mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1076 lines
35 KiB
1076 lines
35 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
#include "test_precomp.hpp" |
|
#include "npy_blob.hpp" |
|
#include <opencv2/core/ocl.hpp> |
|
#include <opencv2/core/opencl/ocl_defs.hpp> |
|
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS |
|
|
|
namespace opencv_test { namespace { |
|
|
|
TEST(blobRectToImageRect, DNN_PMODE_NULL) |
|
{ |
|
Size inputSize(50 + (rand() % 100) / 4 * 4, 50 + (rand() % 100) / 4 * 4); |
|
Size imgSize(200 + (rand() % 100) / 4 * 4, 200 + (rand() % 100) / 4 * 4); |
|
Rect rBlob(inputSize.width / 2 - inputSize.width / 4, inputSize.height / 2 - inputSize.height / 4, inputSize.width / 2, inputSize.height / 2); |
|
Image2BlobParams paramNet; |
|
paramNet.scalefactor = Scalar::all(1.f); |
|
paramNet.size = inputSize; |
|
paramNet.ddepth = CV_32F; |
|
paramNet.mean = Scalar(); |
|
paramNet.swapRB = false; |
|
paramNet.datalayout = DNN_LAYOUT_NHWC; |
|
paramNet.paddingmode = DNN_PMODE_NULL; |
|
Rect rOri = paramNet.blobRectToImageRect(rBlob, imgSize); |
|
Rect rImg = Rect(rBlob.x * (float)imgSize.width / inputSize.width, rBlob.y * (float)imgSize.height / inputSize.height, |
|
rBlob.width * (float)imgSize.width / inputSize.width, rBlob.height * (float)imgSize.height / inputSize.height); |
|
ASSERT_EQ(rImg, rOri); |
|
} |
|
|
|
TEST(blobRectToImageRect, DNN_PMODE_CROP_CENTER) |
|
{ |
|
Size inputSize(50 + (rand() % 100) / 4 * 4, 50 + (rand() % 100) / 4 * 4); |
|
Size imgSize(200 + (rand() % 100) / 4 * 4, 200 + (rand() % 100) / 4 * 4); |
|
Rect rBlob(inputSize.width / 2 - inputSize.width / 4, inputSize.height / 2 - inputSize.height / 4, inputSize.width / 2, inputSize.height / 2); |
|
Image2BlobParams paramNet; |
|
paramNet.scalefactor = Scalar::all(1.f); |
|
paramNet.size = inputSize; |
|
paramNet.ddepth = CV_32F; |
|
paramNet.mean = Scalar(); |
|
paramNet.swapRB = false; |
|
paramNet.datalayout = DNN_LAYOUT_NHWC; |
|
paramNet.paddingmode = DNN_PMODE_CROP_CENTER; |
|
Rect rOri = paramNet.blobRectToImageRect(rBlob, imgSize); |
|
float resizeFactor = std::max(inputSize.width / (float)imgSize.width, |
|
inputSize.height / (float)imgSize.height); |
|
Rect rImg = Rect((rBlob.x + 0.5 * (imgSize.width * resizeFactor - inputSize.width)) / resizeFactor, (rBlob.y + 0.5 * (imgSize.height * resizeFactor - inputSize.height)) / resizeFactor, |
|
rBlob.width / resizeFactor, rBlob.height / resizeFactor); |
|
ASSERT_EQ(rImg, rOri); |
|
} |
|
|
|
TEST(blobRectToImageRect, DNN_PMODE_LETTERBOX) |
|
{ |
|
Size inputSize(50 + (rand() % 100) / 4 * 4, 50 + (rand() % 100) / 4 * 4); |
|
Size imgSize(200 + (rand() % 100) / 4 * 4, 200 + (rand() % 100) / 4 * 4); |
|
Rect rBlob(inputSize.width / 2 - inputSize.width / 4, inputSize.height / 2 - inputSize.height / 4, inputSize.width / 2, inputSize.height / 2); |
|
Image2BlobParams paramNet; |
|
paramNet.scalefactor = Scalar::all(1.f); |
|
paramNet.size = inputSize; |
|
paramNet.ddepth = CV_32F; |
|
paramNet.mean = Scalar(); |
|
paramNet.swapRB = false; |
|
paramNet.datalayout = DNN_LAYOUT_NHWC; |
|
paramNet.paddingmode = DNN_PMODE_LETTERBOX; |
|
Rect rOri = paramNet.blobRectToImageRect(rBlob, imgSize); |
|
float resizeFactor = std::min(inputSize.width / (float)imgSize.width, |
|
inputSize.height / (float)imgSize.height); |
|
int rh = int(imgSize.height * resizeFactor); |
|
int rw = int(imgSize.width * resizeFactor); |
|
|
|
int top = (inputSize.height - rh) / 2; |
|
int left = (inputSize.width - rw) / 2; |
|
Rect rImg = Rect((rBlob.x - left) / resizeFactor, (rBlob.y - top) / resizeFactor, rBlob.width / resizeFactor, rBlob.height / resizeFactor); |
|
ASSERT_EQ(rImg, rOri); |
|
} |
|
|
|
|
|
TEST(blobFromImage_4ch, Regression) |
|
{ |
|
Mat ch[4]; |
|
for (int i = 0; i < 4; i++) |
|
ch[i] = Mat::ones(10, 10, CV_8U) * i; |
|
|
|
Mat img; |
|
merge(ch, 4, img); |
|
Mat blob = dnn::blobFromImage(img, 1., Size(), Scalar(), false, false); |
|
|
|
for (int i = 0; i < 4; i++) |
|
{ |
|
ch[i] = Mat(img.rows, img.cols, CV_32F, blob.ptr(0, i)); |
|
ASSERT_DOUBLE_EQ(cvtest::norm(ch[i], cv::NORM_INF), i); |
|
} |
|
} |
|
|
|
TEST(blobFromImage, allocated) |
|
{ |
|
int size[] = { 1, 3, 4, 5 }; |
|
Mat img(size[2], size[3], CV_32FC(size[1])); |
|
Mat blob(4, size, CV_32F); |
|
void* blobData = blob.data; |
|
dnn::blobFromImage(img, blob, 1.0 / 255, Size(), Scalar(), false, false); |
|
ASSERT_EQ(blobData, blob.data); |
|
} |
|
|
|
TEST(imagesFromBlob, Regression) |
|
{ |
|
int nbOfImages = 8; |
|
|
|
std::vector<cv::Mat> inputImgs(nbOfImages); |
|
for (int i = 0; i < nbOfImages; i++) |
|
{ |
|
inputImgs[i] = cv::Mat::ones(100, 100, CV_32FC3); |
|
cv::randu(inputImgs[i], cv::Scalar::all(0), cv::Scalar::all(1)); |
|
} |
|
|
|
cv::Mat blob = cv::dnn::blobFromImages(inputImgs, 1., cv::Size(), cv::Scalar(), false, false); |
|
std::vector<cv::Mat> outputImgs; |
|
cv::dnn::imagesFromBlob(blob, outputImgs); |
|
|
|
for (int i = 0; i < nbOfImages; i++) |
|
{ |
|
EXPECT_EQ(0, cvtest::norm(inputImgs[i], outputImgs[i], NORM_INF)) |
|
<< "i=" << i |
|
<< " inputImgs[i]=" << inputImgs[i].size |
|
<< " outputImgs[i]=" << outputImgs[i].size; |
|
} |
|
} |
|
|
|
TEST(blobFromImageWithParams_4ch, NHWC_scalar_scale) |
|
{ |
|
Mat img(10, 10, CV_8UC4, cv::Scalar(0, 1, 2, 3)); |
|
std::vector<double> factorVec = { 0.1, 0.2, 0.3, 0.4 }; |
|
|
|
Scalar scalefactor(factorVec[0], factorVec[1], factorVec[2], factorVec[3]); |
|
|
|
Image2BlobParams param; |
|
param.scalefactor = scalefactor; |
|
param.datalayout = DNN_LAYOUT_NHWC; |
|
Mat blob = dnn::blobFromImageWithParams(img, param); // [1, 10, 10, 4] |
|
|
|
float* blobPtr = blob.ptr<float>(0); |
|
std::vector<float> targetVec = { (float)factorVec[0] * 0, (float)factorVec[1] * 1, (float)factorVec[2] * 2, (float)factorVec[3] * 3 }; // Target Value. |
|
for (int hi = 0; hi < 10; hi++) |
|
{ |
|
for (int wi = 0; wi < 10; wi++) |
|
{ |
|
float* hwPtr = blobPtr + hi * 10 * 4 + wi * 4; |
|
|
|
// Check equal |
|
EXPECT_NEAR(hwPtr[0], targetVec[0], 1e-5); |
|
EXPECT_NEAR(hwPtr[1], targetVec[1], 1e-5); |
|
EXPECT_NEAR(hwPtr[2], targetVec[2], 1e-5); |
|
EXPECT_NEAR(hwPtr[3], targetVec[3], 1e-5); |
|
} |
|
} |
|
} |
|
|
|
TEST(blobFromImageWithParams_CustomPadding, letter_box) |
|
{ |
|
Mat img(40, 20, CV_8UC4, Scalar(0, 1, 2, 3)); |
|
|
|
// Custom padding value that you have added |
|
Scalar customPaddingValue(5, 6, 7, 8); // Example padding value |
|
|
|
Size targetSize(20, 20); |
|
|
|
Mat targetImg = img.clone(); |
|
|
|
cv::copyMakeBorder( |
|
targetImg, targetImg, 0, 0, |
|
targetSize.width / 2, |
|
targetSize.width / 2, |
|
BORDER_CONSTANT, |
|
customPaddingValue); |
|
|
|
// Set up Image2BlobParams with your new functionality |
|
Image2BlobParams param; |
|
param.size = targetSize; |
|
param.paddingmode = DNN_PMODE_LETTERBOX; |
|
param.borderValue = customPaddingValue; // Use your new feature here |
|
|
|
// Create blob with custom padding |
|
Mat blob = dnn::blobFromImageWithParams(img, param); |
|
|
|
// Create target blob for comparison |
|
Mat targetBlob = dnn::blobFromImage(targetImg, 1.0, targetSize); |
|
|
|
EXPECT_EQ(0, cvtest::norm(targetBlob, blob, NORM_INF)); |
|
} |
|
|
|
TEST(blobFromImageWithParams_4ch, letter_box) |
|
{ |
|
Mat img(40, 20, CV_8UC4, cv::Scalar(0, 1, 2, 3)); |
|
|
|
// Construct target mat. |
|
Mat targetCh[4]; |
|
// The letterbox will add zero at the left and right of output blob. |
|
// After the letterbox, every row data would have same value showing as valVec. |
|
std::vector<uint8_t> valVec = { 0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1, 0,0,0,0,0 }; |
|
Mat rowM(1, 20, CV_8UC1, valVec.data()); |
|
|
|
for (int i = 0; i < 4; i++) |
|
{ |
|
targetCh[i] = rowM * i; |
|
} |
|
|
|
Mat targetImg; |
|
merge(targetCh, 4, targetImg); |
|
Size targeSize(20, 20); |
|
|
|
Image2BlobParams param; |
|
param.size = targeSize; |
|
param.paddingmode = DNN_PMODE_LETTERBOX; |
|
Mat blob = dnn::blobFromImageWithParams(img, param); |
|
Mat targetBlob = dnn::blobFromImage(targetImg, 1.0, targeSize); // only convert data from uint8 to float32. |
|
EXPECT_EQ(0, cvtest::norm(targetBlob, blob, NORM_INF)); |
|
} |
|
|
|
TEST(blobFromImagesWithParams_4ch, multi_image) |
|
{ |
|
Mat img(10, 10, CV_8UC4, cv::Scalar(0, 1, 2, 3)); |
|
Scalar scalefactor(0.1, 0.2, 0.3, 0.4); |
|
|
|
Image2BlobParams param; |
|
param.scalefactor = scalefactor; |
|
param.datalayout = DNN_LAYOUT_NHWC; |
|
|
|
Mat blobs = blobFromImagesWithParams(std::vector<Mat> { img, 2 * img }, param); |
|
vector<Range> ranges; |
|
ranges.push_back(Range(0, 1)); |
|
ranges.push_back(Range(0, blobs.size[1])); |
|
ranges.push_back(Range(0, blobs.size[2])); |
|
ranges.push_back(Range(0, blobs.size[3])); |
|
Mat blob0 = blobs(ranges); |
|
ranges[0] = Range(1, 2); |
|
Mat blob1 = blobs(ranges); |
|
|
|
EXPECT_EQ(0, cvtest::norm(2 * blob0, blob1, NORM_INF)); |
|
} |
|
|
|
TEST(readNet, Regression) |
|
{ |
|
Net net = readNet(findDataFile("dnn/squeezenet_v1.1.prototxt"), |
|
findDataFile("dnn/squeezenet_v1.1.caffemodel", false)); |
|
EXPECT_FALSE(net.empty()); |
|
net = readNet(findDataFile("dnn/opencv_face_detector.caffemodel", false), |
|
findDataFile("dnn/opencv_face_detector.prototxt")); |
|
EXPECT_FALSE(net.empty()); |
|
net = readNet(findDataFile("dnn/openface_nn4.small2.v1.t7", false)); |
|
EXPECT_FALSE(net.empty()); |
|
net = readNet(findDataFile("dnn/tiny-yolo-voc.cfg"), |
|
findDataFile("dnn/tiny-yolo-voc.weights", false)); |
|
EXPECT_FALSE(net.empty()); |
|
net = readNet(findDataFile("dnn/ssd_mobilenet_v1_coco.pbtxt"), |
|
findDataFile("dnn/ssd_mobilenet_v1_coco.pb", false)); |
|
EXPECT_FALSE(net.empty()); |
|
} |
|
|
|
TEST(readNet, do_not_call_setInput) // https://github.com/opencv/opencv/issues/16618 |
|
{ |
|
// 1. load network |
|
const string proto = findDataFile("dnn/squeezenet_v1.1.prototxt"); |
|
const string model = findDataFile("dnn/squeezenet_v1.1.caffemodel", false); |
|
Net net = readNetFromCaffe(proto, model); |
|
|
|
// 2. mistake: no inputs are specified through .setInput() |
|
|
|
// 3. try inference |
|
Mat res; |
|
EXPECT_THROW( |
|
{ |
|
res = net.forward(); // no inputs after loading => should fail |
|
}, cv::Exception); |
|
EXPECT_TRUE(res.empty()) << res.size; |
|
} |
|
|
|
TEST(Net, empty_forward_18392) |
|
{ |
|
cv::dnn::Net net; |
|
Mat image(Size(512, 512), CV_8UC3, Scalar::all(0)); |
|
Mat inputBlob = cv::dnn::blobFromImage(image, 1.0, Size(512, 512), Scalar(0,0,0), true, false); |
|
net.setInput(inputBlob); |
|
EXPECT_ANY_THROW(Mat output = net.forward()); |
|
} |
|
|
|
#ifdef HAVE_INF_ENGINE |
|
static |
|
void test_readNet_IE_do_not_call_setInput(Backend backendId) |
|
{ |
|
const Target targetId = DNN_TARGET_CPU; |
|
|
|
const std::string& model = findDataFile("dnn/layers/layer_convolution.bin"); |
|
const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml"); |
|
|
|
ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); |
|
|
|
Net net = readNet(model, proto); |
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
|
|
// 2. mistake: no inputs are specified through .setInput() |
|
|
|
// 3. try inference |
|
Mat res; |
|
EXPECT_THROW( |
|
{ |
|
res = net.forward(); // no inputs after loading => should fail |
|
}, cv::Exception); |
|
EXPECT_TRUE(res.empty()) << res.size; |
|
} |
|
|
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019 |
|
TEST(readNet, do_not_call_setInput_IE_NN_BUILDER_2019) |
|
{ |
|
test_readNet_IE_do_not_call_setInput(DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019); |
|
} |
|
#endif |
|
#ifdef HAVE_DNN_NGRAPH |
|
TEST(readNet, do_not_call_setInput_IE_NGRAPH) |
|
{ |
|
test_readNet_IE_do_not_call_setInput(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH); |
|
} |
|
#endif |
|
#endif // HAVE_INF_ENGINE |
|
|
|
typedef testing::TestWithParam<tuple<Backend, Target> > dump; |
|
TEST_P(dump, Regression) |
|
{ |
|
const int backend = get<0>(GetParam()); |
|
const int target = get<1>(GetParam()); |
|
Net net = readNet(findDataFile("dnn/squeezenet_v1.1.prototxt"), |
|
findDataFile("dnn/squeezenet_v1.1.caffemodel", false)); |
|
|
|
ASSERT_EQ(net.getLayerInputs(net.getLayerId("fire2/concat")).size(), 2); |
|
|
|
int size[] = {1, 3, 227, 227}; |
|
Mat input = cv::Mat::ones(4, size, CV_32F); |
|
net.setInput(input); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
EXPECT_FALSE(net.dump().empty()); |
|
net.forward(); |
|
EXPECT_FALSE(net.dump().empty()); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, dump, dnnBackendsAndTargets()); |
|
|
|
class FirstCustomLayer CV_FINAL : public Layer |
|
{ |
|
public: |
|
FirstCustomLayer(const LayerParams ¶ms) : Layer(params) {} |
|
|
|
static Ptr<Layer> create(LayerParams& params) |
|
{ |
|
return Ptr<Layer>(new FirstCustomLayer(params)); |
|
} |
|
|
|
void forward(InputArrayOfArrays, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
std::vector<Mat> outputs; |
|
outputs_arr.getMatVector(outputs); |
|
outputs[0].setTo(1); |
|
} |
|
}; |
|
|
|
class SecondCustomLayer CV_FINAL : public Layer |
|
{ |
|
public: |
|
SecondCustomLayer(const LayerParams ¶ms) : Layer(params) {} |
|
|
|
static Ptr<Layer> create(LayerParams& params) |
|
{ |
|
return Ptr<Layer>(new SecondCustomLayer(params)); |
|
} |
|
|
|
void forward(InputArrayOfArrays, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
std::vector<Mat> outputs; |
|
outputs_arr.getMatVector(outputs); |
|
outputs[0].setTo(2); |
|
} |
|
}; |
|
|
|
TEST(LayerFactory, custom_layers) |
|
{ |
|
LayerParams lp; |
|
lp.name = "name"; |
|
lp.type = "CustomType"; |
|
|
|
Mat inp(1, 1, CV_32FC1); |
|
for (int i = 0; i < 3; ++i) |
|
{ |
|
if (i == 0) { CV_DNN_REGISTER_LAYER_CLASS(CustomType, FirstCustomLayer); } |
|
else if (i == 1) { CV_DNN_REGISTER_LAYER_CLASS(CustomType, SecondCustomLayer); } |
|
else if (i == 2) { LayerFactory::unregisterLayer("CustomType"); } |
|
|
|
Net net; |
|
net.addLayerToPrev(lp.name, lp.type, lp); |
|
|
|
net.setInput(inp); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
Mat output = net.forward(); |
|
|
|
if (i == 0) { EXPECT_EQ(output.at<float>(0), 1); } |
|
else if (i == 1) { EXPECT_EQ(output.at<float>(0), 2); } |
|
else if (i == 2) { EXPECT_EQ(output.at<float>(0), 1); } |
|
} |
|
LayerFactory::unregisterLayer("CustomType"); |
|
} |
|
|
|
typedef testing::TestWithParam<tuple<float, Vec3f, int, tuple<Backend, Target> > > setInput; |
|
TEST_P(setInput, normalization) |
|
{ |
|
const float kScale = get<0>(GetParam()); |
|
const Scalar kMean = get<1>(GetParam()); |
|
const int dtype = get<2>(GetParam()); |
|
const int backend = get<0>(get<3>(GetParam())); |
|
const int target = get<1>(get<3>(GetParam())); |
|
const bool kSwapRB = true; |
|
|
|
if(backend == DNN_BACKEND_CUDA) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA); |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16 && dtype != CV_32F) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
if (backend == DNN_BACKEND_VKCOM && dtype != CV_32F) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); |
|
|
|
Mat inp(5, 5, CV_8UC3); |
|
randu(inp, 0, 255); |
|
Mat ref = blobFromImage(inp, kScale, Size(), kMean, kSwapRB, /*crop*/false); |
|
|
|
LayerParams lp; |
|
Net net; |
|
net.addLayerToPrev("testLayer", "Identity", lp); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
|
|
Mat blob = blobFromImage(inp, 1.0, Size(), Scalar(), kSwapRB, /*crop*/false, dtype); |
|
ASSERT_EQ(blob.type(), dtype); |
|
net.setInput(blob, "", kScale, kMean); |
|
Mat out = net.forward(); |
|
ASSERT_EQ(out.type(), CV_32F); |
|
normAssert(ref, out, "", 4e-4, 1e-3); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, setInput, Combine( |
|
Values(1.0f, 1.0 / 127.5), |
|
Values(Vec3f(), Vec3f(50, 50, 50), Vec3f(10, 50, 140)), |
|
Values(CV_32F, CV_8U), |
|
dnnBackendsAndTargets() |
|
)); |
|
|
|
class CustomLayerWithDeprecatedForward CV_FINAL : public Layer |
|
{ |
|
public: |
|
CustomLayerWithDeprecatedForward(const LayerParams ¶ms) : Layer(params) {} |
|
|
|
static Ptr<Layer> create(LayerParams& params) |
|
{ |
|
return Ptr<Layer>(new CustomLayerWithDeprecatedForward(params)); |
|
} |
|
|
|
virtual void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE |
|
{ |
|
CV_Assert_N(inputs[0]->depth() == CV_32F, outputs[0].depth() == CV_32F); |
|
cv::add(*inputs[0], 0.5f, outputs[0]); |
|
} |
|
}; |
|
|
|
class CustomLayerWithDeprecatedForwardAndFallback CV_FINAL : public Layer |
|
{ |
|
public: |
|
CustomLayerWithDeprecatedForwardAndFallback(const LayerParams ¶ms) : Layer(params) {} |
|
|
|
static Ptr<Layer> create(LayerParams& params) |
|
{ |
|
return Ptr<Layer>(new CustomLayerWithDeprecatedForwardAndFallback(params)); |
|
} |
|
|
|
void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals) CV_OVERRIDE |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
CV_OCL_RUN(preferableTarget == DNN_TARGET_OPENCL || preferableTarget == DNN_TARGET_OPENCL_FP16, |
|
forward_ocl(inputs, outputs, internals)); |
|
|
|
Layer::forward_fallback(inputs, outputs, internals); |
|
} |
|
|
|
virtual void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE |
|
{ |
|
CV_Assert_N(inputs[0]->depth() == CV_32F, outputs[0].depth() == CV_32F); |
|
cv::add(*inputs[0], 0.5f, outputs[0]); |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
bool forward_ocl(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) |
|
{ |
|
if (inputs_arr.depth() != CV_32F) |
|
return false; |
|
|
|
std::vector<UMat> inputs; |
|
std::vector<UMat> outputs; |
|
inputs_arr.getUMatVector(inputs); |
|
outputs_arr.getUMatVector(outputs); |
|
cv::add(inputs[0], 0.5f, outputs[0]); |
|
return true; |
|
} |
|
#endif |
|
}; |
|
|
|
typedef testing::TestWithParam<tuple<Backend, Target> > DeprecatedForward; |
|
TEST_P(DeprecatedForward, CustomLayer) |
|
{ |
|
const int backend = get<0>(GetParam()); |
|
const int target = get<1>(GetParam()); |
|
|
|
Mat inp(5, 5, CV_32FC1); |
|
randu(inp, -1.0f, 1.0f); |
|
inp = blobFromImage(inp); |
|
|
|
CV_DNN_REGISTER_LAYER_CLASS(CustomType, CustomLayerWithDeprecatedForward); |
|
try |
|
{ |
|
LayerParams lp; |
|
Net net; |
|
net.addLayerToPrev("testLayer", "CustomType", lp); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
net.setInput(inp); |
|
Mat out = net.forward(); |
|
normAssert(out, inp + 0.5f, "", 2e-4, 7e-4); |
|
} |
|
catch (...) |
|
{ |
|
LayerFactory::unregisterLayer("CustomType"); |
|
throw; |
|
} |
|
LayerFactory::unregisterLayer("CustomType"); |
|
} |
|
|
|
TEST_P(DeprecatedForward, CustomLayerWithFallback) |
|
{ |
|
const int backend = get<0>(GetParam()); |
|
const int target = get<1>(GetParam()); |
|
|
|
Mat inp(5, 5, CV_32FC1); |
|
randu(inp, -1.0f, 1.0f); |
|
inp = blobFromImage(inp); |
|
|
|
CV_DNN_REGISTER_LAYER_CLASS(CustomType, CustomLayerWithDeprecatedForwardAndFallback); |
|
try |
|
{ |
|
LayerParams lp; |
|
Net net; |
|
net.addLayerToPrev("testLayer", "CustomType", lp); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
net.setInput(inp); |
|
Mat out = net.forward(); |
|
normAssert(out, inp + 0.5f, "", 2e-4, 7e-4); |
|
} |
|
catch (...) |
|
{ |
|
LayerFactory::unregisterLayer("CustomType"); |
|
throw; |
|
} |
|
LayerFactory::unregisterLayer("CustomType"); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, DeprecatedForward, dnnBackendsAndTargets()); |
|
|
|
TEST(Net, forwardAndRetrieve) |
|
{ |
|
std::string prototxt = |
|
"input: \"data\"\n" |
|
"layer {\n" |
|
" name: \"testLayer\"\n" |
|
" type: \"Slice\"\n" |
|
" bottom: \"data\"\n" |
|
" top: \"firstCopy\"\n" |
|
" top: \"secondCopy\"\n" |
|
" slice_param {\n" |
|
" axis: 0\n" |
|
" slice_point: 2\n" |
|
" }\n" |
|
"}"; |
|
Net net = readNetFromCaffe(&prototxt[0], prototxt.size()); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
|
|
Mat inp(4, 5, CV_32F); |
|
randu(inp, -1, 1); |
|
net.setInput(inp); |
|
|
|
std::vector<String> outNames; |
|
outNames.push_back("testLayer"); |
|
std::vector<std::vector<Mat> > outBlobs; |
|
|
|
net.forward(outBlobs, outNames); |
|
|
|
EXPECT_EQ(outBlobs.size(), 1); |
|
EXPECT_EQ(outBlobs[0].size(), 2); |
|
normAssert(outBlobs[0][0], inp.rowRange(0, 2), "first part"); |
|
normAssert(outBlobs[0][1], inp.rowRange(2, 4), "second part"); |
|
} |
|
|
|
#ifdef HAVE_INF_ENGINE |
|
static const std::chrono::milliseconds async_timeout(10000); |
|
|
|
// This test runs network in synchronous mode for different inputs and then |
|
// runs the same model asynchronously for the same inputs. |
|
typedef testing::TestWithParam<tuple<int, tuple<Backend, Target> > > Async; |
|
TEST_P(Async, model_optimizer_pipeline_set_and_forward_single) |
|
{ |
|
const int dtype = get<0>(GetParam()); |
|
const Backend backendId = get<0>(get<1>(GetParam())); |
|
const Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
throw SkipTestException("No support for async forward"); |
|
|
|
const std::string& model = findDataFile("dnn/layers/layer_convolution.bin"); |
|
const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml"); |
|
|
|
ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); |
|
|
|
Net netSync = readNet(model, proto); |
|
netSync.setPreferableBackend(backendId); |
|
netSync.setPreferableTarget(targetId); |
|
|
|
Net netAsync = readNet(model, proto); |
|
netAsync.setPreferableBackend(backendId); |
|
netAsync.setPreferableTarget(targetId); |
|
|
|
// Generate inputs. |
|
const int numInputs = 10; |
|
std::vector<Mat> inputs(numInputs); |
|
int blobSize[] = {2, 6, 75, 113}; |
|
for (int i = 0; i < numInputs; ++i) |
|
{ |
|
inputs[i].create(4, &blobSize[0], dtype); |
|
randu(inputs[i], 0, 255); |
|
} |
|
|
|
// Run synchronously. |
|
std::vector<Mat> refs(numInputs); |
|
for (int i = 0; i < numInputs; ++i) |
|
{ |
|
netSync.setInput(inputs[i]); |
|
refs[i] = netSync.forward().clone(); |
|
} |
|
|
|
// Run asynchronously. To make test more robust, process inputs in the reversed order. |
|
for (int i = numInputs - 1; i >= 0; --i) |
|
{ |
|
netAsync.setInput(inputs[i]); |
|
|
|
AsyncArray out = netAsync.forwardAsync(); |
|
ASSERT_TRUE(out.valid()); |
|
Mat result; |
|
EXPECT_TRUE(out.get(result, async_timeout)); |
|
normAssert(refs[i], result, format("Index: %d", i).c_str(), 0, 0); |
|
} |
|
} |
|
|
|
TEST_P(Async, model_optimizer_pipeline_set_and_forward_all) |
|
{ |
|
const int dtype = get<0>(GetParam()); |
|
const Backend backendId = get<0>(get<1>(GetParam())); |
|
const Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
throw SkipTestException("No support for async forward"); |
|
|
|
const std::string& model = findDataFile("dnn/layers/layer_convolution.bin"); |
|
const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml"); |
|
|
|
ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); |
|
|
|
Net netSync = readNet(model, proto); |
|
netSync.setPreferableBackend(backendId); |
|
netSync.setPreferableTarget(targetId); |
|
|
|
Net netAsync = readNet(model, proto); |
|
netAsync.setPreferableBackend(backendId); |
|
netAsync.setPreferableTarget(targetId); |
|
|
|
// Generate inputs. |
|
const int numInputs = 10; |
|
std::vector<Mat> inputs(numInputs); |
|
int blobSize[] = {2, 6, 75, 113}; |
|
for (int i = 0; i < numInputs; ++i) |
|
{ |
|
inputs[i].create(4, &blobSize[0], dtype); |
|
randu(inputs[i], 0, 255); |
|
} |
|
|
|
// Run synchronously. |
|
std::vector<Mat> refs(numInputs); |
|
for (int i = 0; i < numInputs; ++i) |
|
{ |
|
netSync.setInput(inputs[i]); |
|
refs[i] = netSync.forward().clone(); |
|
} |
|
|
|
// Run asynchronously. To make test more robust, process inputs in the reversed order. |
|
std::vector<AsyncArray> outs(numInputs); |
|
for (int i = numInputs - 1; i >= 0; --i) |
|
{ |
|
netAsync.setInput(inputs[i]); |
|
outs[i] = netAsync.forwardAsync(); |
|
} |
|
|
|
for (int i = numInputs - 1; i >= 0; --i) |
|
{ |
|
ASSERT_TRUE(outs[i].valid()); |
|
Mat result; |
|
EXPECT_TRUE(outs[i].get(result, async_timeout)); |
|
normAssert(refs[i], result, format("Index: %d", i).c_str(), 0, 0); |
|
} |
|
} |
|
|
|
TEST_P(Async, create_layer_pipeline_set_and_forward_all) |
|
{ |
|
const int dtype = get<0>(GetParam()); |
|
const Backend backendId = get<0>(get<1>(GetParam())); |
|
const Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
throw SkipTestException("No support for async forward"); |
|
|
|
// Exception: Default implementation fallbacks in asynchronous mode |
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && dtype == CV_8U) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); |
|
|
|
ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); |
|
|
|
Net netSync; |
|
Net netAsync; |
|
{ |
|
int inChannels = 4; |
|
int outChannels = 12; |
|
int group = 3; |
|
Size inSize(113, 75); |
|
Size kernel(4, 5); |
|
Size stride(2, 3); |
|
Size pad(0, 1); |
|
Size dilation(1, 1); |
|
bool hasBias = true; |
|
|
|
int sz[] = {outChannels, inChannels / group, kernel.height, kernel.width}; |
|
Mat weights(4, &sz[0], CV_32F); |
|
randu(weights, -1.0f, 1.0f); |
|
|
|
LayerParams lp; |
|
lp.set("kernel_w", kernel.width); |
|
lp.set("kernel_h", kernel.height); |
|
lp.set("pad_w", pad.width); |
|
lp.set("pad_h", pad.height); |
|
lp.set("stride_w", stride.width); |
|
lp.set("stride_h", stride.height); |
|
lp.set("dilation_w", dilation.width); |
|
lp.set("dilation_h", dilation.height); |
|
lp.set("num_output", outChannels); |
|
lp.set("group", group); |
|
lp.set("bias_term", hasBias); |
|
lp.type = "Convolution"; |
|
lp.name = "testLayer"; |
|
lp.blobs.push_back(weights); |
|
if (hasBias) |
|
{ |
|
Mat bias(1, outChannels, CV_32F); |
|
randu(bias, -1.0f, 1.0f); |
|
lp.blobs.push_back(bias); |
|
} |
|
int inpSz[] = {1, inChannels, inSize.height, inSize.width}; |
|
Mat input(4, &inpSz[0], CV_32F); |
|
|
|
netSync.addLayerToPrev(lp.name, lp.type, lp); |
|
|
|
netAsync.addLayerToPrev(lp.name, lp.type, lp); |
|
} |
|
|
|
netSync.setPreferableBackend(backendId); |
|
netSync.setPreferableTarget(targetId); |
|
|
|
netAsync.setPreferableBackend(backendId); |
|
netAsync.setPreferableTarget(targetId); |
|
|
|
// Generate inputs. |
|
const int numInputs = 10; |
|
std::vector<Mat> inputs(numInputs); |
|
int blobSize[] = {1, 4, 75, 113}; |
|
for (int i = 0; i < numInputs; ++i) |
|
{ |
|
inputs[i].create(4, &blobSize[0], dtype); |
|
randu(inputs[i], 0, 255); |
|
} |
|
|
|
// Run synchronously. |
|
std::vector<Mat> refs(numInputs); |
|
for (int i = 0; i < numInputs; ++i) |
|
{ |
|
netSync.setInput(inputs[i]); |
|
refs[i] = netSync.forward().clone(); |
|
} |
|
|
|
// Run asynchronously. To make test more robust, process inputs in the reversed order. |
|
std::vector<AsyncArray> outs(numInputs); |
|
for (int i = numInputs - 1; i >= 0; --i) |
|
{ |
|
netAsync.setInput(inputs[i]); |
|
outs[i] = netAsync.forwardAsync(); |
|
} |
|
|
|
for (int i = numInputs - 1; i >= 0; --i) |
|
{ |
|
ASSERT_TRUE(outs[i].valid()); |
|
Mat result; |
|
EXPECT_TRUE(outs[i].get(result, async_timeout)); |
|
normAssert(refs[i], result, format("Index: %d", i).c_str(), 0, 0); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Async, Combine( |
|
Values(CV_32F, CV_8U), |
|
dnnBackendsAndTargetsIE() |
|
)); |
|
|
|
typedef testing::TestWithParam<tuple<Backend, Target> > Test_Model_Optimizer; |
|
TEST_P(Test_Model_Optimizer, forward_two_nets) |
|
{ |
|
const Backend backendId = get<0>(GetParam()); |
|
const Target targetId = get<1>(GetParam()); |
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
|
|
const std::string& model = findDataFile("dnn/layers/layer_convolution.bin"); |
|
const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml"); |
|
|
|
ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); |
|
|
|
Net net0 = readNet(model, proto); |
|
net0.setPreferableTarget(targetId); |
|
|
|
Net net1 = readNet(model, proto); |
|
net1.setPreferableTarget(targetId); |
|
|
|
// Generate inputs. |
|
int blobSize[] = {2, 6, 75, 113}; |
|
Mat input(4, &blobSize[0], CV_32F); |
|
randu(input, 0, 255); |
|
|
|
net0.setInput(input); |
|
Mat ref0 = net0.forward().clone(); |
|
|
|
net1.setInput(input); |
|
Mat ref1 = net1.forward(); |
|
|
|
net0.setInput(input); |
|
Mat ref2 = net0.forward(); |
|
|
|
normAssert(ref0, ref2, 0, 0); |
|
} |
|
|
|
TEST_P(Test_Model_Optimizer, readFromBuffer) |
|
{ |
|
const Backend backendId = get<0>(GetParam()); |
|
const Target targetId = get<1>(GetParam()); |
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
throw SkipTestException("No support for async forward"); |
|
|
|
const std::string& weightsFile = findDataFile("dnn/layers/layer_convolution.bin"); |
|
const std::string& modelFile = findDataFile("dnn/layers/layer_convolution.xml"); |
|
|
|
ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); |
|
|
|
Net net1 = readNetFromModelOptimizer(modelFile, weightsFile); |
|
net1.setPreferableBackend(backendId); |
|
net1.setPreferableTarget(targetId); |
|
|
|
|
|
std::vector<char> modelConfig; |
|
readFileContent(modelFile, modelConfig); |
|
std::vector<char> weights; |
|
readFileContent(weightsFile, weights); |
|
|
|
Net net2 = readNetFromModelOptimizer( |
|
(const uchar*)modelConfig.data(), modelConfig.size(), |
|
(const uchar*)weights.data(), weights.size() |
|
); |
|
net2.setPreferableBackend(backendId); |
|
net2.setPreferableTarget(targetId); |
|
|
|
int blobSize[] = {2, 6, 75, 113}; |
|
Mat input(4, &blobSize[0], CV_32F); |
|
randu(input, 0, 255); |
|
|
|
Mat ref, actual; |
|
{ |
|
net1.setInput(input); |
|
ref = net1.forward(); |
|
} |
|
{ |
|
net2.setInput(input); |
|
actual = net2.forward(); |
|
} |
|
|
|
normAssert(ref, actual, "", 0, 0); |
|
} |
|
|
|
TEST_P(Test_Model_Optimizer, flexible_inputs) |
|
{ |
|
const Backend backendId = get<0>(GetParam()); |
|
const Target targetId = get<1>(GetParam()); |
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && targetId == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
|
|
const std::string& model = findDataFile("dnn/layers/layer_convolution.bin"); |
|
const std::string& proto = findDataFile("dnn/layers/layer_convolution.xml"); |
|
|
|
ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); |
|
|
|
Net net0 = readNet(model, proto); |
|
net0.setPreferableTarget(targetId); |
|
|
|
Net net1 = readNet(model, proto); |
|
net1.setPreferableTarget(targetId); |
|
|
|
// Generate inputs. |
|
int blobSize0[] = {2, 6, 75, 113}; |
|
Mat input0(4, &blobSize0[0], CV_32F); |
|
randu(input0, 0, 255); |
|
|
|
net0.setInput(input0); |
|
Mat ref = net0.forward().clone(); |
|
|
|
int blobSize1[] = {1, 6, 10, 9}; |
|
Mat input1(4, &blobSize1[0], CV_32F); |
|
randu(input1, 0, 255); |
|
|
|
net1.setInput(input1); |
|
Mat out = net1.forward(); |
|
EXPECT_NE(out.size, ref.size); |
|
|
|
net1.setInput(input0); |
|
out = net1.forward(); |
|
normAssert(ref, out, 0, 0); |
|
} |
|
|
|
TEST_P(Test_Model_Optimizer, readONNX) |
|
{ |
|
const Backend backendId = get<0>(GetParam()); |
|
const Target targetId = get<1>(GetParam()); |
|
|
|
ASSERT_EQ(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, backendId); |
|
|
|
const std::string& model = findDataFile("dnn/onnx/models/convolution.onnx"); |
|
|
|
std::vector<Net> nets = { |
|
// Old API |
|
readNetFromModelOptimizer(model, ""), |
|
readNet("", model, "dldt"), |
|
// New API |
|
readNetFromModelOptimizer(model), |
|
readNet(model, "", "openvino") |
|
}; |
|
|
|
Mat inp = blobFromNPY(findDataFile("dnn/onnx/data/input_convolution.npy")); |
|
Mat ref = blobFromNPY(findDataFile("dnn/onnx/data/output_convolution.npy")); |
|
|
|
for (int i = 0; i < nets.size(); ++i) { |
|
nets[i].setPreferableTarget(targetId); |
|
nets[i].setInput(inp); |
|
Mat out = nets[i].forward(); |
|
normAssert(out, ref, format("Index: %d", i).c_str()); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Model_Optimizer, |
|
dnnBackendsAndTargetsIE() |
|
); |
|
|
|
#endif // HAVE_INF_ENGINE |
|
|
|
typedef testing::TestWithParam<tuple<MatDepth, MatDepth, tuple<Backend, Target> > > Test_two_inputs; |
|
TEST_P(Test_two_inputs, basic) |
|
{ |
|
static const float kScale = 0.5f; |
|
static const float kScaleInv = 1.0f / kScale; |
|
|
|
Backend backendId = get<0>(get<2>(GetParam())); |
|
Target targetId = get<1>(get<2>(GetParam())); |
|
|
|
int type1 = get<0>(GetParam()); |
|
int type2 = get<1>(GetParam()); |
|
|
|
if (backendId == DNN_BACKEND_VKCOM && !(type1 == CV_32F && type2 == CV_32F)) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); |
|
|
|
Net net; |
|
LayerParams lp; |
|
lp.type = "Eltwise"; |
|
lp.name = "testLayer"; |
|
lp.set("operation", "sum"); |
|
int eltwiseId = net.addLayerToPrev(lp.name, lp.type, lp); // connect to a first input |
|
net.connect(0, 1, eltwiseId, 1); // connect to a second input |
|
|
|
int inpSize[] = {1, 2, 3, 4}; |
|
Mat firstInp(4, &inpSize[0], type1); |
|
Mat secondInp(4, &inpSize[0], type2); |
|
randu(firstInp, 0, 100); |
|
randu(secondInp, 0, 100); |
|
|
|
#ifndef CV_CXX11 |
|
std::vector<String> input_names; |
|
input_names.push_back("data"); |
|
input_names.push_back("second_input"); |
|
net.setInputsNames(input_names); |
|
#else |
|
net.setInputsNames({"data", "second_input"}); |
|
#endif |
|
net.setInput(firstInp, "data", kScale); |
|
net.setInput(secondInp, "second_input", kScaleInv); |
|
net.setPreferableBackend(backendId); |
|
net.setPreferableTarget(targetId); |
|
Mat out = net.forward(); |
|
|
|
Mat ref; |
|
addWeighted(firstInp, kScale, secondInp, kScaleInv, 0, ref, CV_32F); |
|
|
|
double l1 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD || targetId == DNN_TARGET_CUDA_FP16) ? 0.06 : 1e-6; |
|
double lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD || targetId == DNN_TARGET_CUDA_FP16) ? 0.3 : 1e-5; |
|
|
|
normAssert(out, ref, "", l1, lInf); |
|
|
|
if (cvtest::debugLevel > 0 || HasFailure()) |
|
{ |
|
std::cout << "input1 scale=" << kScale << " input2 scale=" << kScaleInv << std::endl; |
|
std::cout << "input1: " << firstInp.size << " " << firstInp.reshape(1, 1) << std::endl; |
|
std::cout << "input2: " << secondInp.size << " " << secondInp.reshape(1, 1) << std::endl; |
|
std::cout << "ref: " << ref.reshape(1, 1) << std::endl; |
|
std::cout << "out: " << out.reshape(1, 1) << std::endl; |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_two_inputs, Combine( |
|
Values(CV_32F, CV_8U), |
|
Values(CV_32F, CV_8U), |
|
dnnBackendsAndTargets() |
|
)); |
|
|
|
}} // namespace
|
|
|