mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
422 lines
14 KiB
422 lines
14 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
class Core_RandTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
Core_RandTest(); |
|
protected: |
|
void run(int); |
|
bool check_pdf(const Mat& hist, double scale, int dist_type, |
|
double& refval, double& realval); |
|
}; |
|
|
|
|
|
Core_RandTest::Core_RandTest() |
|
{ |
|
} |
|
|
|
static double chi2_p95(int n) |
|
{ |
|
static float chi2_tab95[] = { |
|
3.841f, 5.991f, 7.815f, 9.488f, 11.07f, 12.59f, 14.07f, 15.51f, |
|
16.92f, 18.31f, 19.68f, 21.03f, 21.03f, 22.36f, 23.69f, 25.00f, |
|
26.30f, 27.59f, 28.87f, 30.14f, 31.41f, 32.67f, 33.92f, 35.17f, |
|
36.42f, 37.65f, 38.89f, 40.11f, 41.34f, 42.56f, 43.77f }; |
|
static const double xp = 1.64; |
|
CV_Assert(n >= 1); |
|
|
|
if( n <= 30 ) |
|
return chi2_tab95[n-1]; |
|
return n + sqrt((double)2*n)*xp + 0.6666666666666*(xp*xp - 1); |
|
} |
|
|
|
bool Core_RandTest::check_pdf(const Mat& hist, double scale, |
|
int dist_type, double& refval, double& realval) |
|
{ |
|
Mat hist0(hist.size(), CV_32F); |
|
const int* H = hist.ptr<int>(); |
|
float* H0 = hist0.ptr<float>(); |
|
int i, hsz = hist.cols; |
|
|
|
double sum = 0; |
|
for( i = 0; i < hsz; i++ ) |
|
sum += H[i]; |
|
CV_Assert( fabs(1./sum - scale) < FLT_EPSILON ); |
|
|
|
if( dist_type == CV_RAND_UNI ) |
|
{ |
|
float scale0 = (float)(1./hsz); |
|
for( i = 0; i < hsz; i++ ) |
|
H0[i] = scale0; |
|
} |
|
else |
|
{ |
|
double sum2 = 0, r = (hsz-1.)/2; |
|
double alpha = 2*sqrt(2.)/r, beta = -alpha*r; |
|
for( i = 0; i < hsz; i++ ) |
|
{ |
|
double x = i*alpha + beta; |
|
H0[i] = (float)exp(-x*x); |
|
sum2 += H0[i]; |
|
} |
|
sum2 = 1./sum2; |
|
for( i = 0; i < hsz; i++ ) |
|
H0[i] = (float)(H0[i]*sum2); |
|
} |
|
|
|
double chi2 = 0; |
|
for( i = 0; i < hsz; i++ ) |
|
{ |
|
double a = H0[i]; |
|
double b = H[i]*scale; |
|
if( a > DBL_EPSILON ) |
|
chi2 += (a - b)*(a - b)/(a + b); |
|
} |
|
realval = chi2; |
|
|
|
double chi2_pval = chi2_p95(hsz - 1 - (dist_type == CV_RAND_NORMAL ? 2 : 0)); |
|
refval = chi2_pval*0.01; |
|
return realval <= refval; |
|
} |
|
|
|
void Core_RandTest::run( int ) |
|
{ |
|
static int _ranges[][2] = |
|
{{ 0, 256 }, { -128, 128 }, { 0, 65536 }, { -32768, 32768 }, |
|
{ -1000000, 1000000 }, { -1000, 1000 }, { -1000, 1000 }}; |
|
|
|
const int MAX_SDIM = 10; |
|
const int N = 2000000; |
|
const int maxSlice = 1000; |
|
const int MAX_HIST_SIZE = 1000; |
|
int progress = 0; |
|
|
|
RNG& rng = ts->get_rng(); |
|
RNG tested_rng = theRNG(); |
|
test_case_count = 200; |
|
|
|
for( int idx = 0; idx < test_case_count; idx++ ) |
|
{ |
|
progress = update_progress( progress, idx, test_case_count, 0 ); |
|
ts->update_context( this, idx, false ); |
|
|
|
int depth = cvtest::randInt(rng) % (CV_64F+1); |
|
int c, cn = (cvtest::randInt(rng) % 4) + 1; |
|
int type = CV_MAKETYPE(depth, cn); |
|
int dist_type = cvtest::randInt(rng) % (CV_RAND_NORMAL+1); |
|
int i, k, SZ = N/cn; |
|
Scalar A, B; |
|
|
|
double eps = 1.e-4; |
|
if (depth == CV_64F) |
|
eps = 1.e-7; |
|
|
|
bool do_sphere_test = dist_type == CV_RAND_UNI; |
|
Mat arr[2], hist[4]; |
|
int W[] = {0,0,0,0}; |
|
|
|
arr[0].create(1, SZ, type); |
|
arr[1].create(1, SZ, type); |
|
bool fast_algo = dist_type == CV_RAND_UNI && depth < CV_32F; |
|
|
|
for( c = 0; c < cn; c++ ) |
|
{ |
|
int a, b, hsz; |
|
if( dist_type == CV_RAND_UNI ) |
|
{ |
|
a = (int)(cvtest::randInt(rng) % (_ranges[depth][1] - |
|
_ranges[depth][0])) + _ranges[depth][0]; |
|
do |
|
{ |
|
b = (int)(cvtest::randInt(rng) % (_ranges[depth][1] - |
|
_ranges[depth][0])) + _ranges[depth][0]; |
|
} |
|
while( abs(a-b) <= 1 ); |
|
if( a > b ) |
|
std::swap(a, b); |
|
|
|
unsigned r = (unsigned)(b - a); |
|
fast_algo = fast_algo && r <= 256 && (r & (r-1)) == 0; |
|
hsz = min((unsigned)(b - a), (unsigned)MAX_HIST_SIZE); |
|
do_sphere_test = do_sphere_test && b - a >= 100; |
|
} |
|
else |
|
{ |
|
int vrange = _ranges[depth][1] - _ranges[depth][0]; |
|
int meanrange = vrange/16; |
|
int mindiv = MAX(vrange/20, 5); |
|
int maxdiv = MIN(vrange/8, 10000); |
|
|
|
a = cvtest::randInt(rng) % meanrange - meanrange/2 + |
|
(_ranges[depth][0] + _ranges[depth][1])/2; |
|
b = cvtest::randInt(rng) % (maxdiv - mindiv) + mindiv; |
|
hsz = min((unsigned)b*9, (unsigned)MAX_HIST_SIZE); |
|
} |
|
A[c] = a; |
|
B[c] = b; |
|
hist[c].create(1, hsz, CV_32S); |
|
} |
|
|
|
cv::RNG saved_rng = tested_rng; |
|
int maxk = fast_algo ? 0 : 1; |
|
for( k = 0; k <= maxk; k++ ) |
|
{ |
|
tested_rng = saved_rng; |
|
int sz = 0, dsz = 0, slice; |
|
for( slice = 0; slice < maxSlice && sz < SZ; slice++, sz += dsz ) |
|
{ |
|
dsz = slice+1 < maxSlice ? (int)(cvtest::randInt(rng) % (SZ - sz) + 1) : SZ - sz; |
|
Mat aslice = arr[k].colRange(sz, sz + dsz); |
|
tested_rng.fill(aslice, dist_type, A, B); |
|
//printf("%d - %d\n", sz, sz + dsz); |
|
} |
|
} |
|
|
|
if( maxk >= 1 && cvtest::norm(arr[0], arr[1], NORM_INF) > eps) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "RNG output depends on the array lengths (some generated numbers get lost?)" ); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
|
|
for( c = 0; c < cn; c++ ) |
|
{ |
|
const uchar* data = arr[0].ptr(); |
|
int* H = hist[c].ptr<int>(); |
|
int HSZ = hist[c].cols; |
|
double minVal = dist_type == CV_RAND_UNI ? A[c] : A[c] - B[c]*4; |
|
double maxVal = dist_type == CV_RAND_UNI ? B[c] : A[c] + B[c]*4; |
|
double scale = HSZ/(maxVal - minVal); |
|
double delta = -minVal*scale; |
|
|
|
hist[c] = Scalar::all(0); |
|
|
|
for( i = c; i < SZ*cn; i += cn ) |
|
{ |
|
double val = depth == CV_8U ? ((const uchar*)data)[i] : |
|
depth == CV_8S ? ((const schar*)data)[i] : |
|
depth == CV_16U ? ((const ushort*)data)[i] : |
|
depth == CV_16S ? ((const short*)data)[i] : |
|
depth == CV_32S ? ((const int*)data)[i] : |
|
depth == CV_32F ? ((const float*)data)[i] : |
|
((const double*)data)[i]; |
|
int ival = cvFloor(val*scale + delta); |
|
if( (unsigned)ival < (unsigned)HSZ ) |
|
{ |
|
H[ival]++; |
|
W[c]++; |
|
} |
|
else if( dist_type == CV_RAND_UNI ) |
|
{ |
|
if( (minVal <= val && val < maxVal) || (depth >= CV_32F && val == maxVal) ) |
|
{ |
|
H[ival < 0 ? 0 : HSZ-1]++; |
|
W[c]++; |
|
} |
|
else |
|
{ |
|
putchar('^'); |
|
} |
|
} |
|
} |
|
|
|
if( dist_type == CV_RAND_UNI && W[c] != SZ ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Uniform RNG gave values out of the range [%g,%g) on channel %d/%d\n", |
|
A[c], B[c], c, cn); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
if( dist_type == CV_RAND_NORMAL && W[c] < SZ*.90) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "Normal RNG gave too many values out of the range (%g+4*%g,%g+4*%g) on channel %d/%d\n", |
|
A[c], B[c], A[c], B[c], c, cn); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
double refval = 0, realval = 0; |
|
|
|
if( !check_pdf(hist[c], 1./W[c], dist_type, refval, realval) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "RNG failed Chi-square test " |
|
"(got %g vs probable maximum %g) on channel %d/%d\n", |
|
realval, refval, c, cn); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
} |
|
|
|
// Monte-Carlo test. Compute volume of SDIM-dimensional sphere |
|
// inscribed in [-1,1]^SDIM cube. |
|
if( do_sphere_test ) |
|
{ |
|
int SDIM = cvtest::randInt(rng) % (MAX_SDIM-1) + 2; |
|
int N0 = (SZ*cn/SDIM), n = 0; |
|
double r2 = 0; |
|
const uchar* data = arr[0].ptr(); |
|
double scale[4], delta[4]; |
|
for( c = 0; c < cn; c++ ) |
|
{ |
|
scale[c] = 2./(B[c] - A[c]); |
|
delta[c] = -A[c]*scale[c] - 1; |
|
} |
|
|
|
for( i = k = c = 0; i <= SZ*cn - SDIM; i++, k++, c++ ) |
|
{ |
|
double val = depth == CV_8U ? ((const uchar*)data)[i] : |
|
depth == CV_8S ? ((const schar*)data)[i] : |
|
depth == CV_16U ? ((const ushort*)data)[i] : |
|
depth == CV_16S ? ((const short*)data)[i] : |
|
depth == CV_32S ? ((const int*)data)[i] : |
|
depth == CV_32F ? ((const float*)data)[i] : ((const double*)data)[i]; |
|
c &= c < cn ? -1 : 0; |
|
val = val*scale[c] + delta[c]; |
|
r2 += val*val; |
|
if( k == SDIM-1 ) |
|
{ |
|
n += r2 <= 1; |
|
r2 = 0; |
|
k = -1; |
|
} |
|
} |
|
|
|
double V = ((double)n/N0)*(1 << SDIM); |
|
|
|
// the theoretically computed volume |
|
int sdim = SDIM % 2; |
|
double V0 = sdim + 1; |
|
for( sdim += 2; sdim <= SDIM; sdim += 2 ) |
|
V0 *= 2*CV_PI/sdim; |
|
|
|
if( fabs(V - V0) > 0.3*fabs(V0) ) |
|
{ |
|
ts->printf( cvtest::TS::LOG, "RNG failed %d-dim sphere volume test (got %g instead of %g)\n", |
|
SDIM, V, V0); |
|
ts->printf( cvtest::TS::LOG, "depth = %d, N0 = %d\n", depth, N0); |
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); |
|
return; |
|
} |
|
} |
|
} |
|
} |
|
|
|
TEST(Core_Rand, quality) { Core_RandTest test; test.safe_run(); } |
|
|
|
|
|
class Core_RandRangeTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
Core_RandRangeTest() {} |
|
~Core_RandRangeTest() {} |
|
protected: |
|
void run(int) |
|
{ |
|
Mat a(Size(1280, 720), CV_8U, Scalar(20)); |
|
Mat af(Size(1280, 720), CV_32F, Scalar(20)); |
|
theRNG().fill(a, RNG::UNIFORM, -DBL_MAX, DBL_MAX); |
|
theRNG().fill(af, RNG::UNIFORM, -DBL_MAX, DBL_MAX); |
|
int n0 = 0, n255 = 0, nx = 0; |
|
int nfmin = 0, nfmax = 0, nfx = 0; |
|
|
|
for( int i = 0; i < a.rows; i++ ) |
|
for( int j = 0; j < a.cols; j++ ) |
|
{ |
|
int v = a.at<uchar>(i,j); |
|
double vf = af.at<float>(i,j); |
|
if( v == 0 ) n0++; |
|
else if( v == 255 ) n255++; |
|
else nx++; |
|
if( vf < FLT_MAX*-0.999f ) nfmin++; |
|
else if( vf > FLT_MAX*0.999f ) nfmax++; |
|
else nfx++; |
|
} |
|
CV_Assert( n0 > nx*2 && n255 > nx*2 ); |
|
CV_Assert( nfmin > nfx*2 && nfmax > nfx*2 ); |
|
} |
|
}; |
|
|
|
TEST(Core_Rand, range) { Core_RandRangeTest test; test.safe_run(); } |
|
|
|
|
|
TEST(Core_RNG_MT19937, regression) |
|
{ |
|
cv::RNG_MT19937 rng; |
|
int actual[61] = {0, }; |
|
const size_t length = (sizeof(actual) / sizeof(actual[0])); |
|
for (int i = 0; i < 10000; ++i ) |
|
{ |
|
actual[(unsigned)(rng.next() ^ i) % length]++; |
|
} |
|
|
|
int expected[length] = { |
|
177, 158, 180, 177, 160, 179, 143, 162, |
|
177, 144, 170, 174, 165, 168, 168, 156, |
|
177, 157, 159, 169, 177, 182, 166, 154, |
|
144, 180, 168, 152, 170, 187, 160, 145, |
|
139, 164, 157, 179, 148, 183, 159, 160, |
|
196, 184, 149, 142, 162, 148, 163, 152, |
|
168, 173, 160, 181, 172, 181, 155, 153, |
|
158, 171, 138, 150, 150 }; |
|
|
|
for (size_t i = 0; i < length; ++i) |
|
{ |
|
ASSERT_EQ(expected[i], actual[i]); |
|
} |
|
} |
|
|
|
|
|
TEST(Core_Rand, Regression_Stack_Corruption) |
|
{ |
|
int bufsz = 128; //enough for 14 doubles |
|
AutoBuffer<uchar> buffer(bufsz); |
|
size_t offset = 0; |
|
cv::Mat_<cv::Point2d> x(2, 3, (cv::Point2d*)(buffer.data()+offset)); offset += x.total()*x.elemSize(); |
|
double& param1 = *(double*)(buffer.data()+offset); offset += sizeof(double); |
|
double& param2 = *(double*)(buffer.data()+offset); offset += sizeof(double); |
|
param1 = -9; param2 = 2; |
|
|
|
cv::theRNG().fill(x, cv::RNG::NORMAL, param1, param2); |
|
|
|
ASSERT_EQ(param1, -9); |
|
ASSERT_EQ(param2, 2); |
|
} |
|
|
|
|
|
class RandRowFillParallelLoopBody : public cv::ParallelLoopBody |
|
{ |
|
public: |
|
RandRowFillParallelLoopBody(Mat& dst) : dst_(dst) {} |
|
~RandRowFillParallelLoopBody() {} |
|
void operator()(const cv::Range& r) const |
|
{ |
|
cv::RNG rng = cv::theRNG(); // copy state |
|
for (int y = r.start; y < r.end; y++) |
|
{ |
|
cv::theRNG() = cv::RNG(rng.state + y); // seed is based on processed row |
|
cv::randu(dst_.row(y), Scalar(-100), Scalar(100)); |
|
} |
|
// theRNG() state is changed here (but state collision has low probability, so we don't check this) |
|
} |
|
protected: |
|
Mat& dst_; |
|
}; |
|
|
|
TEST(Core_Rand, parallel_for_stable_results) |
|
{ |
|
cv::RNG rng = cv::theRNG(); // save rng state |
|
Mat dst1(1000, 100, CV_8SC1); |
|
parallel_for_(cv::Range(0, dst1.rows), RandRowFillParallelLoopBody(dst1)); |
|
|
|
cv::theRNG() = rng; // restore rng state |
|
Mat dst2(1000, 100, CV_8SC1); |
|
parallel_for_(cv::Range(0, dst2.rows), RandRowFillParallelLoopBody(dst2)); |
|
|
|
ASSERT_EQ(0, countNonZero(dst1 != dst2)); |
|
} |
|
|
|
}} // namespace
|
|
|