mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
491 lines
17 KiB
491 lines
17 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Jin Ma, jin@multicorewareinc.com |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other oclMaterials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
|
|
#include "precomp.hpp" |
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::ocl; |
|
|
|
namespace cv |
|
{ |
|
namespace ocl |
|
{ |
|
///////////////////////////OpenCL kernel strings/////////////////////////// |
|
extern const char* tvl1flow; |
|
} |
|
} |
|
|
|
cv::ocl::OpticalFlowDual_TVL1_OCL::OpticalFlowDual_TVL1_OCL() |
|
{ |
|
tau = 0.25; |
|
lambda = 0.15; |
|
theta = 0.3; |
|
nscales = 5; |
|
warps = 5; |
|
epsilon = 0.01; |
|
iterations = 300; |
|
useInitialFlow = false; |
|
} |
|
|
|
void cv::ocl::OpticalFlowDual_TVL1_OCL::operator()(const oclMat& I0, const oclMat& I1, oclMat& flowx, oclMat& flowy) |
|
{ |
|
CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 ); |
|
CV_Assert( I0.size() == I1.size() ); |
|
CV_Assert( I0.type() == I1.type() ); |
|
CV_Assert( !useInitialFlow || (flowx.size() == I0.size() && flowx.type() == CV_32FC1 && flowy.size() == flowx.size() && flowy.type() == flowx.type()) ); |
|
CV_Assert( nscales > 0 ); |
|
|
|
// allocate memory for the pyramid structure |
|
I0s.resize(nscales); |
|
I1s.resize(nscales); |
|
u1s.resize(nscales); |
|
u2s.resize(nscales); |
|
//I0s_step == I1s_step |
|
I0.convertTo(I0s[0], CV_32F, I0.depth() == CV_8U ? 1.0 : 255.0); |
|
I1.convertTo(I1s[0], CV_32F, I1.depth() == CV_8U ? 1.0 : 255.0); |
|
|
|
|
|
if (!useInitialFlow) |
|
{ |
|
flowx.create(I0.size(), CV_32FC1); |
|
flowy.create(I0.size(), CV_32FC1); |
|
} |
|
//u1s_step != u2s_step |
|
u1s[0] = flowx; |
|
u2s[0] = flowy; |
|
|
|
I1x_buf.create(I0.size(), CV_32FC1); |
|
I1y_buf.create(I0.size(), CV_32FC1); |
|
|
|
I1w_buf.create(I0.size(), CV_32FC1); |
|
I1wx_buf.create(I0.size(), CV_32FC1); |
|
I1wy_buf.create(I0.size(), CV_32FC1); |
|
|
|
grad_buf.create(I0.size(), CV_32FC1); |
|
rho_c_buf.create(I0.size(), CV_32FC1); |
|
|
|
p11_buf.create(I0.size(), CV_32FC1); |
|
p12_buf.create(I0.size(), CV_32FC1); |
|
p21_buf.create(I0.size(), CV_32FC1); |
|
p22_buf.create(I0.size(), CV_32FC1); |
|
|
|
diff_buf.create(I0.size(), CV_32FC1); |
|
|
|
// create the scales |
|
for (int s = 1; s < nscales; ++s) |
|
{ |
|
ocl::pyrDown(I0s[s - 1], I0s[s]); |
|
ocl::pyrDown(I1s[s - 1], I1s[s]); |
|
|
|
if (I0s[s].cols < 16 || I0s[s].rows < 16) |
|
{ |
|
nscales = s; |
|
break; |
|
} |
|
|
|
if (useInitialFlow) |
|
{ |
|
ocl::pyrDown(u1s[s - 1], u1s[s]); |
|
ocl::pyrDown(u2s[s - 1], u2s[s]); |
|
|
|
//ocl::multiply(u1s[s], Scalar::all(0.5), u1s[s]); |
|
multiply(0.5, u1s[s], u1s[s]); |
|
//ocl::multiply(u2s[s], Scalar::all(0.5), u2s[s]); |
|
multiply(0.5, u1s[s], u2s[s]); |
|
} |
|
} |
|
|
|
// pyramidal structure for computing the optical flow |
|
for (int s = nscales - 1; s >= 0; --s) |
|
{ |
|
// compute the optical flow at the current scale |
|
procOneScale(I0s[s], I1s[s], u1s[s], u2s[s]); |
|
|
|
// if this was the last scale, finish now |
|
if (s == 0) |
|
break; |
|
|
|
// otherwise, upsample the optical flow |
|
|
|
// zoom the optical flow for the next finer scale |
|
ocl::resize(u1s[s], u1s[s - 1], I0s[s - 1].size()); |
|
ocl::resize(u2s[s], u2s[s - 1], I0s[s - 1].size()); |
|
|
|
// scale the optical flow with the appropriate zoom factor |
|
multiply(2, u1s[s - 1], u1s[s - 1]); |
|
multiply(2, u2s[s - 1], u2s[s - 1]); |
|
|
|
} |
|
|
|
} |
|
|
|
namespace ocl_tvl1flow |
|
{ |
|
void centeredGradient(const oclMat &src, oclMat &dx, oclMat &dy); |
|
|
|
void warpBackward(const oclMat &I0, const oclMat &I1, oclMat &I1x, oclMat &I1y, |
|
oclMat &u1, oclMat &u2, oclMat &I1w, oclMat &I1wx, oclMat &I1wy, |
|
oclMat &grad, oclMat &rho); |
|
|
|
void estimateU(oclMat &I1wx, oclMat &I1wy, oclMat &grad, |
|
oclMat &rho_c, oclMat &p11, oclMat &p12, |
|
oclMat &p21, oclMat &p22, oclMat &u1, |
|
oclMat &u2, oclMat &error, float l_t, float theta, char calc_error); |
|
|
|
void estimateDualVariables(oclMat &u1, oclMat &u2, |
|
oclMat &p11, oclMat &p12, oclMat &p21, oclMat &p22, float taut); |
|
} |
|
|
|
void cv::ocl::OpticalFlowDual_TVL1_OCL::procOneScale(const oclMat &I0, const oclMat &I1, oclMat &u1, oclMat &u2) |
|
{ |
|
using namespace ocl_tvl1flow; |
|
|
|
const double scaledEpsilon = epsilon * epsilon * I0.size().area(); |
|
|
|
CV_DbgAssert( I1.size() == I0.size() ); |
|
CV_DbgAssert( I1.type() == I0.type() ); |
|
CV_DbgAssert( u1.empty() || u1.size() == I0.size() ); |
|
CV_DbgAssert( u2.size() == u1.size() ); |
|
|
|
if (u1.empty()) |
|
{ |
|
u1.create(I0.size(), CV_32FC1); |
|
u1.setTo(Scalar::all(0)); |
|
|
|
u2.create(I0.size(), CV_32FC1); |
|
u2.setTo(Scalar::all(0)); |
|
} |
|
|
|
oclMat I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
oclMat I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
centeredGradient(I1, I1x, I1y); |
|
|
|
oclMat I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
oclMat I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
oclMat I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
oclMat grad = grad_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
oclMat rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
oclMat p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
oclMat p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
oclMat p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
oclMat p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
p11.setTo(Scalar::all(0)); |
|
p12.setTo(Scalar::all(0)); |
|
p21.setTo(Scalar::all(0)); |
|
p22.setTo(Scalar::all(0)); |
|
|
|
oclMat diff = diff_buf(Rect(0, 0, I0.cols, I0.rows)); |
|
|
|
const float l_t = static_cast<float>(lambda * theta); |
|
const float taut = static_cast<float>(tau / theta); |
|
|
|
for (int warpings = 0; warpings < warps; ++warpings) |
|
{ |
|
warpBackward(I0, I1, I1x, I1y, u1, u2, I1w, I1wx, I1wy, grad, rho_c); |
|
|
|
double error = numeric_limits<double>::max(); |
|
double prev_error = 0; |
|
for (int n = 0; error > scaledEpsilon && n < iterations; ++n) |
|
{ |
|
// some tweaks to make sum operation less frequently |
|
char calc_error = (n & 0x1) && (prev_error < scaledEpsilon); |
|
estimateU(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, |
|
u1, u2, diff, l_t, static_cast<float>(theta), calc_error); |
|
if(calc_error) |
|
{ |
|
error = ocl::sum(diff)[0]; |
|
prev_error = error; |
|
} |
|
else |
|
{ |
|
error = numeric_limits<double>::max(); |
|
prev_error -= scaledEpsilon; |
|
} |
|
estimateDualVariables(u1, u2, p11, p12, p21, p22, taut); |
|
|
|
} |
|
} |
|
|
|
|
|
} |
|
|
|
void cv::ocl::OpticalFlowDual_TVL1_OCL::collectGarbage() |
|
{ |
|
I0s.clear(); |
|
I1s.clear(); |
|
u1s.clear(); |
|
u2s.clear(); |
|
|
|
I1x_buf.release(); |
|
I1y_buf.release(); |
|
|
|
I1w_buf.release(); |
|
I1wx_buf.release(); |
|
I1wy_buf.release(); |
|
|
|
grad_buf.release(); |
|
rho_c_buf.release(); |
|
|
|
p11_buf.release(); |
|
p12_buf.release(); |
|
p21_buf.release(); |
|
p22_buf.release(); |
|
|
|
diff_buf.release(); |
|
norm_buf.release(); |
|
} |
|
|
|
void ocl_tvl1flow::centeredGradient(const oclMat &src, oclMat &dx, oclMat &dy) |
|
{ |
|
Context *clCxt = src.clCxt; |
|
size_t localThreads[3] = {32, 8, 1}; |
|
size_t globalThreads[3] = {src.cols, src.rows, 1}; |
|
|
|
int srcElementSize = src.elemSize(); |
|
int src_step = src.step/srcElementSize; |
|
|
|
int dElememntSize = dx.elemSize(); |
|
int dx_step = dx.step/dElememntSize; |
|
|
|
string kernelName = "centeredGradientKernel"; |
|
vector< pair<size_t, const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&src.data)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&src.cols)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&src.rows)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&src_step)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&dx.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&dy.data)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&dx_step)); |
|
openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThreads, localThreads, args, -1, -1); |
|
|
|
} |
|
|
|
void ocl_tvl1flow::estimateDualVariables(oclMat &u1, oclMat &u2, oclMat &p11, oclMat &p12, oclMat &p21, oclMat &p22, float taut) |
|
{ |
|
Context *clCxt = u1.clCxt; |
|
|
|
size_t localThread[] = {32, 8, 1}; |
|
size_t globalThread[] = |
|
{ |
|
u1.cols, |
|
u1.rows, |
|
1 |
|
}; |
|
|
|
int u1_element_size = u1.elemSize(); |
|
int u1_step = u1.step/u1_element_size; |
|
|
|
int u2_element_size = u2.elemSize(); |
|
int u2_step = u2.step/u2_element_size; |
|
|
|
int p11_element_size = p11.elemSize(); |
|
int p11_step = p11.step/p11_element_size; |
|
|
|
int u1_offset_y = u1.offset/u1.step; |
|
int u1_offset_x = u1.offset%u1.step; |
|
u1_offset_x = u1_offset_x/u1.elemSize(); |
|
|
|
int u2_offset_y = u2.offset/u2.step; |
|
int u2_offset_x = u2.offset%u2.step; |
|
u2_offset_x = u2_offset_x/u2.elemSize(); |
|
|
|
string kernelName = "estimateDualVariablesKernel"; |
|
vector< pair<size_t, const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&u1.data)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u1.cols)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u1.rows)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u1_step)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&u2.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&p11.data)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&p11_step)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&p12.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&p21.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&p22.data)); |
|
args.push_back( make_pair( sizeof(cl_float), (void*)&taut)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u2_step)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_x)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_y)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_x)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_y)); |
|
|
|
openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThread, localThread, args, -1, -1); |
|
} |
|
|
|
void ocl_tvl1flow::estimateU(oclMat &I1wx, oclMat &I1wy, oclMat &grad, |
|
oclMat &rho_c, oclMat &p11, oclMat &p12, |
|
oclMat &p21, oclMat &p22, oclMat &u1, |
|
oclMat &u2, oclMat &error, float l_t, float theta, char calc_error) |
|
{ |
|
Context* clCxt = I1wx.clCxt; |
|
|
|
size_t localThread[] = {32, 8, 1}; |
|
size_t globalThread[] = |
|
{ |
|
I1wx.cols, |
|
I1wx.rows, |
|
1 |
|
}; |
|
|
|
int I1wx_element_size = I1wx.elemSize(); |
|
int I1wx_step = I1wx.step/I1wx_element_size; |
|
|
|
int u1_element_size = u1.elemSize(); |
|
int u1_step = u1.step/u1_element_size; |
|
|
|
int u2_element_size = u2.elemSize(); |
|
int u2_step = u2.step/u2_element_size; |
|
|
|
int u1_offset_y = u1.offset/u1.step; |
|
int u1_offset_x = u1.offset%u1.step; |
|
u1_offset_x = u1_offset_x/u1.elemSize(); |
|
|
|
int u2_offset_y = u2.offset/u2.step; |
|
int u2_offset_x = u2.offset%u2.step; |
|
u2_offset_x = u2_offset_x/u2.elemSize(); |
|
|
|
string kernelName = "estimateUKernel"; |
|
vector< pair<size_t, const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&I1wx.data)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&I1wx.cols)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&I1wx.rows)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&I1wx_step)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&I1wy.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&grad.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&rho_c.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&p11.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&p12.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&p21.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&p22.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&u1.data)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u1_step)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&u2.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&error.data)); |
|
args.push_back( make_pair( sizeof(cl_float), (void*)&l_t)); |
|
args.push_back( make_pair( sizeof(cl_float), (void*)&theta)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u2_step)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_x)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_y)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_x)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_y)); |
|
args.push_back( make_pair( sizeof(cl_char), (void*)&calc_error)); |
|
|
|
openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThread, localThread, args, -1, -1); |
|
} |
|
|
|
void ocl_tvl1flow::warpBackward(const oclMat &I0, const oclMat &I1, oclMat &I1x, oclMat &I1y, oclMat &u1, oclMat &u2, oclMat &I1w, oclMat &I1wx, oclMat &I1wy, oclMat &grad, oclMat &rho) |
|
{ |
|
Context* clCxt = I0.clCxt; |
|
const bool isImgSupported = support_image2d(clCxt); |
|
|
|
CV_Assert(isImgSupported); |
|
|
|
int u1ElementSize = u1.elemSize(); |
|
int u1Step = u1.step/u1ElementSize; |
|
|
|
int u2ElementSize = u2.elemSize(); |
|
int u2Step = u2.step/u2ElementSize; |
|
|
|
int I0ElementSize = I0.elemSize(); |
|
int I0Step = I0.step/I0ElementSize; |
|
|
|
int I1w_element_size = I1w.elemSize(); |
|
int I1w_step = I1w.step/I1w_element_size; |
|
|
|
int u1_offset_y = u1.offset/u1.step; |
|
int u1_offset_x = u1.offset%u1.step; |
|
u1_offset_x = u1_offset_x/u1.elemSize(); |
|
|
|
int u2_offset_y = u2.offset/u2.step; |
|
int u2_offset_x = u2.offset%u2.step; |
|
u2_offset_x = u2_offset_x/u2.elemSize(); |
|
|
|
size_t localThread[] = {32, 8, 1}; |
|
size_t globalThread[] = |
|
{ |
|
I0.cols, |
|
I0.rows, |
|
1 |
|
}; |
|
|
|
cl_mem I1_tex; |
|
cl_mem I1x_tex; |
|
cl_mem I1y_tex; |
|
I1_tex = bindTexture(I1); |
|
I1x_tex = bindTexture(I1x); |
|
I1y_tex = bindTexture(I1y); |
|
|
|
string kernelName = "warpBackwardKernel"; |
|
vector< pair<size_t, const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&I0.data)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&I0Step)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&I0.cols)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&I0.rows)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&I1_tex)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&I1x_tex)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&I1y_tex)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&u1.data)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u1Step)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&u2.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&I1w.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&I1wx.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&I1wy.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&grad.data)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void*)&rho.data)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&I1w_step)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u2Step)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_x)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u1_offset_y)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_x)); |
|
args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_y)); |
|
|
|
openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThread, localThread, args, -1, -1); |
|
|
|
releaseTexture(I1_tex); |
|
releaseTexture(I1x_tex); |
|
releaseTexture(I1y_tex); |
|
}
|
|
|