mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
164 lines
5.8 KiB
164 lines
5.8 KiB
#include <opencv2/dnn.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/highgui.hpp> |
|
#include <iostream> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
using namespace cv::dnn; |
|
|
|
const size_t inWidth = 300; |
|
const size_t inHeight = 300; |
|
const double inScaleFactor = 1.0; |
|
const Scalar meanVal(104.0, 177.0, 123.0); |
|
|
|
const char* about = "This sample uses Single-Shot Detector " |
|
"(https://arxiv.org/abs/1512.02325) " |
|
"with ResNet-10 architecture to detect faces on camera/video/image.\n" |
|
"More information about the training is available here: " |
|
"<OPENCV_SRC_DIR>/samples/dnn/face_detector/how_to_train_face_detector.txt\n" |
|
".caffemodel model's file is available here: " |
|
"<OPENCV_SRC_DIR>/samples/dnn/face_detector/res10_300x300_ssd_iter_140000.caffemodel\n" |
|
".prototxt file is available here: " |
|
"<OPENCV_SRC_DIR>/samples/dnn/face_detector/deploy.prototxt\n"; |
|
|
|
const char* params |
|
= "{ help | false | print usage }" |
|
"{ proto | | model configuration (deploy.prototxt) }" |
|
"{ model | | model weights (res10_300x300_ssd_iter_140000.caffemodel) }" |
|
"{ camera_device | 0 | camera device number }" |
|
"{ video | | video or image for detection }" |
|
"{ opencl | false | enable OpenCL }" |
|
"{ min_confidence | 0.5 | min confidence }"; |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
CommandLineParser parser(argc, argv, params); |
|
|
|
if (parser.get<bool>("help")) |
|
{ |
|
cout << about << endl; |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
String modelConfiguration = parser.get<string>("proto"); |
|
String modelBinary = parser.get<string>("model"); |
|
|
|
//! [Initialize network] |
|
dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary); |
|
//! [Initialize network] |
|
|
|
if (net.empty()) |
|
{ |
|
cerr << "Can't load network by using the following files: " << endl; |
|
cerr << "prototxt: " << modelConfiguration << endl; |
|
cerr << "caffemodel: " << modelBinary << endl; |
|
cerr << "Models are available here:" << endl; |
|
cerr << "<OPENCV_SRC_DIR>/samples/dnn/face_detector" << endl; |
|
cerr << "or here:" << endl; |
|
cerr << "https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector" << endl; |
|
exit(-1); |
|
} |
|
|
|
if (parser.get<bool>("opencl")) |
|
{ |
|
net.setPreferableTarget(DNN_TARGET_OPENCL); |
|
} |
|
|
|
VideoCapture cap; |
|
if (parser.get<String>("video").empty()) |
|
{ |
|
int cameraDevice = parser.get<int>("camera_device"); |
|
cap = VideoCapture(cameraDevice); |
|
if(!cap.isOpened()) |
|
{ |
|
cout << "Couldn't find camera: " << cameraDevice << endl; |
|
return -1; |
|
} |
|
} |
|
else |
|
{ |
|
cap.open(parser.get<String>("video")); |
|
if(!cap.isOpened()) |
|
{ |
|
cout << "Couldn't open image or video: " << parser.get<String>("video") << endl; |
|
return -1; |
|
} |
|
} |
|
|
|
for(;;) |
|
{ |
|
Mat frame; |
|
cap >> frame; // get a new frame from camera/video or read image |
|
|
|
if (frame.empty()) |
|
{ |
|
waitKey(); |
|
break; |
|
} |
|
|
|
if (frame.channels() == 4) |
|
cvtColor(frame, frame, COLOR_BGRA2BGR); |
|
|
|
//! [Prepare blob] |
|
Mat inputBlob = blobFromImage(frame, inScaleFactor, |
|
Size(inWidth, inHeight), meanVal, false, false); //Convert Mat to batch of images |
|
//! [Prepare blob] |
|
|
|
//! [Set input blob] |
|
net.setInput(inputBlob, "data"); //set the network input |
|
//! [Set input blob] |
|
|
|
//! [Make forward pass] |
|
Mat detection = net.forward("detection_out"); //compute output |
|
//! [Make forward pass] |
|
|
|
vector<double> layersTimings; |
|
double freq = getTickFrequency() / 1000; |
|
double time = net.getPerfProfile(layersTimings) / freq; |
|
|
|
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>()); |
|
|
|
ostringstream ss; |
|
ss << "FPS: " << 1000/time << " ; time: " << time << " ms"; |
|
putText(frame, ss.str(), Point(20,20), 0, 0.5, Scalar(0,0,255)); |
|
|
|
float confidenceThreshold = parser.get<float>("min_confidence"); |
|
for(int i = 0; i < detectionMat.rows; i++) |
|
{ |
|
float confidence = detectionMat.at<float>(i, 2); |
|
|
|
if(confidence > confidenceThreshold) |
|
{ |
|
int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols); |
|
int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows); |
|
int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols); |
|
int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows); |
|
|
|
Rect object((int)xLeftBottom, (int)yLeftBottom, |
|
(int)(xRightTop - xLeftBottom), |
|
(int)(yRightTop - yLeftBottom)); |
|
|
|
rectangle(frame, object, Scalar(0, 255, 0)); |
|
|
|
ss.str(""); |
|
ss << confidence; |
|
String conf(ss.str()); |
|
String label = "Face: " + conf; |
|
int baseLine = 0; |
|
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); |
|
rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height), |
|
Size(labelSize.width, labelSize.height + baseLine)), |
|
Scalar(255, 255, 255), FILLED); |
|
putText(frame, label, Point(xLeftBottom, yLeftBottom), |
|
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0,0,0)); |
|
} |
|
} |
|
|
|
imshow("detections", frame); |
|
if (waitKey(1) >= 0) break; |
|
} |
|
|
|
return 0; |
|
} // main
|
|
|