Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

631 lines
18 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* ////////////////////////////////////////////////////////////////////
//
// Mat basic operations: Copy, Set
//
// */
#include "precomp.hpp"
namespace cv
{
template<typename T> static void
copyMask_(const uchar* _src, size_t sstep, const uchar* mask, size_t mstep, uchar* _dst, size_t dstep, Size size)
{
for( ; size.height--; mask += mstep, _src += sstep, _dst += dstep )
{
const T* src = (const T*)_src;
T* dst = (T*)_dst;
int x = 0;
#if CV_ENABLE_UNROLLED
for( ; x <= size.width - 4; x += 4 )
{
if( mask[x] )
dst[x] = src[x];
if( mask[x+1] )
dst[x+1] = src[x+1];
if( mask[x+2] )
dst[x+2] = src[x+2];
if( mask[x+3] )
dst[x+3] = src[x+3];
}
#endif
for( ; x < size.width; x++ )
if( mask[x] )
dst[x] = src[x];
}
}
template<> void
copyMask_<uchar>(const uchar* _src, size_t sstep, const uchar* mask, size_t mstep, uchar* _dst, size_t dstep, Size size)
{
for( ; size.height--; mask += mstep, _src += sstep, _dst += dstep )
{
const uchar* src = (const uchar*)_src;
uchar* dst = (uchar*)_dst;
int x = 0;
#if CV_SSE4_2
if(USE_SSE4_2)//
{
__m128i zero = _mm_setzero_si128 ();
for( ; x <= size.width - 16; x += 16 )
{
const __m128i rSrc = _mm_lddqu_si128((const __m128i*)(src+x));
__m128i _mask = _mm_lddqu_si128((const __m128i*)(mask+x));
__m128i rDst = _mm_lddqu_si128((__m128i*)(dst+x));
__m128i _negMask = _mm_cmpeq_epi8(_mask, zero);
rDst = _mm_blendv_epi8(rSrc, rDst, _negMask);
_mm_storeu_si128((__m128i*)(dst + x), rDst);
}
}
#endif
for( ; x < size.width; x++ )
if( mask[x] )
dst[x] = src[x];
}
}
template<> void
copyMask_<ushort>(const uchar* _src, size_t sstep, const uchar* mask, size_t mstep, uchar* _dst, size_t dstep, Size size)
{
for( ; size.height--; mask += mstep, _src += sstep, _dst += dstep )
{
const ushort* src = (const ushort*)_src;
ushort* dst = (ushort*)_dst;
int x = 0;
#if CV_SSE4_2
if(USE_SSE4_2)//
{
__m128i zero = _mm_setzero_si128 ();
for( ; x <= size.width - 8; x += 8 )
{
const __m128i rSrc =_mm_lddqu_si128((const __m128i*)(src+x));
__m128i _mask = _mm_loadl_epi64((const __m128i*)(mask+x));
_mask = _mm_unpacklo_epi8(_mask, _mask);
__m128i rDst = _mm_lddqu_si128((const __m128i*)(dst+x));
__m128i _negMask = _mm_cmpeq_epi8(_mask, zero);
rDst = _mm_blendv_epi8(rSrc, rDst, _negMask);
_mm_storeu_si128((__m128i*)(dst + x), rDst);
}
}
#endif
for( ; x < size.width; x++ )
if( mask[x] )
dst[x] = src[x];
}
}
static void
copyMaskGeneric(const uchar* _src, size_t sstep, const uchar* mask, size_t mstep, uchar* _dst, size_t dstep, Size size, void* _esz)
{
size_t k, esz = *(size_t*)_esz;
for( ; size.height--; mask += mstep, _src += sstep, _dst += dstep )
{
const uchar* src = _src;
uchar* dst = _dst;
int x = 0;
for( ; x < size.width; x++, src += esz, dst += esz )
{
if( !mask[x] )
continue;
for( k = 0; k < esz; k++ )
dst[k] = src[k];
}
}
}
#define DEF_COPY_MASK(suffix, type) \
static void copyMask##suffix(const uchar* src, size_t sstep, const uchar* mask, size_t mstep, \
uchar* dst, size_t dstep, Size size, void*) \
{ \
copyMask_<type>(src, sstep, mask, mstep, dst, dstep, size); \
}
DEF_COPY_MASK(8u, uchar);
DEF_COPY_MASK(16u, ushort);
DEF_COPY_MASK(8uC3, Vec3b);
DEF_COPY_MASK(32s, int);
DEF_COPY_MASK(16uC3, Vec3s);
DEF_COPY_MASK(32sC2, Vec2i);
DEF_COPY_MASK(32sC3, Vec3i);
DEF_COPY_MASK(32sC4, Vec4i);
DEF_COPY_MASK(32sC6, Vec6i);
DEF_COPY_MASK(32sC8, Vec8i);
BinaryFunc copyMaskTab[] =
{
0,
copyMask8u,
copyMask16u,
copyMask8uC3,
copyMask32s,
0,
copyMask16uC3,
0,
copyMask32sC2,
0, 0, 0,
copyMask32sC3,
0, 0, 0,
copyMask32sC4,
0, 0, 0, 0, 0, 0, 0,
copyMask32sC6,
0, 0, 0, 0, 0, 0, 0,
copyMask32sC8
};
BinaryFunc getCopyMaskFunc(size_t esz)
{
return esz <= 32 && copyMaskTab[esz] ? copyMaskTab[esz] : copyMaskGeneric;
}
/* dst = src */
void Mat::copyTo( OutputArray _dst ) const
{
int dtype = _dst.type();
if( _dst.fixedType() && dtype != type() )
{
CV_Assert( channels() == CV_MAT_CN(dtype) );
convertTo( _dst, dtype );
return;
}
if( empty() )
{
_dst.release();
return;
}
if( dims <= 2 )
{
_dst.create( rows, cols, type() );
Mat dst = _dst.getMat();
if( data == dst.data )
return;
if( rows > 0 && cols > 0 )
{
const uchar* sptr = data;
uchar* dptr = dst.data;
// to handle the copying 1xn matrix => nx1 std vector.
Size sz = size() == dst.size() ?
getContinuousSize(*this, dst) :
getContinuousSize(*this);
size_t len = sz.width*elemSize();
for( ; sz.height--; sptr += step, dptr += dst.step )
memcpy( dptr, sptr, len );
}
return;
}
_dst.create( dims, size, type() );
Mat dst = _dst.getMat();
if( data == dst.data )
return;
if( total() != 0 )
{
const Mat* arrays[] = { this, &dst };
uchar* ptrs[2];
NAryMatIterator it(arrays, ptrs, 2);
size_t sz = it.size*elemSize();
for( size_t i = 0; i < it.nplanes; i++, ++it )
memcpy(ptrs[1], ptrs[0], sz);
}
}
void Mat::copyTo( OutputArray _dst, InputArray _mask ) const
{
Mat mask = _mask.getMat();
if( !mask.data )
{
copyTo(_dst);
return;
}
int cn = channels(), mcn = mask.channels();
CV_Assert( mask.depth() == CV_8U && (mcn == 1 || mcn == cn) );
bool colorMask = mcn > 1;
size_t esz = colorMask ? elemSize1() : elemSize();
BinaryFunc copymask = getCopyMaskFunc(esz);
uchar* data0 = _dst.getMat().data;
_dst.create( dims, size, type() );
Mat dst = _dst.getMat();
if( dst.data != data0 ) // do not leave dst uninitialized
dst = Scalar(0);
if( dims <= 2 )
{
Size sz = getContinuousSize(*this, dst, mask, mcn);
copymask(data, step, mask.data, mask.step, dst.data, dst.step, sz, &esz);
return;
}
const Mat* arrays[] = { this, &dst, &mask, 0 };
uchar* ptrs[3];
NAryMatIterator it(arrays, ptrs);
Size sz((int)(it.size*mcn), 1);
for( size_t i = 0; i < it.nplanes; i++, ++it )
copymask(ptrs[0], 0, ptrs[2], 0, ptrs[1], 0, sz, &esz);
}
Mat& Mat::operator = (const Scalar& s)
{
const Mat* arrays[] = { this };
uchar* dptr;
NAryMatIterator it(arrays, &dptr, 1);
size_t elsize = it.size*elemSize();
if( s[0] == 0 && s[1] == 0 && s[2] == 0 && s[3] == 0 )
{
for( size_t i = 0; i < it.nplanes; i++, ++it )
memset( dptr, 0, elsize );
}
else
{
if( it.nplanes > 0 )
{
double scalar[12];
scalarToRawData(s, scalar, type(), 12);
size_t blockSize = 12*elemSize1();
for( size_t j = 0; j < elsize; j += blockSize )
{
size_t sz = MIN(blockSize, elsize - j);
memcpy( dptr + j, scalar, sz );
}
}
for( size_t i = 1; i < it.nplanes; i++ )
{
++it;
memcpy( dptr, data, elsize );
}
}
return *this;
}
Mat& Mat::setTo(InputArray _value, InputArray _mask)
{
if( !data )
return *this;
Mat value = _value.getMat(), mask = _mask.getMat();
CV_Assert( checkScalar(value, type(), _value.kind(), _InputArray::MAT ));
CV_Assert( mask.empty() || mask.type() == CV_8U );
size_t esz = elemSize();
BinaryFunc copymask = getCopyMaskFunc(esz);
const Mat* arrays[] = { this, !mask.empty() ? &mask : 0, 0 };
uchar* ptrs[2]={0,0};
NAryMatIterator it(arrays, ptrs);
int totalsz = (int)it.size, blockSize0 = std::min(totalsz, (int)((BLOCK_SIZE + esz-1)/esz));
AutoBuffer<uchar> _scbuf(blockSize0*esz + 32);
uchar* scbuf = alignPtr((uchar*)_scbuf, (int)sizeof(double));
convertAndUnrollScalar( value, type(), scbuf, blockSize0 );
for( size_t i = 0; i < it.nplanes; i++, ++it )
{
for( int j = 0; j < totalsz; j += blockSize0 )
{
Size sz(std::min(blockSize0, totalsz - j), 1);
size_t blockSize = sz.width*esz;
if( ptrs[1] )
{
copymask(scbuf, 0, ptrs[1], 0, ptrs[0], 0, sz, &esz);
ptrs[1] += sz.width;
}
else
memcpy(ptrs[0], scbuf, blockSize);
ptrs[0] += blockSize;
}
}
return *this;
}
static void
flipHoriz( const uchar* src, size_t sstep, uchar* dst, size_t dstep, Size size, size_t esz )
{
int i, j, limit = (int)(((size.width + 1)/2)*esz);
AutoBuffer<int> _tab(size.width*esz);
int* tab = _tab;
for( i = 0; i < size.width; i++ )
for( size_t k = 0; k < esz; k++ )
tab[i*esz + k] = (int)((size.width - i - 1)*esz + k);
for( ; size.height--; src += sstep, dst += dstep )
{
for( i = 0; i < limit; i++ )
{
j = tab[i];
uchar t0 = src[i], t1 = src[j];
dst[i] = t1; dst[j] = t0;
}
}
}
static void
flipVert( const uchar* src0, size_t sstep, uchar* dst0, size_t dstep, Size size, size_t esz )
{
const uchar* src1 = src0 + (size.height - 1)*sstep;
uchar* dst1 = dst0 + (size.height - 1)*dstep;
size.width *= (int)esz;
for( int y = 0; y < (size.height + 1)/2; y++, src0 += sstep, src1 -= sstep,
dst0 += dstep, dst1 -= dstep )
{
int i = 0;
if( ((size_t)src0|(size_t)dst0|(size_t)src1|(size_t)dst1) % sizeof(int) == 0 )
{
for( ; i <= size.width - 16; i += 16 )
{
int t0 = ((int*)(src0 + i))[0];
int t1 = ((int*)(src1 + i))[0];
((int*)(dst0 + i))[0] = t1;
((int*)(dst1 + i))[0] = t0;
t0 = ((int*)(src0 + i))[1];
t1 = ((int*)(src1 + i))[1];
((int*)(dst0 + i))[1] = t1;
((int*)(dst1 + i))[1] = t0;
t0 = ((int*)(src0 + i))[2];
t1 = ((int*)(src1 + i))[2];
((int*)(dst0 + i))[2] = t1;
((int*)(dst1 + i))[2] = t0;
t0 = ((int*)(src0 + i))[3];
t1 = ((int*)(src1 + i))[3];
((int*)(dst0 + i))[3] = t1;
((int*)(dst1 + i))[3] = t0;
}
for( ; i <= size.width - 4; i += 4 )
{
int t0 = ((int*)(src0 + i))[0];
int t1 = ((int*)(src1 + i))[0];
((int*)(dst0 + i))[0] = t1;
((int*)(dst1 + i))[0] = t0;
}
}
for( ; i < size.width; i++ )
{
uchar t0 = src0[i];
uchar t1 = src1[i];
dst0[i] = t1;
dst1[i] = t0;
}
}
}
void flip( InputArray _src, OutputArray _dst, int flip_mode )
{
Mat src = _src.getMat();
CV_Assert( src.dims <= 2 );
_dst.create( src.size(), src.type() );
Mat dst = _dst.getMat();
size_t esz = src.elemSize();
if( flip_mode <= 0 )
flipVert( src.data, src.step, dst.data, dst.step, src.size(), esz );
else
flipHoriz( src.data, src.step, dst.data, dst.step, src.size(), esz );
if( flip_mode < 0 )
flipHoriz( dst.data, dst.step, dst.data, dst.step, dst.size(), esz );
}
void repeat(InputArray _src, int ny, int nx, OutputArray _dst)
{
Mat src = _src.getMat();
CV_Assert( src.dims <= 2 );
_dst.create(src.rows*ny, src.cols*nx, src.type());
Mat dst = _dst.getMat();
Size ssize = src.size(), dsize = dst.size();
int esz = (int)src.elemSize();
int x, y;
ssize.width *= esz; dsize.width *= esz;
for( y = 0; y < ssize.height; y++ )
{
for( x = 0; x < dsize.width; x += ssize.width )
memcpy( dst.data + y*dst.step + x, src.data + y*src.step, ssize.width );
}
for( ; y < dsize.height; y++ )
memcpy( dst.data + y*dst.step, dst.data + (y - ssize.height)*dst.step, dsize.width );
}
Mat repeat(const Mat& src, int ny, int nx)
{
if( nx == 1 && ny == 1 )
return src;
Mat dst;
repeat(src, ny, nx, dst);
return dst;
}
}
/* dst = src */
CV_IMPL void
cvCopy( const void* srcarr, void* dstarr, const void* maskarr )
{
if( CV_IS_SPARSE_MAT(srcarr) && CV_IS_SPARSE_MAT(dstarr))
{
CV_Assert( maskarr == 0 );
CvSparseMat* src1 = (CvSparseMat*)srcarr;
CvSparseMat* dst1 = (CvSparseMat*)dstarr;
CvSparseMatIterator iterator;
CvSparseNode* node;
dst1->dims = src1->dims;
memcpy( dst1->size, src1->size, src1->dims*sizeof(src1->size[0]));
dst1->valoffset = src1->valoffset;
dst1->idxoffset = src1->idxoffset;
cvClearSet( dst1->heap );
if( src1->heap->active_count >= dst1->hashsize*CV_SPARSE_HASH_RATIO )
{
cvFree( &dst1->hashtable );
dst1->hashsize = src1->hashsize;
dst1->hashtable =
(void**)cvAlloc( dst1->hashsize*sizeof(dst1->hashtable[0]));
}
memset( dst1->hashtable, 0, dst1->hashsize*sizeof(dst1->hashtable[0]));
for( node = cvInitSparseMatIterator( src1, &iterator );
node != 0; node = cvGetNextSparseNode( &iterator ))
{
CvSparseNode* node_copy = (CvSparseNode*)cvSetNew( dst1->heap );
int tabidx = node->hashval & (dst1->hashsize - 1);
memcpy( node_copy, node, dst1->heap->elem_size );
node_copy->next = (CvSparseNode*)dst1->hashtable[tabidx];
dst1->hashtable[tabidx] = node_copy;
}
return;
}
cv::Mat src = cv::cvarrToMat(srcarr, false, true, 1), dst = cv::cvarrToMat(dstarr, false, true, 1);
CV_Assert( src.depth() == dst.depth() && src.size == dst.size );
int coi1 = 0, coi2 = 0;
if( CV_IS_IMAGE(srcarr) )
coi1 = cvGetImageCOI((const IplImage*)srcarr);
if( CV_IS_IMAGE(dstarr) )
coi2 = cvGetImageCOI((const IplImage*)dstarr);
if( coi1 || coi2 )
{
CV_Assert( (coi1 != 0 || src.channels() == 1) &&
(coi2 != 0 || dst.channels() == 1) );
int pair[] = { std::max(coi1-1, 0), std::max(coi2-1, 0) };
cv::mixChannels( &src, 1, &dst, 1, pair, 1 );
return;
}
else
CV_Assert( src.channels() == dst.channels() );
if( !maskarr )
src.copyTo(dst);
else
src.copyTo(dst, cv::cvarrToMat(maskarr));
}
CV_IMPL void
cvSet( void* arr, CvScalar value, const void* maskarr )
{
cv::Mat m = cv::cvarrToMat(arr);
if( !maskarr )
m = value;
else
m.setTo(cv::Scalar(value), cv::cvarrToMat(maskarr));
}
CV_IMPL void
cvSetZero( CvArr* arr )
{
if( CV_IS_SPARSE_MAT(arr) )
{
CvSparseMat* mat1 = (CvSparseMat*)arr;
cvClearSet( mat1->heap );
if( mat1->hashtable )
memset( mat1->hashtable, 0, mat1->hashsize*sizeof(mat1->hashtable[0]));
return;
}
cv::Mat m = cv::cvarrToMat(arr);
m = cv::Scalar(0);
}
CV_IMPL void
cvFlip( const CvArr* srcarr, CvArr* dstarr, int flip_mode )
{
cv::Mat src = cv::cvarrToMat(srcarr);
cv::Mat dst;
if (!dstarr)
dst = src;
else
dst = cv::cvarrToMat(dstarr);
CV_Assert( src.type() == dst.type() && src.size() == dst.size() );
cv::flip( src, dst, flip_mode );
}
CV_IMPL void
cvRepeat( const CvArr* srcarr, CvArr* dstarr )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.type() == dst.type() &&
dst.rows % src.rows == 0 && dst.cols % src.cols == 0 );
cv::repeat(src, dst.rows/src.rows, dst.cols/src.cols, dst);
}
/* End of file. */