mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
186 lines
5.3 KiB
186 lines
5.3 KiB
#!/usr/bin/env python |
|
|
|
''' |
|
SVM and KNearest digit recognition. |
|
|
|
Sample loads a dataset of handwritten digits from '../data/digits.png'. |
|
Then it trains a SVM and KNearest classifiers on it and evaluates |
|
their accuracy. |
|
|
|
Following preprocessing is applied to the dataset: |
|
- Moment-based image deskew (see deskew()) |
|
- Digit images are split into 4 10x10 cells and 16-bin |
|
histogram of oriented gradients is computed for each |
|
cell |
|
- Transform histograms to space with Hellinger metric (see [1] (RootSIFT)) |
|
|
|
|
|
[1] R. Arandjelovic, A. Zisserman |
|
"Three things everyone should know to improve object retrieval" |
|
http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf |
|
|
|
Usage: |
|
digits.py |
|
''' |
|
|
|
|
|
# Python 2/3 compatibility |
|
from __future__ import print_function |
|
|
|
# built-in modules |
|
from multiprocessing.pool import ThreadPool |
|
|
|
import cv2 |
|
|
|
import numpy as np |
|
from numpy.linalg import norm |
|
|
|
# local modules |
|
from common import clock, mosaic |
|
|
|
|
|
|
|
SZ = 20 # size of each digit is SZ x SZ |
|
CLASS_N = 10 |
|
DIGITS_FN = '../data/digits.png' |
|
|
|
def split2d(img, cell_size, flatten=True): |
|
h, w = img.shape[:2] |
|
sx, sy = cell_size |
|
cells = [np.hsplit(row, w//sx) for row in np.vsplit(img, h//sy)] |
|
cells = np.array(cells) |
|
if flatten: |
|
cells = cells.reshape(-1, sy, sx) |
|
return cells |
|
|
|
def load_digits(fn): |
|
print('loading "%s" ...' % fn) |
|
digits_img = cv2.imread(fn, 0) |
|
digits = split2d(digits_img, (SZ, SZ)) |
|
labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N) |
|
return digits, labels |
|
|
|
def deskew(img): |
|
m = cv2.moments(img) |
|
if abs(m['mu02']) < 1e-2: |
|
return img.copy() |
|
skew = m['mu11']/m['mu02'] |
|
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]]) |
|
img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR) |
|
return img |
|
|
|
class StatModel(object): |
|
def load(self, fn): |
|
self.model.load(fn) # Known bug: https://github.com/opencv/opencv/issues/4969 |
|
def save(self, fn): |
|
self.model.save(fn) |
|
|
|
class KNearest(StatModel): |
|
def __init__(self, k = 3): |
|
self.k = k |
|
self.model = cv2.ml.KNearest_create() |
|
|
|
def train(self, samples, responses): |
|
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses) |
|
|
|
def predict(self, samples): |
|
_retval, results, _neigh_resp, _dists = self.model.findNearest(samples, self.k) |
|
return results.ravel() |
|
|
|
class SVM(StatModel): |
|
def __init__(self, C = 1, gamma = 0.5): |
|
self.model = cv2.ml.SVM_create() |
|
self.model.setGamma(gamma) |
|
self.model.setC(C) |
|
self.model.setKernel(cv2.ml.SVM_RBF) |
|
self.model.setType(cv2.ml.SVM_C_SVC) |
|
|
|
def train(self, samples, responses): |
|
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses) |
|
|
|
def predict(self, samples): |
|
return self.model.predict(samples)[1].ravel() |
|
|
|
|
|
def evaluate_model(model, digits, samples, labels): |
|
resp = model.predict(samples) |
|
err = (labels != resp).mean() |
|
print('error: %.2f %%' % (err*100)) |
|
|
|
confusion = np.zeros((10, 10), np.int32) |
|
for i, j in zip(labels, resp): |
|
confusion[i, int(j)] += 1 |
|
print('confusion matrix:') |
|
print(confusion) |
|
print() |
|
|
|
vis = [] |
|
for img, flag in zip(digits, resp == labels): |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
|
if not flag: |
|
img[...,:2] = 0 |
|
vis.append(img) |
|
return mosaic(25, vis) |
|
|
|
def preprocess_simple(digits): |
|
return np.float32(digits).reshape(-1, SZ*SZ) / 255.0 |
|
|
|
def preprocess_hog(digits): |
|
samples = [] |
|
for img in digits: |
|
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0) |
|
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1) |
|
mag, ang = cv2.cartToPolar(gx, gy) |
|
bin_n = 16 |
|
bin = np.int32(bin_n*ang/(2*np.pi)) |
|
bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:] |
|
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:] |
|
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)] |
|
hist = np.hstack(hists) |
|
|
|
# transform to Hellinger kernel |
|
eps = 1e-7 |
|
hist /= hist.sum() + eps |
|
hist = np.sqrt(hist) |
|
hist /= norm(hist) + eps |
|
|
|
samples.append(hist) |
|
return np.float32(samples) |
|
|
|
|
|
if __name__ == '__main__': |
|
print(__doc__) |
|
|
|
digits, labels = load_digits(DIGITS_FN) |
|
|
|
print('preprocessing...') |
|
# shuffle digits |
|
rand = np.random.RandomState(321) |
|
shuffle = rand.permutation(len(digits)) |
|
digits, labels = digits[shuffle], labels[shuffle] |
|
|
|
digits2 = list(map(deskew, digits)) |
|
samples = preprocess_hog(digits2) |
|
|
|
train_n = int(0.9*len(samples)) |
|
cv2.imshow('test set', mosaic(25, digits[train_n:])) |
|
digits_train, digits_test = np.split(digits2, [train_n]) |
|
samples_train, samples_test = np.split(samples, [train_n]) |
|
labels_train, labels_test = np.split(labels, [train_n]) |
|
|
|
|
|
print('training KNearest...') |
|
model = KNearest(k=4) |
|
model.train(samples_train, labels_train) |
|
vis = evaluate_model(model, digits_test, samples_test, labels_test) |
|
cv2.imshow('KNearest test', vis) |
|
|
|
print('training SVM...') |
|
model = SVM(C=2.67, gamma=5.383) |
|
model.train(samples_train, labels_train) |
|
vis = evaluate_model(model, digits_test, samples_test, labels_test) |
|
cv2.imshow('SVM test', vis) |
|
print('saving SVM as "digits_svm.dat"...') |
|
model.save('digits_svm.dat') |
|
|
|
cv2.waitKey(0)
|
|
|