mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
185 lines
6.7 KiB
185 lines
6.7 KiB
// Brief Sample of using OpenCV dnn module in real time with device capture, video and image. |
|
// VIDEO DEMO: https://www.youtube.com/watch?v=NHtRlndE2cg |
|
|
|
#include <opencv2/dnn.hpp> |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <fstream> |
|
#include <iostream> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
static const char* about = |
|
"This sample uses You only look once (YOLO)-Detector (https://arxiv.org/abs/1612.08242) to detect objects on camera/video/image.\n" |
|
"Models can be downloaded here: https://pjreddie.com/darknet/yolo/\n" |
|
"Default network is 416x416.\n" |
|
"Class names can be downloaded here: https://github.com/pjreddie/darknet/tree/master/data\n"; |
|
|
|
static const char* params = |
|
"{ help | false | print usage }" |
|
"{ cfg | | model configuration }" |
|
"{ model | | model weights }" |
|
"{ camera_device | 0 | camera device number}" |
|
"{ source | | video or image for detection}" |
|
"{ out | | path to output video file}" |
|
"{ fps | 3 | frame per second }" |
|
"{ style | box | box or line style draw }" |
|
"{ min_confidence | 0.24 | min confidence }" |
|
"{ class_names | | File with class names, [PATH-TO-DARKNET]/data/coco.names }"; |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
CommandLineParser parser(argc, argv, params); |
|
|
|
if (parser.get<bool>("help")) |
|
{ |
|
cout << about << endl; |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
String modelConfiguration = parser.get<String>("cfg"); |
|
String modelBinary = parser.get<String>("model"); |
|
|
|
//! [Initialize network] |
|
dnn::Net net = readNetFromDarknet(modelConfiguration, modelBinary); |
|
//! [Initialize network] |
|
|
|
if (net.empty()) |
|
{ |
|
cerr << "Can't load network by using the following files: " << endl; |
|
cerr << "cfg-file: " << modelConfiguration << endl; |
|
cerr << "weights-file: " << modelBinary << endl; |
|
cerr << "Models can be downloaded here:" << endl; |
|
cerr << "https://pjreddie.com/darknet/yolo/" << endl; |
|
exit(-1); |
|
} |
|
|
|
VideoCapture cap; |
|
VideoWriter writer; |
|
int codec = CV_FOURCC('M', 'J', 'P', 'G'); |
|
double fps = parser.get<float>("fps"); |
|
if (parser.get<String>("source").empty()) |
|
{ |
|
int cameraDevice = parser.get<int>("camera_device"); |
|
cap = VideoCapture(cameraDevice); |
|
if(!cap.isOpened()) |
|
{ |
|
cout << "Couldn't find camera: " << cameraDevice << endl; |
|
return -1; |
|
} |
|
} |
|
else |
|
{ |
|
cap.open(parser.get<String>("source")); |
|
if(!cap.isOpened()) |
|
{ |
|
cout << "Couldn't open image or video: " << parser.get<String>("video") << endl; |
|
return -1; |
|
} |
|
} |
|
|
|
if(!parser.get<String>("out").empty()) |
|
{ |
|
writer.open(parser.get<String>("out"), codec, fps, Size((int)cap.get(CAP_PROP_FRAME_WIDTH),(int)cap.get(CAP_PROP_FRAME_HEIGHT)), 1); |
|
} |
|
|
|
vector<String> classNamesVec; |
|
ifstream classNamesFile(parser.get<String>("class_names").c_str()); |
|
if (classNamesFile.is_open()) |
|
{ |
|
string className = ""; |
|
while (std::getline(classNamesFile, className)) |
|
classNamesVec.push_back(className); |
|
} |
|
|
|
String object_roi_style = parser.get<String>("style"); |
|
|
|
for(;;) |
|
{ |
|
Mat frame; |
|
cap >> frame; // get a new frame from camera/video or read image |
|
|
|
if (frame.empty()) |
|
{ |
|
waitKey(); |
|
break; |
|
} |
|
|
|
if (frame.channels() == 4) |
|
cvtColor(frame, frame, COLOR_BGRA2BGR); |
|
|
|
//! [Prepare blob] |
|
Mat inputBlob = blobFromImage(frame, 1 / 255.F, Size(416, 416), Scalar(), true, false); //Convert Mat to batch of images |
|
//! [Prepare blob] |
|
|
|
//! [Set input blob] |
|
net.setInput(inputBlob, "data"); //set the network input |
|
//! [Set input blob] |
|
|
|
//! [Make forward pass] |
|
Mat detectionMat = net.forward("detection_out"); //compute output |
|
//! [Make forward pass] |
|
|
|
vector<double> layersTimings; |
|
double tick_freq = getTickFrequency(); |
|
double time_ms = net.getPerfProfile(layersTimings) / tick_freq * 1000; |
|
putText(frame, format("FPS: %.2f ; time: %.2f ms", 1000.f / time_ms, time_ms), |
|
Point(20, 20), 0, 0.5, Scalar(0, 0, 255)); |
|
|
|
float confidenceThreshold = parser.get<float>("min_confidence"); |
|
for (int i = 0; i < detectionMat.rows; i++) |
|
{ |
|
const int probability_index = 5; |
|
const int probability_size = detectionMat.cols - probability_index; |
|
float *prob_array_ptr = &detectionMat.at<float>(i, probability_index); |
|
|
|
size_t objectClass = max_element(prob_array_ptr, prob_array_ptr + probability_size) - prob_array_ptr; |
|
float confidence = detectionMat.at<float>(i, (int)objectClass + probability_index); |
|
|
|
if (confidence > confidenceThreshold) |
|
{ |
|
float x_center = detectionMat.at<float>(i, 0) * frame.cols; |
|
float y_center = detectionMat.at<float>(i, 1) * frame.rows; |
|
float width = detectionMat.at<float>(i, 2) * frame.cols; |
|
float height = detectionMat.at<float>(i, 3) * frame.rows; |
|
Point p1(cvRound(x_center - width / 2), cvRound(y_center - height / 2)); |
|
Point p2(cvRound(x_center + width / 2), cvRound(y_center + height / 2)); |
|
Rect object(p1, p2); |
|
|
|
Scalar object_roi_color(0, 255, 0); |
|
|
|
if (object_roi_style == "box") |
|
{ |
|
rectangle(frame, object, object_roi_color); |
|
} |
|
else |
|
{ |
|
Point p_center(cvRound(x_center), cvRound(y_center)); |
|
line(frame, object.tl(), p_center, object_roi_color, 1); |
|
} |
|
|
|
String className = objectClass < classNamesVec.size() ? classNamesVec[objectClass] : cv::format("unknown(%d)", objectClass); |
|
String label = format("%s: %.2f", className.c_str(), confidence); |
|
int baseLine = 0; |
|
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); |
|
rectangle(frame, Rect(p1, Size(labelSize.width, labelSize.height + baseLine)), |
|
object_roi_color, FILLED); |
|
putText(frame, label, p1 + Point(0, labelSize.height), |
|
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0,0,0)); |
|
} |
|
} |
|
if(writer.isOpened()) |
|
{ |
|
writer.write(frame); |
|
} |
|
|
|
imshow("YOLO: Detections", frame); |
|
if (waitKey(1) >= 0) break; |
|
} |
|
|
|
return 0; |
|
} // main
|
|
|