mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
674 lines
22 KiB
674 lines
22 KiB
/* |
|
* jcmaster.c |
|
* |
|
* Copyright (C) 1991-1997, Thomas G. Lane. |
|
* Modified 2003-2017 by Guido Vollbeding. |
|
* This file is part of the Independent JPEG Group's software. |
|
* For conditions of distribution and use, see the accompanying README file. |
|
* |
|
* This file contains master control logic for the JPEG compressor. |
|
* These routines are concerned with parameter validation, initial setup, |
|
* and inter-pass control (determining the number of passes and the work |
|
* to be done in each pass). |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
|
|
|
|
/* Private state */ |
|
|
|
typedef enum { |
|
main_pass, /* input data, also do first output step */ |
|
huff_opt_pass, /* Huffman code optimization pass */ |
|
output_pass /* data output pass */ |
|
} c_pass_type; |
|
|
|
typedef struct { |
|
struct jpeg_comp_master pub; /* public fields */ |
|
|
|
c_pass_type pass_type; /* the type of the current pass */ |
|
|
|
int pass_number; /* # of passes completed */ |
|
int total_passes; /* total # of passes needed */ |
|
|
|
int scan_number; /* current index in scan_info[] */ |
|
} my_comp_master; |
|
|
|
typedef my_comp_master * my_master_ptr; |
|
|
|
|
|
/* |
|
* Support routines that do various essential calculations. |
|
*/ |
|
|
|
LOCAL(void) |
|
initial_setup (j_compress_ptr cinfo) |
|
/* Do computations that are needed before master selection phase */ |
|
{ |
|
int ci, ssize; |
|
jpeg_component_info *compptr; |
|
|
|
/* Sanity check on block_size */ |
|
if (cinfo->block_size < 1 || cinfo->block_size > 16) |
|
ERREXIT2(cinfo, JERR_BAD_DCTSIZE, cinfo->block_size, cinfo->block_size); |
|
|
|
/* Derive natural_order from block_size */ |
|
switch (cinfo->block_size) { |
|
case 2: cinfo->natural_order = jpeg_natural_order2; break; |
|
case 3: cinfo->natural_order = jpeg_natural_order3; break; |
|
case 4: cinfo->natural_order = jpeg_natural_order4; break; |
|
case 5: cinfo->natural_order = jpeg_natural_order5; break; |
|
case 6: cinfo->natural_order = jpeg_natural_order6; break; |
|
case 7: cinfo->natural_order = jpeg_natural_order7; break; |
|
default: cinfo->natural_order = jpeg_natural_order; break; |
|
} |
|
|
|
/* Derive lim_Se from block_size */ |
|
cinfo->lim_Se = cinfo->block_size < DCTSIZE ? |
|
cinfo->block_size * cinfo->block_size - 1 : DCTSIZE2-1; |
|
|
|
/* Sanity check on image dimensions */ |
|
if (cinfo->jpeg_height <= 0 || cinfo->jpeg_width <= 0 || |
|
cinfo->num_components <= 0) |
|
ERREXIT(cinfo, JERR_EMPTY_IMAGE); |
|
|
|
/* Make sure image isn't bigger than I can handle */ |
|
if ((long) cinfo->jpeg_height > (long) JPEG_MAX_DIMENSION || |
|
(long) cinfo->jpeg_width > (long) JPEG_MAX_DIMENSION) |
|
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); |
|
|
|
/* Only 8 to 12 bits data precision are supported for DCT based JPEG */ |
|
if (cinfo->data_precision < 8 || cinfo->data_precision > 12) |
|
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); |
|
|
|
/* Check that number of components won't exceed internal array sizes */ |
|
if (cinfo->num_components > MAX_COMPONENTS) |
|
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, |
|
MAX_COMPONENTS); |
|
|
|
/* Compute maximum sampling factors; check factor validity */ |
|
cinfo->max_h_samp_factor = 1; |
|
cinfo->max_v_samp_factor = 1; |
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
ci++, compptr++) { |
|
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || |
|
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) |
|
ERREXIT(cinfo, JERR_BAD_SAMPLING); |
|
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, |
|
compptr->h_samp_factor); |
|
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, |
|
compptr->v_samp_factor); |
|
} |
|
|
|
/* Compute dimensions of components */ |
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
|
ci++, compptr++) { |
|
/* Fill in the correct component_index value; don't rely on application */ |
|
compptr->component_index = ci; |
|
/* In selecting the actual DCT scaling for each component, we try to |
|
* scale down the chroma components via DCT scaling rather than downsampling. |
|
* This saves time if the downsampler gets to use 1:1 scaling. |
|
* Note this code adapts subsampling ratios which are powers of 2. |
|
*/ |
|
ssize = 1; |
|
#ifdef DCT_SCALING_SUPPORTED |
|
while (cinfo->min_DCT_h_scaled_size * ssize <= |
|
(cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) && |
|
(cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 0) { |
|
ssize = ssize * 2; |
|
} |
|
#endif |
|
compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize; |
|
ssize = 1; |
|
#ifdef DCT_SCALING_SUPPORTED |
|
while (cinfo->min_DCT_v_scaled_size * ssize <= |
|
(cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) && |
|
(cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 0) { |
|
ssize = ssize * 2; |
|
} |
|
#endif |
|
compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize; |
|
|
|
/* We don't support DCT ratios larger than 2. */ |
|
if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2) |
|
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2; |
|
else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2) |
|
compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2; |
|
|
|
/* Size in DCT blocks */ |
|
compptr->width_in_blocks = (JDIMENSION) |
|
jdiv_round_up((long) cinfo->jpeg_width * (long) compptr->h_samp_factor, |
|
(long) (cinfo->max_h_samp_factor * cinfo->block_size)); |
|
compptr->height_in_blocks = (JDIMENSION) |
|
jdiv_round_up((long) cinfo->jpeg_height * (long) compptr->v_samp_factor, |
|
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); |
|
/* Size in samples */ |
|
compptr->downsampled_width = (JDIMENSION) |
|
jdiv_round_up((long) cinfo->jpeg_width * |
|
(long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size), |
|
(long) (cinfo->max_h_samp_factor * cinfo->block_size)); |
|
compptr->downsampled_height = (JDIMENSION) |
|
jdiv_round_up((long) cinfo->jpeg_height * |
|
(long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size), |
|
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); |
|
/* Don't need quantization scale after DCT, |
|
* until color conversion says otherwise. |
|
*/ |
|
compptr->component_needed = FALSE; |
|
} |
|
|
|
/* Compute number of fully interleaved MCU rows (number of times that |
|
* main controller will call coefficient controller). |
|
*/ |
|
cinfo->total_iMCU_rows = (JDIMENSION) |
|
jdiv_round_up((long) cinfo->jpeg_height, |
|
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); |
|
} |
|
|
|
|
|
#ifdef C_MULTISCAN_FILES_SUPPORTED |
|
|
|
LOCAL(void) |
|
validate_script (j_compress_ptr cinfo) |
|
/* Verify that the scan script in cinfo->scan_info[] is valid; also |
|
* determine whether it uses progressive JPEG, and set cinfo->progressive_mode. |
|
*/ |
|
{ |
|
const jpeg_scan_info * scanptr; |
|
int scanno, ncomps, ci, coefi, thisi; |
|
int Ss, Se, Ah, Al; |
|
boolean component_sent[MAX_COMPONENTS]; |
|
#ifdef C_PROGRESSIVE_SUPPORTED |
|
int * last_bitpos_ptr; |
|
int last_bitpos[MAX_COMPONENTS][DCTSIZE2]; |
|
/* -1 until that coefficient has been seen; then last Al for it */ |
|
#endif |
|
|
|
if (cinfo->num_scans <= 0) |
|
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0); |
|
|
|
/* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1; |
|
* for progressive JPEG, no scan can have this. |
|
*/ |
|
scanptr = cinfo->scan_info; |
|
if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) { |
|
#ifdef C_PROGRESSIVE_SUPPORTED |
|
cinfo->progressive_mode = TRUE; |
|
last_bitpos_ptr = & last_bitpos[0][0]; |
|
for (ci = 0; ci < cinfo->num_components; ci++) |
|
for (coefi = 0; coefi < DCTSIZE2; coefi++) |
|
*last_bitpos_ptr++ = -1; |
|
#else |
|
ERREXIT(cinfo, JERR_NOT_COMPILED); |
|
#endif |
|
} else { |
|
cinfo->progressive_mode = FALSE; |
|
for (ci = 0; ci < cinfo->num_components; ci++) |
|
component_sent[ci] = FALSE; |
|
} |
|
|
|
for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) { |
|
/* Validate component indexes */ |
|
ncomps = scanptr->comps_in_scan; |
|
if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN) |
|
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN); |
|
for (ci = 0; ci < ncomps; ci++) { |
|
thisi = scanptr->component_index[ci]; |
|
if (thisi < 0 || thisi >= cinfo->num_components) |
|
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); |
|
/* Components must appear in SOF order within each scan */ |
|
if (ci > 0 && thisi <= scanptr->component_index[ci-1]) |
|
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); |
|
} |
|
/* Validate progression parameters */ |
|
Ss = scanptr->Ss; |
|
Se = scanptr->Se; |
|
Ah = scanptr->Ah; |
|
Al = scanptr->Al; |
|
if (cinfo->progressive_mode) { |
|
#ifdef C_PROGRESSIVE_SUPPORTED |
|
/* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that |
|
* seems wrong: the upper bound ought to depend on data precision. |
|
* Perhaps they really meant 0..N+1 for N-bit precision. |
|
* Here we allow 0..10 for 8-bit data; Al larger than 10 results in |
|
* out-of-range reconstructed DC values during the first DC scan, |
|
* which might cause problems for some decoders. |
|
*/ |
|
if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 || |
|
Ah < 0 || Ah > (cinfo->data_precision > 8 ? 13 : 10) || |
|
Al < 0 || Al > (cinfo->data_precision > 8 ? 13 : 10)) |
|
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
|
if (Ss == 0) { |
|
if (Se != 0) /* DC and AC together not OK */ |
|
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
|
} else { |
|
if (ncomps != 1) /* AC scans must be for only one component */ |
|
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
|
} |
|
for (ci = 0; ci < ncomps; ci++) { |
|
last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0]; |
|
if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */ |
|
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
|
for (coefi = Ss; coefi <= Se; coefi++) { |
|
if (last_bitpos_ptr[coefi] < 0) { |
|
/* first scan of this coefficient */ |
|
if (Ah != 0) |
|
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
|
} else { |
|
/* not first scan */ |
|
if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1) |
|
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
|
} |
|
last_bitpos_ptr[coefi] = Al; |
|
} |
|
} |
|
#endif |
|
} else { |
|
/* For sequential JPEG, all progression parameters must be these: */ |
|
if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0) |
|
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
|
/* Make sure components are not sent twice */ |
|
for (ci = 0; ci < ncomps; ci++) { |
|
thisi = scanptr->component_index[ci]; |
|
if (component_sent[thisi]) |
|
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); |
|
component_sent[thisi] = TRUE; |
|
} |
|
} |
|
} |
|
|
|
/* Now verify that everything got sent. */ |
|
if (cinfo->progressive_mode) { |
|
#ifdef C_PROGRESSIVE_SUPPORTED |
|
/* For progressive mode, we only check that at least some DC data |
|
* got sent for each component; the spec does not require that all bits |
|
* of all coefficients be transmitted. Would it be wiser to enforce |
|
* transmission of all coefficient bits?? |
|
*/ |
|
for (ci = 0; ci < cinfo->num_components; ci++) { |
|
if (last_bitpos[ci][0] < 0) |
|
ERREXIT(cinfo, JERR_MISSING_DATA); |
|
} |
|
#endif |
|
} else { |
|
for (ci = 0; ci < cinfo->num_components; ci++) { |
|
if (! component_sent[ci]) |
|
ERREXIT(cinfo, JERR_MISSING_DATA); |
|
} |
|
} |
|
} |
|
|
|
|
|
LOCAL(void) |
|
reduce_script (j_compress_ptr cinfo) |
|
/* Adapt scan script for use with reduced block size; |
|
* assume that script has been validated before. |
|
*/ |
|
{ |
|
jpeg_scan_info * scanptr; |
|
int idxout, idxin; |
|
|
|
/* Circumvent const declaration for this function */ |
|
scanptr = (jpeg_scan_info *) cinfo->scan_info; |
|
idxout = 0; |
|
|
|
for (idxin = 0; idxin < cinfo->num_scans; idxin++) { |
|
/* After skipping, idxout becomes smaller than idxin */ |
|
if (idxin != idxout) |
|
/* Copy rest of data; |
|
* note we stay in given chunk of allocated memory. |
|
*/ |
|
scanptr[idxout] = scanptr[idxin]; |
|
if (scanptr[idxout].Ss > cinfo->lim_Se) |
|
/* Entire scan out of range - skip this entry */ |
|
continue; |
|
if (scanptr[idxout].Se > cinfo->lim_Se) |
|
/* Limit scan to end of block */ |
|
scanptr[idxout].Se = cinfo->lim_Se; |
|
idxout++; |
|
} |
|
|
|
cinfo->num_scans = idxout; |
|
} |
|
|
|
#endif /* C_MULTISCAN_FILES_SUPPORTED */ |
|
|
|
|
|
LOCAL(void) |
|
select_scan_parameters (j_compress_ptr cinfo) |
|
/* Set up the scan parameters for the current scan */ |
|
{ |
|
int ci; |
|
|
|
#ifdef C_MULTISCAN_FILES_SUPPORTED |
|
if (cinfo->scan_info != NULL) { |
|
/* Prepare for current scan --- the script is already validated */ |
|
my_master_ptr master = (my_master_ptr) cinfo->master; |
|
const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number; |
|
|
|
cinfo->comps_in_scan = scanptr->comps_in_scan; |
|
for (ci = 0; ci < scanptr->comps_in_scan; ci++) { |
|
cinfo->cur_comp_info[ci] = |
|
&cinfo->comp_info[scanptr->component_index[ci]]; |
|
} |
|
if (cinfo->progressive_mode) { |
|
cinfo->Ss = scanptr->Ss; |
|
cinfo->Se = scanptr->Se; |
|
cinfo->Ah = scanptr->Ah; |
|
cinfo->Al = scanptr->Al; |
|
return; |
|
} |
|
} |
|
else |
|
#endif |
|
{ |
|
/* Prepare for single sequential-JPEG scan containing all components */ |
|
if (cinfo->num_components > MAX_COMPS_IN_SCAN) |
|
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, |
|
MAX_COMPS_IN_SCAN); |
|
cinfo->comps_in_scan = cinfo->num_components; |
|
for (ci = 0; ci < cinfo->num_components; ci++) { |
|
cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci]; |
|
} |
|
} |
|
cinfo->Ss = 0; |
|
cinfo->Se = cinfo->block_size * cinfo->block_size - 1; |
|
cinfo->Ah = 0; |
|
cinfo->Al = 0; |
|
} |
|
|
|
|
|
LOCAL(void) |
|
per_scan_setup (j_compress_ptr cinfo) |
|
/* Do computations that are needed before processing a JPEG scan */ |
|
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */ |
|
{ |
|
int ci, mcublks, tmp; |
|
jpeg_component_info *compptr; |
|
|
|
if (cinfo->comps_in_scan == 1) { |
|
|
|
/* Noninterleaved (single-component) scan */ |
|
compptr = cinfo->cur_comp_info[0]; |
|
|
|
/* Overall image size in MCUs */ |
|
cinfo->MCUs_per_row = compptr->width_in_blocks; |
|
cinfo->MCU_rows_in_scan = compptr->height_in_blocks; |
|
|
|
/* For noninterleaved scan, always one block per MCU */ |
|
compptr->MCU_width = 1; |
|
compptr->MCU_height = 1; |
|
compptr->MCU_blocks = 1; |
|
compptr->MCU_sample_width = compptr->DCT_h_scaled_size; |
|
compptr->last_col_width = 1; |
|
/* For noninterleaved scans, it is convenient to define last_row_height |
|
* as the number of block rows present in the last iMCU row. |
|
*/ |
|
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
|
if (tmp == 0) tmp = compptr->v_samp_factor; |
|
compptr->last_row_height = tmp; |
|
|
|
/* Prepare array describing MCU composition */ |
|
cinfo->blocks_in_MCU = 1; |
|
cinfo->MCU_membership[0] = 0; |
|
|
|
} else { |
|
|
|
/* Interleaved (multi-component) scan */ |
|
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) |
|
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, |
|
MAX_COMPS_IN_SCAN); |
|
|
|
/* Overall image size in MCUs */ |
|
cinfo->MCUs_per_row = (JDIMENSION) |
|
jdiv_round_up((long) cinfo->jpeg_width, |
|
(long) (cinfo->max_h_samp_factor * cinfo->block_size)); |
|
cinfo->MCU_rows_in_scan = (JDIMENSION) |
|
jdiv_round_up((long) cinfo->jpeg_height, |
|
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); |
|
|
|
cinfo->blocks_in_MCU = 0; |
|
|
|
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
|
compptr = cinfo->cur_comp_info[ci]; |
|
/* Sampling factors give # of blocks of component in each MCU */ |
|
compptr->MCU_width = compptr->h_samp_factor; |
|
compptr->MCU_height = compptr->v_samp_factor; |
|
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; |
|
compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size; |
|
/* Figure number of non-dummy blocks in last MCU column & row */ |
|
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); |
|
if (tmp == 0) tmp = compptr->MCU_width; |
|
compptr->last_col_width = tmp; |
|
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); |
|
if (tmp == 0) tmp = compptr->MCU_height; |
|
compptr->last_row_height = tmp; |
|
/* Prepare array describing MCU composition */ |
|
mcublks = compptr->MCU_blocks; |
|
if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU) |
|
ERREXIT(cinfo, JERR_BAD_MCU_SIZE); |
|
while (mcublks-- > 0) { |
|
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; |
|
} |
|
} |
|
|
|
} |
|
|
|
/* Convert restart specified in rows to actual MCU count. */ |
|
/* Note that count must fit in 16 bits, so we provide limiting. */ |
|
if (cinfo->restart_in_rows > 0) { |
|
long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row; |
|
cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L); |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Per-pass setup. |
|
* This is called at the beginning of each pass. We determine which modules |
|
* will be active during this pass and give them appropriate start_pass calls. |
|
* We also set is_last_pass to indicate whether any more passes will be |
|
* required. |
|
*/ |
|
|
|
METHODDEF(void) |
|
prepare_for_pass (j_compress_ptr cinfo) |
|
{ |
|
my_master_ptr master = (my_master_ptr) cinfo->master; |
|
|
|
switch (master->pass_type) { |
|
case main_pass: |
|
/* Initial pass: will collect input data, and do either Huffman |
|
* optimization or data output for the first scan. |
|
*/ |
|
select_scan_parameters(cinfo); |
|
per_scan_setup(cinfo); |
|
if (! cinfo->raw_data_in) { |
|
(*cinfo->cconvert->start_pass) (cinfo); |
|
(*cinfo->downsample->start_pass) (cinfo); |
|
(*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU); |
|
} |
|
(*cinfo->fdct->start_pass) (cinfo); |
|
(*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding); |
|
(*cinfo->coef->start_pass) (cinfo, |
|
(master->total_passes > 1 ? |
|
JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); |
|
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); |
|
if (cinfo->optimize_coding) { |
|
/* No immediate data output; postpone writing frame/scan headers */ |
|
master->pub.call_pass_startup = FALSE; |
|
} else { |
|
/* Will write frame/scan headers at first jpeg_write_scanlines call */ |
|
master->pub.call_pass_startup = TRUE; |
|
} |
|
break; |
|
#ifdef ENTROPY_OPT_SUPPORTED |
|
case huff_opt_pass: |
|
/* Do Huffman optimization for a scan after the first one. */ |
|
select_scan_parameters(cinfo); |
|
per_scan_setup(cinfo); |
|
if (cinfo->Ss != 0 || cinfo->Ah == 0) { |
|
(*cinfo->entropy->start_pass) (cinfo, TRUE); |
|
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); |
|
master->pub.call_pass_startup = FALSE; |
|
break; |
|
} |
|
/* Special case: Huffman DC refinement scans need no Huffman table |
|
* and therefore we can skip the optimization pass for them. |
|
*/ |
|
master->pass_type = output_pass; |
|
master->pass_number++; |
|
/*FALLTHROUGH*/ |
|
#endif |
|
case output_pass: |
|
/* Do a data-output pass. */ |
|
/* We need not repeat per-scan setup if prior optimization pass did it. */ |
|
if (! cinfo->optimize_coding) { |
|
select_scan_parameters(cinfo); |
|
per_scan_setup(cinfo); |
|
} |
|
(*cinfo->entropy->start_pass) (cinfo, FALSE); |
|
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); |
|
/* We emit frame/scan headers now */ |
|
if (master->scan_number == 0) |
|
(*cinfo->marker->write_frame_header) (cinfo); |
|
(*cinfo->marker->write_scan_header) (cinfo); |
|
master->pub.call_pass_startup = FALSE; |
|
break; |
|
default: |
|
ERREXIT(cinfo, JERR_NOT_COMPILED); |
|
} |
|
|
|
master->pub.is_last_pass = (master->pass_number == master->total_passes-1); |
|
|
|
/* Set up progress monitor's pass info if present */ |
|
if (cinfo->progress != NULL) { |
|
cinfo->progress->completed_passes = master->pass_number; |
|
cinfo->progress->total_passes = master->total_passes; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Special start-of-pass hook. |
|
* This is called by jpeg_write_scanlines if call_pass_startup is TRUE. |
|
* In single-pass processing, we need this hook because we don't want to |
|
* write frame/scan headers during jpeg_start_compress; we want to let the |
|
* application write COM markers etc. between jpeg_start_compress and the |
|
* jpeg_write_scanlines loop. |
|
* In multi-pass processing, this routine is not used. |
|
*/ |
|
|
|
METHODDEF(void) |
|
pass_startup (j_compress_ptr cinfo) |
|
{ |
|
cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */ |
|
|
|
(*cinfo->marker->write_frame_header) (cinfo); |
|
(*cinfo->marker->write_scan_header) (cinfo); |
|
} |
|
|
|
|
|
/* |
|
* Finish up at end of pass. |
|
*/ |
|
|
|
METHODDEF(void) |
|
finish_pass_master (j_compress_ptr cinfo) |
|
{ |
|
my_master_ptr master = (my_master_ptr) cinfo->master; |
|
|
|
/* The entropy coder always needs an end-of-pass call, |
|
* either to analyze statistics or to flush its output buffer. |
|
*/ |
|
(*cinfo->entropy->finish_pass) (cinfo); |
|
|
|
/* Update state for next pass */ |
|
switch (master->pass_type) { |
|
case main_pass: |
|
/* next pass is either output of scan 0 (after optimization) |
|
* or output of scan 1 (if no optimization). |
|
*/ |
|
master->pass_type = output_pass; |
|
if (! cinfo->optimize_coding) |
|
master->scan_number++; |
|
break; |
|
case huff_opt_pass: |
|
/* next pass is always output of current scan */ |
|
master->pass_type = output_pass; |
|
break; |
|
case output_pass: |
|
/* next pass is either optimization or output of next scan */ |
|
if (cinfo->optimize_coding) |
|
master->pass_type = huff_opt_pass; |
|
master->scan_number++; |
|
break; |
|
} |
|
|
|
master->pass_number++; |
|
} |
|
|
|
|
|
/* |
|
* Initialize master compression control. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only) |
|
{ |
|
my_master_ptr master; |
|
|
|
master = (my_master_ptr) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
SIZEOF(my_comp_master)); |
|
cinfo->master = &master->pub; |
|
master->pub.prepare_for_pass = prepare_for_pass; |
|
master->pub.pass_startup = pass_startup; |
|
master->pub.finish_pass = finish_pass_master; |
|
master->pub.is_last_pass = FALSE; |
|
|
|
/* Validate parameters, determine derived values */ |
|
initial_setup(cinfo); |
|
|
|
if (cinfo->scan_info != NULL) { |
|
#ifdef C_MULTISCAN_FILES_SUPPORTED |
|
validate_script(cinfo); |
|
if (cinfo->block_size < DCTSIZE) |
|
reduce_script(cinfo); |
|
#else |
|
ERREXIT(cinfo, JERR_NOT_COMPILED); |
|
#endif |
|
} else { |
|
cinfo->progressive_mode = FALSE; |
|
cinfo->num_scans = 1; |
|
} |
|
|
|
if (cinfo->optimize_coding) |
|
cinfo->arith_code = FALSE; /* disable arithmetic coding */ |
|
else if (! cinfo->arith_code && |
|
(cinfo->progressive_mode || |
|
(cinfo->block_size > 1 && cinfo->block_size < DCTSIZE))) |
|
/* TEMPORARY HACK ??? */ |
|
/* assume default tables no good for progressive or reduced AC mode */ |
|
cinfo->optimize_coding = TRUE; /* force Huffman optimization */ |
|
|
|
/* Initialize my private state */ |
|
if (transcode_only) { |
|
/* no main pass in transcoding */ |
|
if (cinfo->optimize_coding) |
|
master->pass_type = huff_opt_pass; |
|
else |
|
master->pass_type = output_pass; |
|
} else { |
|
/* for normal compression, first pass is always this type: */ |
|
master->pass_type = main_pass; |
|
} |
|
master->scan_number = 0; |
|
master->pass_number = 0; |
|
if (cinfo->optimize_coding) |
|
master->total_passes = cinfo->num_scans * 2; |
|
else |
|
master->total_passes = cinfo->num_scans; |
|
}
|
|
|