm_CrossCheck;
typedef std::tr1::tuple<SourceType, bool> Source_CrossCheck_t;
typedef perf::TestBaseWithParam<Source_CrossCheck_t> Source_CrossCheck;
void generateData( Mat& query, Mat& train, const int sourceType );
PERF_TEST_P(Norm_Destination_CrossCheck, batchDistance_8U,
testing::Combine(testing::Values((int)NORM_L1, (int)NORM_L2SQR),
testing::Values(CV_32S, CV_32F),
testing::Bool()
)
)
{
NormType normType = get<0>(GetParam());
DestinationType destinationType = get<1>(GetParam());
bool isCrossCheck = get<2>(GetParam());
Mat queryDescriptors;
Mat trainDescriptors;
Mat dist;
Mat ndix;
int knn = 1;
generateData(queryDescriptors, trainDescriptors, CV_8U);
if(!isCrossCheck)
{
knn = 0;
}
declare.time(30);
TEST_CYCLE()
{
batchDistance(queryDescriptors, trainDescriptors, dist, destinationType, (isCrossCheck) ? ndix : noArray(),
normType, knn, Mat(), 0, isCrossCheck);
}
}
PERF_TEST_P(Norm_CrossCheck, batchDistance_Dest_32S,
testing::Combine(testing::Values((int)NORM_HAMMING, (int)NORM_HAMMING2),
testing::Bool()
)
)
{
NormType normType = get<0>(GetParam());
bool isCrossCheck = get<1>(GetParam());
Mat queryDescriptors;
Mat trainDescriptors;
Mat dist;
Mat ndix;
int knn = 1;
generateData(queryDescriptors, trainDescriptors, CV_8U);
if(!isCrossCheck)
{
knn = 0;
}
declare.time(30);
TEST_CYCLE()
{
batchDistance(queryDescriptors, trainDescriptors, dist, CV_32S, (isCrossCheck) ? ndix : noArray(),
normType, knn, Mat(), 0, isCrossCheck);
}
}
PERF_TEST_P(Source_CrossCheck, batchDistance_L2,
testing::Combine(testing::Values(CV_8U, CV_32F),
testing::Bool()
)
)
{
SourceType sourceType = get<0>(GetParam());
bool isCrossCheck = get<1>(GetParam());
Mat queryDescriptors;
Mat trainDescriptors;
Mat dist;
Mat ndix;
int knn = 1;
generateData(queryDescriptors, trainDescriptors, sourceType);
if(!isCrossCheck)
{
knn = 0;
}
declare.time(30);
TEST_CYCLE()
{
batchDistance(queryDescriptors, trainDescriptors, dist, CV_32F, (isCrossCheck) ? ndix : noArray(),
NORM_L2, knn, Mat(), 0, isCrossCheck);
}
}
PERF_TEST_P(Norm_CrossCheck, batchDistance_32F,
testing::Combine(testing::Values((int)NORM_L1, (int)NORM_L2SQR),
testing::Bool()
)
)
{
NormType normType = get<0>(GetParam());
bool isCrossCheck = get<1>(GetParam());
Mat queryDescriptors;
Mat trainDescriptors;
Mat dist;
Mat ndix;
int knn = 1;
generateData(queryDescriptors, trainDescriptors, CV_32F);
if(!isCrossCheck)
{
knn = 0;
}
declare.time(30);
TEST_CYCLE()
{
batchDistance(queryDescriptors, trainDescriptors, dist, CV_32F, (isCrossCheck) ? ndix : noArray(),
normType, knn, Mat(), 0, isCrossCheck);
}
}
void generateData( Mat& query, Mat& train, const int sourceType )
{
const int dim = 500;
const int queryDescCount = 300; // must be even number because we split train data in some cases in two
const int countFactor = 4; // do not change it
RNG& rng = theRNG();
// Generate query descriptors randomly.
// Descriptor vector elements are integer values.
Mat buf( queryDescCount, dim, CV_32SC1 );
rng.fill( buf, RNG::UNIFORM, Scalar::all(0), Scalar(3) );
buf.convertTo( query, sourceType );
// Generate train decriptors as follows:
// copy each query descriptor to train set countFactor times
// and perturb some one element of the copied descriptors in
// in ascending order. General boundaries of the perturbation
// are (0.f, 1.f).
train.create( query.rows*countFactor, query.cols, sourceType );
float step = 1.f / countFactor;
for( int qIdx = 0; qIdx < query.rows; qIdx++ )
{
Mat queryDescriptor = query.row(qIdx);
for( int c = 0; c < countFactor; c++ )
{
int tIdx = qIdx * countFactor + c;
Mat trainDescriptor = train.row(tIdx);
queryDescriptor.copyTo( trainDescriptor );
int elem = rng(dim);
float diff = rng.uniform( step*c, step*(c+1) );
trainDescriptor.at<float>(0, elem) += diff;
}
}
}